From Higher Spins to Strings

Rajesh Gopakumar
Harish-Chandra Research Institute Monte Verita Meeting, Ascona, Jul. 22nd, 2014

Based on: M. R. Gaberdiel and R. G.
(arXiv:1406.6103 and also 1305.4181)

The Bird's Eye-View

- Some very brief motivation.
- Punchline: How spectrum and symmetries of symmetric product CFT organises itself in terms of HS symmetry.
- The large $\mathcal{N}=4$ coset: a nodding acquaintance - its spectrum and symmetries and the dual Vasiliev theory.
- Contraction to a small $\mathcal{N}=4$ CFT: the continuous orbifold $\left(T^{4}\right)^{N+1} / U(N)$.
- The relation to the symmetric product $\left(T^{4}\right)^{N+1} / S_{N+1}$ and how it repackages the stringy chiral algebra.

Why are We Studying Higher Spin Theories?

- Free YM theory has a tower of conserved currents dual to Vasiliev H-spin gauge fields (Sundborg, Witten).
- Signals the presence of a large unbroken symmetry phase of the string theory (Gross, Witten, Moore, Sagnotti et.al.).
- Can the Vasiliev H-Spin symmetries help to get a handle on the extended stringy symmetry in the tensionless limit?
- $A d S_{3}$ might be a good test case since it already has Virasoro (and then extended to W_{∞} - Henneaux-Rey, Campoleoni et.al.).
- Symmetric product CFT for D1-D5 system has been believed to be dual to tensionless limit of string theory.

The Punchline

Vasiliev higher spin symmetry organises all the states of the $\left(T^{4}\right)^{N+1} / S_{N+1}$ orbifold symmetric product CFT $=$ Tensionless limit of strings on $A d S_{3} \times S^{3} \times T^{4}$

Stringy Symmetries

In particular:

The chiral sector (conserved currents) can be written in terms of specific representations of the higher spin symmetry algebra.

$$
\mathcal{Z}_{N S}(q, y)=\sum_{\Lambda \in U(N)} n(\Lambda) \chi_{(0 ; \Lambda)}(q, y)
$$

Chiral part of
Symm. Prod.

Characters of $\mathcal{N}=4$
multiplicity of minimal model S_{N+1} singlets in Λ coset: W_{∞} reps.

Explicitly.....

- The vacuum character $(\Lambda=0)$ contains the usual W_{∞} generators - bilinears in free fermions and bosons.
- Additional chiral generators $(\Lambda \neq 0)$ can be written down explicitly in terms of free fermions and bosons.

$$
\begin{gathered}
\Lambda=[2,0 \ldots, 0] \leftrightarrow \sum_{i=1}^{N+1} \psi_{-1 / 2}^{i \alpha} \psi_{-1 / 2}^{i \beta} \\
\Lambda=[0,2,0 \ldots, 0] \leftrightarrow \sum_{i, j=1}^{N+1} \psi_{-1 / 2}^{i \alpha} \psi_{-1 / 2}^{j \beta} \psi_{-1 / 2}^{i \gamma} \psi_{-1 / 2}^{j \delta}
\end{gathered}
$$

Large $\mathcal{N}=4$

- String theory on $A d S_{3} \times S^{3} \times T^{4}$ has small $\mathcal{N}=4$ SUSY .
- Useful to consider via a limit of H-spin holography for large $\mathcal{N}=4 \operatorname{coset}$ EFTs. (Gaberdiel-R.G.)
- Large $\mathcal{N}=4$ SCA has two $\operatorname{SU}(2)$ Kac-Moody algebras. Thus labelled by one extra parameter: $\gamma=\frac{k_{-}}{k_{+}+k_{-}}$.
- Small $\mathcal{N}=4$ obtained as a contraction $-k_{+} \rightarrow \infty$.
- Only one $\operatorname{SU}(2) K M$ algebra at level k_{-}.

