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Context and Plan

BKL analysis of spacelike singularities

Hidden symmetries in supergravity

Cosmological billiards and Kac–Moody algebras

Minisuperspace models for quantum gravity
→ Quantum cosmological billiards

Octonions, octavians and E8

PSL2(O) and arithmetic structure of wavefunctions

Generalization: beyond the ultralocal approximation

A Lie algebra mechanism for emergent space(-time)?
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Cosmological billards: BKL

Gravitational dynamics near space-like singularity:
[Belinskii, Khalatnikov, Lifshitz 1970; Misner 1969; Chit re 1972]

T = T2 < T1

x1

x2

T = 0

T = T1

Spatial points decouple ⇒ dynamics becomes ultra-local.

Reduction of degress of freedom to spatial scale factors βa

ds2 = −N2dt2 +
d

∑

a=1

e−2βa

dx2
a (t ∼ − log T )
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Cosmological billiards: Dynamics

Effective Lagrangian for βa(t) (a = 1, . . . , d)

L =
1

2
n−1

d
∑

a,b=1

Gabβ̇
aβ̇b + Veff(β)

Gab: DeWitt metric
(Lorentzian signature)

[ ]

Close to the singularity Veff con-
sists of infinite potentials walls,
obstructing free null motion of βa.

Chaotic oscillations of the metric
(i.e. ∞ many Kasner bounces) if
billiard table inside lightcone.

β

Billiard table
=E10 Weyl chamber

M
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The Lie algebra connection

For maximal D = 11 supergravity space of logarithmic
scale factors {βa(t)} (for a = 1, . . . , 10) can be identified
with the Cartan subalgebra of the maximally extended
hyperbolic Kac–Moody algebra E10.

Billiard ‘wedge’ is Weyl chamber
of E10 [Damour,Henneaux,2000]

Chaotic oscillations if Kac-
Moody algebra is hyperbolic,
otherwise AVD near singularity
[Damour,Henneaux,Julia,HN]

β

Billiard table
=E10 Weyl chamber

M
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Quantum cosmological billiards

Setting n = 1 one has to quantize L = 1
2 β̇

aGabβ̇
b

with null constraint β̇aGabβ̇
b = 0 on billiard domain.

Canonical momenta: πa = Gabβ̇
b ⇒ H0 = 1

2πaG
abπb.

Wheeler–DeWitt (WDW) equation in canonical quantization

H0Ψ(β) = −
1

2
Gab∂a∂bΨ(β) = 0

with Klein–Gordon inner product

(Ψ1|Ψ2) = −i

∫

dΣaΨ∗
1

↔

∂a Ψ2
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Quantum cosmological billiards (II)

Introduce new coordinates ρ
and ωa(z) from ‘radius’ and co-
ordinates z on unit hyperboloid

βa = ρωa , ωaGabω
b = −1

ρ2 = −βaGabβ
b

ρ

ωa

Singularity: ρ → ∞

WDW equation in these variables (no ordering ambiguities!)

[

−ρ1−d ∂

∂ρ

(

ρd−1 ∂

∂ρ

)

+ ρ−2∆LB

]

Ψ(ρ, z) = 0
6

Laplace–Beltrami operator on unit hyperboloid
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Solving the WDW equation

[

−ρ1−d ∂

∂ρ

(

ρd−1 ∂

∂ρ

)

+ ρ−2∆LB

]

Ψ(ρ, z) = 0

Separation of variables: Ψ(ρ, z) = R(ρ)F (z). Thus

−∆LBF (z) = EF (z) ⇒ R±(ρ) = ρ−
d−2

2
±i

q

E−( d−2

2 )
2

→ must solve spectral problem on hyperbolic space.

For E > 0 we have R±(ρ) → 0 for ρ→ ∞.

For E > (d−2)2

4 wavefunction is necessarily complex.

