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Background

Maximally supersymmetric models (16 supercharges without grav-
ity, 32 with gravity) have on-shell supermultiplets. There is no
finite set of auxiliary fields.

Examples:

D = 10 super-Yang–Mills theory

N = (2,0) model in D = 6

IIB supergravity in D = 10

D = 11 supergravity

BLG model in D = 3

Dimensional reductions of above

How does one formulate an action principle preserving manifest
supersymmetry? This is of course desirable, especially for exam-
ining quantum properties.



Pure spinors provide an answer (in the cases self-dual fields are
not present).

Quantum calculations with pure spinors are traditionally per-
formed in a first-quantised, superparticle, framework. This is a
heritage from string theory. The rules for constructing superpar-
ticle amplitudes should preferrably be derived from a supersym-
metric action, when one exists. Then all symmetries of amplitudes
are under control.



D = 11 supergravity

Component fields

The fields are

Bosonic: metric gmn, 3-form Cmnp;

Fermionic: gravitino ψα
m.

Action:

S = 1
2κ2

∫
d11x
√−g (

R− 1
48H

mnpqHmnpq

)

+ 1
12κ2

∫
C ∧H ∧H + terms with fermions .



On-shell formulation in superspace

Supergravity is formulated as Cartan geometry on superspace
(analogous statements true for other supersymmetric gauge theo-
ries).

Coordinates: ZM = (xm, θµ).

Vielbein: EA = dZMEM
A.

Spin connection 1-form (Lorentz valued): ΩA
B .

Torsion 2-form: TA = DEA = dEA + EB ∧ ΩB
A.

Curvature 2-form: RA
B = dΩA

B + ΩA
C ∧ ΩC

B .

Bianchi identities: DTA = EB ∧RB
A, DRA

B = 0.

(M = (m,µ), A = (a, α).)

[Cremmer, Ferrara 1980; Brink, Howe 1980]



Too many superfields. Conventional constraints remove all inde-
pendent superfield except the lowest-dimensional one, Eµ

a.

They are used to set all of the dimension-0 torsion to zero, except

Tαβ
c = 2γc

αβ + 1
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c
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Too many superfields. Conventional constraints remove all inde-
pendent superfield except the lowest-dimensional one, Eµ

a.

They are used to set all of the dimension-0 torsion to zero, except

Tαβ
c = 2γc

αβ + 1
2U

c
e1e2γ

e1e2
αβ + 1

5!V
c
e1...e5γ
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If U and V are set to 0, the torsion Bianchi identities imply the
equations of motion.

All physical fields are contained in the supergeometry. For exam-
ple,

Taβ
γ ∝ Hae1e2e3(γ

e1e2e3)β
γ − 1

8H
e1e2e3e4(γae1e2e3e4)β

γ

[see e.g. Cederwall, Gran, Nilsson 2005]



There is a closed 4-form on superspace, whose purely bosonic leg
is the physical 4-form field strength.

The construction of the super-4-form relies on supergeometric
data (the torsion), so this is not an independent construction.
However, Cαβγ contains the entire linearised supermultiplet, and
the linearised equations of motion are obtained by demanding that
the irreducible modules

⊕ ⊕

in Hαβγδ vanish (the rest are conventional constraints).



What is needed to go off-shell?

The physical fields and equations of motion reside in superfields

Eα
a : a α or Cαβγ : α ⊕ α

↓ ↓

Tαβ
a : a ⊕

a

Hαβγδ : ⊕ ⊕

One needs an action containing the upper superfields, and whose
equations of motion contain the lower ones.

The operation of going from fields to equations of motion looks
like an exterior derivative in a fermionic direction.



Pure spinors

BRST charge

Torsion in (flat) superspace, generically:

{Dα, Dβ} = −Tαβ
cDc = −2γc

αβDc .

If a bosonic spinor λα is pure, i.e., if the vector part (λγaλ) of the
spinor bilinear vanishes, the operator q = λαDα becomes nilpo-
tent,

q2 = 0 ,

and may be used as a BRST operator. Physical states may be
defined as cohomology of q.



λ is a ghost variable.

In D = 11, the bilinears of a spinor λ are

(λγaλ) , (λγa1a2λ) and (λγa1a2a3a4a5λ) .
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The reducibility leads to a more complicated structure of the pure
spinor space than in D = 10.



Solution of the pure spinor constraint requires λ to be complex.
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Cohomologies and linearised fields

A scalar field Ψ(x, θ, λ), when expanded in a power series in λ,
contains

1→α→


 ⊕


→


 α⊕ α


→


 ⊕ ⊕


→...

We recognise the modules of Cαβγ and of the equations of motion.
The cohomology of q gives the linearised equations of motion!

An analogous statement holds for a field Φa and the linearised
supergeometry, where Φa enjoys the extra gauge symmetry Φa ≈
Φa + (λγaρ).

[Cederwall, Nilsson, Tsimpis 2002]



To define integration on pure spinor superspace, extra “non-minimal”
variables are needed, without changing the cohomology.

Q = λαDα + rα
∂

∂λ̄α
[Berkovits 2005]

I will not go into details about integration (or regularisation).



In addition to the physical fields, pure spinor superfield cohomol-
ogy contains ghosts, ghosts for ghosts,... and all Batalin–Vilkovisky
antifields.