Large $\mathcal{N}=4$ Coset Holography

The CFT:

4(N+1) free fermions
$\mathfrak{s u}(N+2)_{\kappa}^{(1)}$
$\mathfrak{s u}(N)_{\kappa}^{(1)} \oplus \mathfrak{u}(1)^{(1)}$

$$
\oplus \mathfrak{u}(1)^{(1)} \cong \frac{\mathfrak{s u}(N+2)_{k} \oplus \mathfrak{s o}(4 N+4)_{1}}{\mathfrak{u}(N)_{k+2}} \oplus \mathfrak{u}(1)
$$

$c=\frac{6(k+1)(N+1)}{k+N+2}$. Take 't Hooft limit $N, k \rightarrow \infty$ with $\lambda=\frac{N+1}{N+k+2}=\gamma$ fixed. (Gaberdiel-R.G.)

Has Large $\mathcal{N}=4$ (van Proeyen et.al., Sevrin et.al.) with $k_{+}=(k+1) ; k_{-}=(N+1)$

Coset Holography (Contd.)

The H-Spin Dual:

- Vasiliev theory based on shs $_{2}[\lambda]$ gauge group (ProkushkinVasiliev).
- One higher spin gauge supermultiplet for each spin $s \geq 1$

$$
\begin{array}{ll}
& s: \\
& (\mathbf{1}, \mathbf{1}) \\
R^{(s)}: \quad & (\mathbf{2}, \mathbf{2}) \\
& s+1:(\mathbf{3}, \mathbf{1}) \oplus(\mathbf{1}, \mathbf{3}) \\
& s+\frac{3}{2}: \\
& (\mathbf{2}, \mathbf{2}) \\
& s+2: \\
& (\mathbf{1}, \mathbf{1})
\end{array}
$$

- Generates an asymptotic super W_{∞} algebra which matches nontrivially with coset (Gaberdiel-Peng, Beccaria et.al.).

W_{∞} Representations

- Primaries labelled by $\left(\Lambda_{+} ; \Lambda_{-}, u\right)$

$$
\in \mathfrak{s u}(N+2)_{k} \in \mathfrak{s u}(N)_{k+2}<\in \mathfrak{u}(1)_{\kappa} \quad \text { (will be omitted) }
$$

- (0;f) \leftrightarrow "Perturbative" matter multiples of H-Spin theory (with $(0 ; \Lambda) \leftrightarrow$ multi-particles) (Chang-Yin).

$$
h(0 ; \mathrm{f})=\frac{k+\frac{3}{2}}{N+k+2} \rightarrow \frac{1-\lambda}{2}
$$

$$
\mathcal{H}^{(\text {pert })}=\bigoplus_{\Lambda}(0 ; \Lambda) \otimes \overline{\left(0 ; \Lambda^{*}\right)} \subset \mathcal{H}^{(\text {diag })}=\bigoplus_{\Lambda_{+}, \Lambda_{-}}\left(\Lambda_{+} ; \Lambda_{-}\right) \otimes \overline{\left(\Lambda_{+}^{*} ; \Lambda_{-}^{*}\right)}
$$

Contains "light states"
$\mathcal{N}=4 \longrightarrow N=4$

$$
c=\frac{6(k+1)(N+1)}{k+N+2} \xrightarrow{k \rightarrow \infty} c=6(N+1)
$$

- Coset CFT reduces to a continuous orbifold $\left(T^{4}\right)^{N+1} / U(N)$.
- The WZW factors decompactify to give $4(\mathrm{~N}+1)$ free bosons which combine with the $4(\mathrm{~N}+1)$ free fermions, gauged by $U(N)$.

Continuous Orbifold

- Untwisted sector: $U(N)$ singlets formed from fermions/bosons.

$$
\text { E.g. }(0 ; \overline{\mathrm{f}}) \otimes \overline{(0 ; \mathrm{f})} \leftrightarrow \psi^{\bar{i} \alpha} \widetilde{\psi}^{i \beta} ;\left(\text { Note: } h(0 ; f)=\frac{1-\lambda}{2} \xrightarrow{k \rightarrow \infty} \frac{1}{2}\right)
$$

- More generally,

$$
\mathcal{H}_{\text {untwisted }}=\bigoplus_{\Lambda}(0 ; \Lambda) \otimes \overline{\left(0 ; \Lambda^{*}\right)}=\mathcal{H}^{(\text {pert })}
$$

Similar to bosonic and $\mathcal{N}=2$ cases (Gaberdiel-Suchanek, Gaberdiel-Kelm)

- Twisted Sector: Continuous twists $(\mathrm{U}(\mathrm{N})$ holonomies) leads to a continuum (incl. light states). Labelled by $\left(\Lambda_{+} ; \Lambda_{-}\right): w / \Lambda_{+} \neq 0$.

