CFT\ADS & ADS/CFT

Mukund Rangamaní Durham University

International Conference on Strings, M-Theory and Quantum Gravity Centro Stefano Franscini Monte Verita, Ascona, Switzerland July 27, 2010

Hubeny, Marolf, MR

Aharony, Marolf, MR

OUTLINE

Motivation

- Free fields on AdS₄: boundary conditions
- $\mathcal{N} = 4$ SYM on AdS₄
- Discussion

Field theory motivation:

- Strongly coupled fields in curved spacetime
- AdS provides a geometric IR cut-off
- Better understanding of $\mathcal{N} = 4$ dynamics

AdS/CFT motivation:

- Russian doll' holography:
- boundary dynamics of strongly interacting QFT + weak AdS gravity
- AdS duals of field theories on AdS

Global AdS spacetime

$$ds^{2} = -\left(1 + \frac{r^{2}}{\ell^{2}}\right) dt^{2} + \frac{dr^{2}}{\left(1 + \frac{r^{2}}{\ell^{2}}\right)} + r^{2} d\Omega^{2}$$

Global AdS is like a cylinder with a time-like boundary which is a copy of the Einstein Static Universe (Lorentzian cylinder).

Fields on AdS: Boundary conditions

AdS is not globally hyperbolic, and has a timelike 𝒯+ ⇒ boundary conditions are necessary to prescribe dynamics.
Scalars in AdS_d: m² l² = Δ(Δ - (d-1))

$$\phi(r) \to A(x) r^{\Delta - (d-1)} + B(x) r^{-\Delta}$$

Usual boundary conditions: fix A (source). For $m_{BF}^2 \le m^2 \le m_{BF}^2 + 1$ can alternately fix B to be the source.

$$m_{BF}^2 = -\frac{(d-1)^2}{4\ell^2} \qquad \qquad m_c^2 = -\frac{d(d-2)}{4\ell^2}$$

Conformally coupled scalars always lie in this window.

Gauge fields on AdS: Boundary conditions

Vector fields can also admit different boundary conditions
Vectors in AdS₄:

$$A_r = 0$$
, $A_\mu(r, x) \to a_\mu(x) + \frac{b_\mu(x)}{r}$

Marolf, Ross

Ishibashi, Wald

Witten

Dirichlet / standard / electric boundary conditions:
fix a_µ ⇒ source for boundary current J_µ
Neumann / modified / magnetic boundary conditions:
fix b_µ or integrate over all sources A_µ ⇒ < J_µ > = 0

Free gauge theories on AdS₄

- SU(N) gauge theory with Dirichlet boundary conditions:
- No Gauss law constraint
- $\mathcal{O}(N^2)$ excitations about the vacuum.

- SU(N) gauge theory with Neumann boundary conditions:
- ◆ No charged states allowed
- Gauss law constraint
- $\mathcal{O}(1)$ excitations about the vacuum.
- Theory undergoes a Hagedorn transition at $T_c l \sim 1^{-1}$

N = 4 SYM on AdS₄

- Field content (all adjoint valued):
- ◆ 6 conformally coupled scalars
- ♦ 4 Weyl fermions
- ♦ Gauge fields

$$\omega \ell = \Delta + k + 2n , \qquad k, n \in \mathbb{Z}_+$$

- Lots of choices of boundary conditions:
- ♦ scalars can have $\Delta = 1, 2$
- ♦ gauge fields Neumann/Dirichlet

N = 4 SYM on AdS₄ : Two puzzles

• $\mathcal{N} = 4$ has SL(2,Z) S-duality.

Expect exchange Dirichlet and Neumann bcs (true for abelian theory), but

• Dirichlet: $\mathcal{O}(N^2)$ excitations about the vacuum

- Neumann: $\mathcal{O}(1)$ excitations about the vacuum
- Phase transition as a function of coupling?
- Expect to have holographic dual in AdS₅
- \bullet how does bulk dual have N^2 dofs?
- New black holes in AdS?

N = 4 SYM on AdS₄ : Susy bc

Useful to look at susy preserving bcs for $\mathcal{N}=4$ Have to treat scalars asymmetrically: $SO(6) \rightarrow SO(3) \times SO(3)$

Lots of 1/2-BPS boundary conditions.

- Classified for theory on half-space $R^{2,1} X R_+$ (conformal to AdS₄)
- ◆ Neumann bc: *N* D3-branes ending on a single NS5-brane
- ◆ S-dual is not the Dirichlet bc.
- Rather, N D3-branes end on a single D5-brane with SU(N) breaking bcs.
- ◆ Dirichlet bc involves *N* D5-branes.

Breitenlohner, Freedman

N = 4 SYM on AdS₄ : Susy bc

Gaiotto-Witten bcs are characterized by a triple (ϱ , H, \mathscr{B}).

- ♦ ϱ (Nahm data): SU(2) → G
- ◆ *H*: commutant of Nahm data (preserved gauge group)
- \mathscr{B} : Boundary CFT living on $R X S^2$.

Gauge group	Quotient	Dual gauge group	Nahm data	Boundary dof
SO(N)	<i>O</i> 5 ⁺	SU(N)	0	2+1 SCFT
USp(N)	05-	$SU\left(\frac{N}{2}\right)_d \subset SU(N)$	N-dim irrep of $SU(2)$	0
$SU(N/2) \times SU(N/2)$	$\mathbb{Z}_2(-1)^{F_L}$	USp(N)	0	D5-hypers
$SU(p) \times SU(q)$	$\mathbb{Z}_2(-1)^{F_L}$	USp(2q)	$N = (p - q) + q \times 1$	0

Holographic duals of N = 4 SYM on AdS₄

Expect holographic duals in terms of strings in AdS₅ X S⁵
AdS₄ foliations AdS₅:

- ♦ boundary is a double cover of AdS₄
- ♦ identify two copies of AdS₄ via some orbifold / orientifold

♦ alternately work with transparent bcs.

Hubeny, Marolf, MR

GW bcs with orbifolds/orientifolds preserving large enough gauge symmetry have duals in terms of strings on AdS₅ X S⁵ with orbifold/orientifold 5-plane wrapping AdS₄ X S².

Summary & Open issues

Rich dynamics for field theories on AdS₄.

- Lots of the structure of the dynamics is due to the non-trivial nature of the boundary conditions.
- Possibility of various different bcs for scalars, vectors, fermions.

The story for $\mathcal{N} = 4$ is very intricate.

Discussed only susy (1/2-BPS) bcs, for which already there many interesting issues.

Could look for duals for other bcs with less/no susy.