Ψ must be considered to be the “fundamental field”, since Φa only
contains the 3-form C through its field strength H = dC.

It is possible to relate the fields Ψ and Φa through an operator
Ra of non-trivial cohomology as

Φa = RaΨ .

where
Ra = η−1(λ̄γabλ̄)∂b + . . .

[Cederwall 2009]



Supersymmetric action

Linearised action

A linearised action is

S =
∫

[dZ]ΨQΨ .

In order to introduce interaction, the concept of cohomology (which
is inherently linear) must be generalised. The appropriate lan-
guage is the Batalin–Vilkovisky formalism. This is already hinted
at by the fact that ghosts and antifields are included in the coho-
mology.



Batalin–Vilkovisky formalism

The action itself is the generator of “gauge transformations”, gen-
erated as δX = (S,X), where (·, ·) is the antibracket. In a com-
ponent formalism:

(A,B) =
∫

[dx]
(
A
←
δ

δφA(x)

→
δ

δφ?
A(x)

B −A
←
δ

δφ?
A(x)

→
δ

δφA(x)
B

)
.

The governing equation generalising Q2 = 0 is the BV master
equation (S, S) = 0.

[Batalin, Vilkovisky 1981]

For the pure spinor superfield Ψ, the antibracket takes the simple
form

(A,B) =
∫
A
←
δ

δΨ(Z)
[dZ]

→
δ

δΨ(Z)
B .

[Cederwall 2009]



Full action

The full BV action for D = 10 super-Yang–Mills (and its dimen-
sional reductions) is the Chern–Simons-like action

S =
∫

[dZ]Tr
(

1
2ΨQΨ + 1

3Ψ3
)
.

implicit in [Berkovits 2001,2005; Cederwall, Nilsson, Tsimpis 2001]

Note that there is only a 3-point coupling; the quartic interac-
tion arises on elimination of “auxiliary fields”, notably the lowest
component in the superfield Aα(x, θ).



An analogous formulation exists for the Bagger–Lambert–Gustavsson
and Aharony–Bergman–Jafferis–Maldacena models in D = 3.

The simplification there is even more radical: The component ac-
tions contain 6-point couplings, but the pure spinor superfield
actions only have minimal coupling (i.e., 3-point interactions).

[Cederwall, 2008]

But I would like to turn to supergravity.



The algebraic properties of the operator Ra ensure that an inter-
action term

S3 ∝
∫

[dZ](λγabλ)ΨRaΨRbΨ

is a nontrivial deformation respecting the master equation.

The factor (λγabλ) ensures that dimension and gh# are correct,
guarantees the invariance under Φa ≈ Φa + (λγaρ), and makes
possible a contraction of Ψa’s.

Some terms have been checked explicitly (CS term, coupling of
diffeomorphism ghosts), so it is clear that this gives the 3-point
couplings of D = 11 supergravity.



One may expect that an expansion around flat space would be
non-polynomial. This is however not the case. Checking the master
equation to higher order in the field involves commutators of Ra’s.
The Ra’s don’t commute, but “almost”.
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1
2 (λγabλ)[Ra, Rb] = 3

2{Q,T}

where T = 8η−3(λ̄γabλ̄)(λ̄r)(rr)(λγabw).
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The master equation is exactly satified by

S =
∫

[dZ]
[
1
2ΨQΨ + 1

6 (λγabλ)(1− 3
2TΨ)ΨRaΨRbΨ

]
.

Note the similarity of the 3-point coupling (∝ ΨΦΦ) to the Chern–
Simons term (which it indeed contains).
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The master equation is exactly satified by

S =
∫

[dZ]
[
1
2ΨQΨ + 1

6 (λγabλ)(1− 3
2TΨ)ΨRaΨRbΨ

]
.

Note the similarity of the 3-point coupling (∝ ΨΦΦ) to the Chern–
Simons term (which it indeed contains).

After a field redefinition Ψ = (1 + 1
2T Ψ̃)Ψ̃:

S =
∫

[dZ]
[

1
2 (1 + T Ψ̃)Ψ̃QΨ̃ + 1

6 (λγabλ)Ψ̃RaΨ̃RbΨ̃
]
.



Gauge fixing
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agator then becomes b¤−1.

Unlike in “component BV formalism”, there is no need to in-
troduce non-minimal fields (antighost, Nakanishi–Lautrup field);
they are contained in Ψ.

implicit in [Aisaka, Berkovits 2009]

The D = 11 b-ghost has been constructed,

b = 1
2η
−1(λ̄γabλ̄)(λγabγiD)∂i + . . .

[Aisaka, Berkovits, Cederwall, work in progress]
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The framework described resolves the issue of supersymmetric ac-
tions for maximally supersymmetric theories.
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Outlook

The framework described resolves the issue of supersymmetric ac-
tions for maximally supersymmetric theories.

The interaction terms are generically much simpler and of lower
order than in a component language; for supergravity to the extent
that the action becomes polynomial.

Presumably, the formalism is the best possible for calculating
quantum amplitudes. Need to establish connection to “superpar-
ticle” prescription. Finiteness of BLG? Of N = 8 supergravity?...
Regularisation is probably needed in path integrals.

Lots of other issues. How is U-duality realised? Models connected
to generalised geometry, with enlarged structure groups, may pos-
sibly provide generalised models of gravity.

Geometry? Background invariance? The polynomial property should
be better understood.