A Tale of Two Orbifolds

- How do we relate $\left(T^{4}\right)^{N+1} / U(N)$ to $\left(T^{4}\right)^{N+1} / S_{N+1}$?
- $S_{N+1} \subset U(N)$ and $\mathbf{N}, \overline{\mathbf{N}} \rightarrow N \longleftarrow N$ Dim. Irrep. of S_{N+1}

Fermions:

$$
\begin{array}{cc}
\text { Bosons: } & 2 \cdot(\mathbf{N}, \mathbf{1}) \oplus 2 \cdot(\overline{\mathbf{N}}, \mathbf{1}) \oplus 4 \cdot(\mathbf{1}, \mathbf{1}) \rightarrow 4 \cdot(N, \mathbf{1}) \oplus 4 \cdot(1, \mathbf{1}) \\
\text { Fermions: } & (\mathbf{N}, \mathbf{2}) \oplus(\overline{\mathbf{N}}, \mathbf{2}) \oplus 2 \cdot(\mathbf{1}, \mathbf{2}) \rightarrow \\
\hline \cdot(N, \mathbf{2}) \oplus 2 \cdot(1, \mathbf{2})
\end{array}
$$

How fermions and bosons in usual symmetric product orbifold transform

$$
\Rightarrow\left(T^{4}\right)^{N+1} /\left.U(N)\right|_{\text {untwisted }} \subset\left(T^{4}\right)^{N+1} /\left.S_{N+1}\right|_{\text {untwisted }}
$$

Two Orbifolds (Contd.)

- Therefore:

$$
\mathcal{H}^{(\text {pert })}=\left.\bigoplus_{\Lambda}(0 ; \Lambda) \otimes \overline{\left(0 ; \Lambda^{*}\right)} \subset \mathcal{H}^{\text {(Sym.Prod. })}\right|_{\text {untwisted }}
$$

- i.e. Vasiliev states are a closed subsector of the Symmetric Product CFT = Tensionless string theory.
- More generally, states of the symmetric product CFT must transform in specific representations of the chiral algebra of the continuous orbifold (the $U(N)$ invariant i.e. W_{∞} currents).

$$
Z_{\mathrm{NS}}(q, \bar{q}, y, \bar{y})=\left|\mathcal{Z}_{\mathrm{vac}}(q, y)\right|^{2}+\sum_{j}\left|\mathcal{Z}_{j}^{(\mathrm{U})}(q, y)\right|^{2}+\sum_{\beta}\left|\mathcal{Z}_{\beta}^{(\mathrm{T})}(q, y)\right|^{2}
$$

Stringy Chiral Algebra

- The vacuum sector (S_{N+1} invariant currents) can therefore be organised in terms of coset $\left(W_{\infty}\right)$ representations - from the untwisted sector of the continuous orbifold.

$$
\mathcal{Z}_{\mathrm{vac}}(q, y)=\sum_{\Lambda \in U(N)} n(\Lambda) \chi_{(0 ; \Lambda)}(q, y)
$$

- Each such representation comes with a multiplicity which would be given by the number of times the singlet of S_{N+1} appears in the $U(N)$ representation Λ.
- A vast extension of W_{∞} - generators not just bilinear in fermions/bosons but also cubic, quartic etc.