Positive norm wavefunctions with R+(ρ).
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∆LB and boundary conditions

The classical billiard ball is constrained to Weyl chamber
with infinite potentials ⇒ Dirichlet boundary conditions

Use upper half plane model

z = (~u, v) , ~u ∈ R
d−2, v ∈ R>0

⇒ ∆LB = vd−1∂v(v
3−d∂v) + v2∂2

~u

With Dirichlet boundary conditions (for d = 3 see [Iwaniec] )

−∆LBF (z) = EF (z) ⇒ E ≥

(

d− 2

2

)2
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Octavians and E8

Octonions O = largest division algebra (i, j = 1, . . . , 7)

eiej + ejei = −2δij , ejej+1ej+3 = −1 (j ≡ j+7)

Simple roots of E8 ⊂ E10:
-1 0 1 2 3 4 5 6 7

8

y y y y y y y y y

y

ε1 =
1

2
(1 − e1 − e5 − e6) , ε2 = e1 , ε3 =

1

2
(−e1 − e2 + e6 + e7) , ε4 = e2

ε5 =
1

2
(−e2 − e3 − e4 − e7) , ε6 = e3 , ε7 =

1

2
(−e3 + e5 − e6 + e7) , ε2 = e4

with Cartan matrix Aij = 〈εi|εj〉 := εiε̄j + εj ε̄i

Root lattice Q(E8) = non-commutative and non-associative
ring of integer octonions O (‘octavians’) [Bruck, Coxeter, 1946]

240 roots of E8 ≡ 240 units of Q(E8); highest root θ = 1
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Arithmetic structure (I)

Beyond general inequality details of spectrum depend on
shape of domain. (‘Shape of the drum’ problem)

Focus on maximal supergravity (d = 10). Domain is
determined by E10 Weyl group.

-1 0 1 2 3 4 5 6 7

8

y y y y y y y y y

y

9-dimensional upper octonionic upper half plane: u ≡ ~u ∈ O

On z = u+ iv (v > 0) fundamental Weyl reflections act by

w−1(z) =
1

z̄
, w0(z) = −z̄ + 1 , wj(z) = −εj z̄εj

with εj = simple E8 roots (j = 1, . . . , 8).
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Arithmetic structure (II)

Iteration of ‘modular’ action

w−1(z) =
1

z̄
, w0(z) = −z̄ + 1 , wj(z) = −εj z̄εj

generates whole Weyl group W (E10). No (very) simple
octonionic representation of an arbitrary element known.

Restricting to the even Weyl group W+(E10) gives
‘holomorphic’ transformations and one obtains

W+(E10) = PSL2(O)

which should be interpreted as a modular group over the
integer octonions ≡ ‘octavians’ O. [Feingold,Kleinschmidt,HN ’08]
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Modular wavefunctions (I)

Fundamental Weyl reflections on wavefunction Ψ(ρ, z)

Ψ(wI(β)) ≡ Ψ(ρ, wI(z)) =

{

+Ψ(ρ, z) Neumann b.c.
−Ψ(ρ, z) Dirichlet b.c.

Use Weyl symmetry to define Ψ(ρ, z) on the whole upper
half plane, with Dirichlet boundary conditions ⇒ Ψ(ρ, z) is

Linear combination of eigenfunctions of ∆LB on UHP

Invariant under action of W+(E10) = PSL2(O).
Anti-invariant under extension to W (E10).

⇒ Wavefunction is an odd Maass wave form of PSL2(O)

[cf. [Forte 2008] for work on D = 4 gravity with PSL2(Z)]
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Modular wavefunctions (II)

The spectrum of odd Maass wave forms is discrete but not
known. For PSL2(O) the theory is not even developed.

For lower dimensional cases like pure (3 + 1)-dimensional
Einstein gravity with PSL2(Z) many numerical results.
[Graham, Sz épfalusy 1990; Steil 1994; Then 2003]

Summary of analysis so far:

Quantum billiard wavefunction Ψ(ρ, z) is an odd
Maass wave form (Dirichlet b.c.) for PSL2(O).

NB: Neumann b.c.: discrete spectrum embedded in
continuous spectrum (Eisenstein series), etc.

Arithmetic Quantum Gravity – p.14



Interpretation (I)

In BKL limit ‘Wavefunction of the Universe’ is formally

|Ψfull〉 ∼
∏

x

|Ψx〉

Product of quantum cosmological billiard wavefunctions,
one for each spatial point (ultra-locality).

Each factor contains a Maass wave form of the type
Ψx(ρx, zx) =

∑

Rx(ρx)Fx(zx) with

−∆LBF (z) = EF (z) , R±(ρ) = ρ−
d−2

2
±i

q

E−( d−2

2 )
2

Beyond ultralocality: replace |Ψfull〉 by wavefunction
depending on full tower of E10 degrees of freedom!
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Interpretation (II)

Absence of potential: can restrict to a well-defined
Hilbert space with positive definite metric.