Reality Check

- Explicitly verify this equality to low orders - use DMVV prescription to compute

$$
\begin{aligned}
\mathcal{Z}_{\mathrm{vac}}(q, y)= & 1+\left(2 y+2 y^{-1}\right) q^{\frac{1}{2}}+\left(2 y^{2}+12+2 y^{-2}\right) q \\
& +\left(2 y^{3}+32 y+32 y^{-1}+2 y^{-3}\right) q^{\frac{3}{2}} \\
& +\left(2 y^{4}+52 y^{2}+159+52 y^{-2}+2 y^{-4}\right) q^{2} \\
& +\left(2 y^{5}+62 y^{3}+426 y+426 y^{-1}+62 y^{-3}+2 y^{-5}\right) q^{\frac{5}{2}} \\
& +\left(2 y^{6}+64 y^{4}+767 y^{2}+1800+767 y^{-2}+64 y^{-4}+2 y^{-6}\right) q^{3} \\
& +O\left(q^{\frac{7}{2}}\right) .
\end{aligned}
$$

It Agrees!

Vasiliev higher spin fields

$$
\begin{aligned}
\mathcal{Z}_{\mathrm{vac}}(q, y)= & \chi_{(0 ; 0)}(q, y)+\chi_{(0 ;[2,0, \ldots, 0])}(q, y)+\chi_{(0 ;[0,0, \ldots, 0,2])}(q, y) \\
& +\chi_{(0 ;[3,0, \ldots, 0,0])}(q, y)+\chi_{(0 ;[0,0,0, \ldots, 0,3])}(q, y)+\chi_{(0 ;[2,0, \ldots, 0,1])}(q, y) \\
& +\chi_{(0 ;[1,0,0, \ldots, 0,2])}(q, y)+2 \cdot \chi_{(0 ;[4,0, \ldots, 0,0])}(q, y)+2 \cdot \chi_{(0 ;[0,0,0, \ldots, 0,4])}(q, y) \\
& +\chi_{(0 ;[0,0,0, \ldots, 0])}(q, y)+\chi_{(0 ;[0,0, \ldots, 2,0)}(q, y)+\chi_{(0 ;[3,0, \ldots, 0,1])}(q, y) \\
& +\chi_{(0 ;[1,0,0, \ldots, 0,3))}(q, y)+2 \cdot \chi_{(0 ;[2,0,0, \ldots, 0,2])}(q, y)+\chi_{(0 ;[1,2,0, \ldots, 0])}(q, y) \\
& +\chi_{(0 ;[0, \ldots, 0,2,1])}(q, y)+\chi_{(0 ;[2,1,0, \ldots, 0,1])}(q, y)+\chi_{(0 ;[1,0, \ldots, 0,1,2])}(q, y) \\
& +\chi_{(0 ;[0,0, \ldots, \ldots, 0,1)}(q, y)+\chi_{(0 ;[1,0, \ldots, 0,0,0])}(q, y)+3 \cdot \chi_{(0 ;[3,0, \ldots, 0,2])}(q, y) \\
& +3 \cdot \chi_{(0 ;[2,0, \ldots, 0,3])}(q, y)+\chi_{(0 ;[11,0, \ldots, 0,2])}(q, y)+\chi_{(0 ;[2,0, \ldots, 0,1,1])}(q, y) \\
& +\chi_{(0 ;[0,0,0,0, \ldots, 0])}(q, y)+\chi_{(0 ;[0, \ldots, 0,2,0,0])}(q, y)+3 \cdot \chi_{(0 ;[0,2,0, \ldots, 0,2])}(q, y) \\
& +3 \cdot \chi_{(0 ;[2,0, \ldots, 0,2,0])}(q, y)+\chi_{(0 ;[1,1,0, \ldots, 0,1,1])}(q, y)+\mathcal{O}\left(q^{7 / 2}\right) .
\end{aligned}
$$

Reality Check (Contd.)

- Can do something similar for the simplest non-trivial untwisted sector - which contains 16 of the 20 marginal ops.

$$
\mathcal{Z}_{1}^{(\mathrm{U})}(q, y)=\sum_{\Lambda} n_{1}(\Lambda) \chi_{(0 ; \Lambda)}(q, y)
$$

Contains $\psi_{-\frac{1}{2}}^{i \alpha}$
Multiplicity of N dim. irrep of S_{N+1} in Λ