Complexity and notion of positive frequency
⇒ Arrow of time? [Isham 1991; Barbour 1993]

All wavefunctions vanish at the singularity!

Remain oscillating and complex and cannot be
continued analytically past the singularity.

Vanishing wavefunctions on singular geometries are
one possible boundary condition. [DeWitt 1967]

No way of going through the singularity. No bounce.

‘Semi-classical’ states are expected to spread
(quantum ergodicity). [Non-relativistic intuition]
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Generalization (I)

Classical cosmological billiards led to the E10 conjecture.

D = 11 supergravity can be mapped to a constrained null
geodesic motion on infinite-dimensional E10/K(E10) coset
space. [Damour, Henneaux, HN 2002]

E10/K(E10)

V(t)

� -

Correspondence

Symmetric space E10/K(E10) has 10 + ∞ many directions.
��* HHY

Cartan subalgebra positive step operators
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Generalization (II)

Features of the conjectured E10 correspondence:

Billiard corresponds to 10 Cartan subalgebra generators

∞ many step operators to remaining fields and spatial
dependence. [Verified only at low ‘levels’ but for many
different models] [see e.g. Kleinschmidt,HN, IJMPA(2006)1619]

Extension to E10 expected to overcome ultra-locality:
space dependence via dual fields ∂xϕ ∼ ∂tϕ̃ (but
non-linear, cf. Geroch group) — only kinetic terms.

Thus: replace |Ψfull〉 by wavefunction depending on full
tower of E10 degrees of freedom ⇒

Space (de-)emergent via an algebraic mechanism?
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Generalization (III)

H0 → H ≡ H0 +
∑

α∈∆+(E10)

e−2α(β)

mult(α)
∑

s=1

Π2
α,s

is the unique (quadratic) E10 Casimir. Formally like free
Klein–Gordon; positive norm could remain consistent?

For the full theory there are more constraints than the
Hamiltonian constraint HΨ = 0: diffeo, Gauss, etc.

Global E10 symmetry provides ∞ conserved charges J

Evidence that constraints can be written as bilinears à
la Sugawara L ∼ JJ . [Damour, Kleinschmidt, HN 2007; 2009]

H ≥ H0 ⇒ wave function still vanishes and is complex
oscillatory for ρ→ ∞.

Aim: Quantize full geodesic model. E10(Z) [Ganor 1999] ?
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Supersymmetric extension (I)

D = 11 supergravity gravitino ψµ can be added to billiard
analysis via K(E10) representation. Work in supersymmetry
gauge [Damour, Kleinschmidt,HN; de Buyl,Henneaux,Paulot 2005]

ψt = Γt

10
∑

a=1

Γaψa

Classically, separate billiard motion [Damour, Hillmann 2009] .
Best in variable (Γ∗ = Γ1 · · ·Γ10)

ϕa = g1/4Γ∗Γ
aψa (no sum on a)

Canonical Dirac bracket:
{

ϕa
α, ϕ

b
β

}

= −iGabδαβ
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Supersymmetric extension (II)

Quantize Clifford algebra using canonical anticommutators
over a 2160-dimensional Fock space vacuum |Ω〉.

Have to implement supersymmetry constraint in quantum
theory

Sα = i

10
∑

a=1

πaϕ
a
α (α = 1, . . . , 32)

It obeys: {Sα,Sβ} = δαβH [Teitelboim 1977]

For quantum constraint choose 16 annihilation operators SA.

The state |Ψ〉 =
∏16

A=1 S
†
A (Φ(ρ, z)|Ω〉)

solves the constraint iff Φ(ρ, z) solves the WDW equation.
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Summary and outlook

Done:

Quantum cosmological billiards wavefunctions involve
automorphic forms of PSL2(O) for M theory.

Extendable to supersymmetric case.

To do:

Construct wavefunctions? Behaviour of wavepackets?

Vanishing Wavefunctions ⇒ Singularity resolution?

More variables ⇒ Constraints/Observables?

An element of non-computabitility for T → 0?

Thank you for your attention!
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