- Compute LHS

$$
\begin{aligned}
\mathcal{Z}_{1}(q, y)= & \left(2 y+2 y^{-1}\right) q^{1 / 2}+\left(5 y^{2}+16+5 y^{-2}\right) q^{1} \\
& +\left(6 y^{3}+58 y+58 y^{-1}+6 y^{-3}\right) q^{3 / 2} \\
& +\left(6 y^{4}+128 y^{2}+315+128 y^{-2}+6 y^{-4}\right) q^{2} \\
& +\left(6 y^{5}+198 y^{3}+1030 y+1030 y^{-1}+198 y^{-3}+6 y^{-5}\right) q^{5 / 2} \\
& +\left(6 y^{6}+240 y^{4}+2290 y^{2}+4724+2290 y^{-2}+240 y^{-4}+6 y^{-6}\right) q^{3} \\
& +\mathcal{O}\left(q^{3}\right) .
\end{aligned}
$$

Agrees too....

(0;f) contribution

$$
\begin{aligned}
& \mathcal{Z}_{1}(q, y)=\chi_{(0 ;[1,0, \ldots, 0])}(q, y)+\chi_{(0 ;[0, \ldots, 0,1)}(q, y)+\chi_{(0 ;[1,0, \ldots, 0,1)}(q, y) \\
& +\chi_{(0 ;[2,0, \ldots, 0])}(q, y)+\chi_{(0 ;[0,0, \ldots, 0,2])}(q, y)+\chi_{(0 ;[1,1,0 \ldots, 0])}(q, y) \\
& +\chi_{(0 ;[0, \ldots, 0,1,1])}(q, y)+2 \cdot \chi_{(0 ;[2,0, \ldots, 0,1])}(q, y)+2 \cdot \chi_{(0 ;[1,0,0, \ldots, 0,2])}(q, y) \\
& +\chi_{(0 ;[0,2,0, \ldots, 0,0))}(q, y)+\chi_{(0 ;[0,0, \ldots, 0,0,0])}(q, y)+2 \cdot \chi_{(0 ;[3,0, \ldots, \ldots, 0])}(q, y) \\
& +2 \cdot \chi_{(0 ;[0,0,0, \ldots, 0,3])}(q, y)+2 \cdot \chi_{(0 ;[1,1,0 . \ldots, 0,1])}(q, y)+2 \cdot \chi_{(0 ;[1,0, \ldots, 0,1,1)}(q, y) \\
& +5 \cdot \chi_{(0 ;[2,0, \ldots, 0,2])}(q, y)+\chi_{(0 ;[0,1,0 \ldots, 0,2])}(q, y)+\chi_{(0 ;[2,0, \ldots, 0,1,0])}(q, y) \\
& +2 \cdot \chi_{(0 ;[2,1,0, \ldots, 0])}(q, y)+2 \cdot \chi_{(0 ;[0, \ldots, 0,1,2])}(q, y)+\chi_{(0 ;[0,1,1,0, \ldots, 0])}(q, y) \\
& +\chi_{(0 ;[0, \ldots, 0,1,1,0])}(q, y)+3 \cdot \chi_{(0 ;[0,2,0, \ldots, 0,1])}(q, y)+3 \cdot \chi_{(0 ;[1,0, \ldots, 0,2,0])}(q, y) \\
& +4 \cdot \chi_{(0 ;[3,0, \ldots, 0,1])}(q, y)+4 \cdot \chi_{(0 ;[1,0,0, \ldots, 0,3])}(q, y)+5 \cdot \chi_{(0 ;[1,1,0, \ldots, 0,2])}(q, y) \\
& +5 \cdot \chi_{(0 ;[2,0, \ldots, 0,1,1])}(q, y)+\chi_{(0 ;[0,1,0, \ldots, 0,1,1])}(q, y)+\chi_{(0 ;[1,1,0, \ldots, 0,1,0])}(q, y) \\
& +3 \cdot \chi_{(0 ;[4,0, \ldots, 0,0])}(q, y)+3 \cdot \chi_{(0 ;[0,0,0, \ldots, 0,4])}(q, y)+3 \cdot \chi_{(0 ;[1,2,0, \ldots, 0])}(q, y) \\
& +3 \cdot \chi_{(0 ;[0, \ldots, 0,2,1])}(q, y)+\chi_{(0 ;[0,0,2,0, \ldots, 0))}(q, y)+\chi_{(0 ;[0, \ldots, 0,2,0,0])}(q, y) \\
& +4 \cdot \chi_{(0 ;[2,1,0, \ldots, 0,1])}(q, y)+4 \cdot \chi_{(0 ;[1,0, \ldots, 0,1,2])}(q, y)+2 \cdot \chi_{(0 ;[0,1,1,0, \ldots, 0,1])}(q, y) \\
& +2 \cdot \chi_{(0 ;[1, \ldots, 0,1,1,0])}(q, y)+\chi_{(0 ;[1,0,1,0, \ldots, 0,2])}(q, y)+\chi_{(0 ;[2,0, \ldots, 0,1,0,1])}(q, y) \\
& +7 \cdot \chi_{(0 ;[0,2,0, \ldots, 0,2])}(q, y)+7 \cdot \chi_{(0 ;[2,0, \ldots, 0,2,0])}(q, y)+9 \cdot \chi_{(0 ;[3,0, \ldots, 0,2])}(q, y) \\
& +9 \cdot \chi_{(0 ;[2,0, \ldots, 0,3)}(q, y)+2 \cdot \chi_{(0 ;[0,1,0, \ldots, 0,2,0])}(q, y)+2 \cdot \chi_{(0 ;[0,2,0, \ldots, 0,1,0])}(q, y) \\
& +2 \cdot \chi_{(0 ;[0,1,0 \ldots, \ldots, 3])}(q, y)+2 \cdot \chi_{(0 ;[3,0, \ldots, 0,1,0])}(q, y)+6 \cdot \chi_{(0 ;[1,1,0, \ldots, 0,1,1])}(q, y) \\
& +\mathcal{O}\left(q^{7 / 2}\right) \text {, }
\end{aligned}
$$

Twisted Sector

- A similar reorganisation also works for the twisted sectors of the symmetric product.
- Have studied the 2-cycle twisted sector - contains the other four marginal operators.

$$
\mathcal{Z}_{ \pm}^{(2)}(q, y)=\sum_{\Lambda_{-}^{\prime}, l_{0} ; \mp 1} \widetilde{n}\left(\Lambda_{-}^{\prime}\right) \chi_{\left(\left[\frac{k}{2}, 0 \ldots, 0\right] ;\left[\frac{k}{2}+l_{0}, \Lambda_{-}^{\prime}\right]\right)}(q, y)
$$

Multiplicity of S_{N-1} singlets in Λ_{-}^{\prime}

- Again explicit answers check.

Miscellaneous Remarks

- Can also refine this organisation of the spectrum into single and multiparticle states.
- If we associate the free fermions/bosons with Cartan elements of an adjoint valued field ($\phi_{i} \rightarrow \Phi_{i i}$), then additional single particle currents which are higher order polynomials.

$$
\sum_{i=1}^{N+1} \phi_{i}^{4} \sim \operatorname{Tr} \Phi^{4}
$$

- Higher Regge trajectories compared to the leading one Vasiliev states.
- Note, no light states (as for adjoint theories) \longleftrightarrow not local w.r.t. stringy chiral algebra (non-diagonal modular invariant).

A Slogan

Vector/HS holography $=U(N)$ orbifold

whereas

Matrix/Stringy holography $=$ symm. orbifold

Looking Back

Essentially we have:

- Identified the Vasiliev states as a subsector of the symmetric product CFT.
- Assembled the full spectrum of the tensionless string theory in terms of representations of the super W_{∞} algebra.
- Characterised the full set of massless higher spin states at this point in terms of W_{∞} representations - a huge unbroken stringy symmetry algebra.

Looking Ahead

- Understand the higgsing of the stringy symmetries in going away from the tensionless point (deforming by marginal op.).
- Does it constrain the spectrum, 3-point functions? (Use philosophy of Wigner-Eckart)
- Is there a relation to integrability in the underlying worldsheet theory?
- Can one understand the string theory on $\operatorname{Ad} S_{3} \times S^{3} \times S^{3} \times S^{1}$ in a similar way?
- Relation to ABJ triality (Chang et.al.) and to proposal for free super Yang-Mills spectrum (Beisert, Bianchi et.al.), and multiparticle HS algebra (Vasiliev)?

Thank You

