M-theory beyond twisted tori

Adolfo Guarino

Albert Einstein Center (ITP)
Bern, Switzerland

Recent Developments in String Theory 24 July 2014, Ascona

In collaboration with Jean-Pierre Derendinger [arXiv:1406.6930]

... one-minute summary

- Factorisation :

- Twist specified by a metric flux

$$
d \eta^{A}+\frac{1}{2} \omega_{B C}{ }^{A} \eta^{B} \wedge \eta^{C}=0 \quad[A=1, \ldots, 7]
$$

- Background gauge fluxes

$$
\frac{1}{2} G_{(4)}=-a_{1} \eta^{3456}+\ldots \quad \text { and } \quad \frac{1}{4} G_{(7)}=a_{0} \eta^{1234567}
$$

- G_{2}-structure : 7 moduli fields

$$
\frac{1}{2}\left(A_{(3)}+i \Phi_{(3)}\right)=U_{1} \eta^{127}+U_{2} \eta^{347}+U_{3} \eta^{567}+S \eta^{135}-T_{1} \eta^{146}-T_{2} \eta^{362}-T_{3} \eta^{524}
$$

- Cyclic plane-exchange-symmetry
[Derendinger, Kounnas, Petropoulos \& Zwirner '04]

$$
U_{1}=U_{2}=U_{3} \equiv U \quad \text { and } \quad T_{1}=T_{2}=T_{3} \equiv T
$$

- M-theory flux-induced superpotential as an STU-model

$$
\begin{aligned}
W_{\text {M-theory }} & =a_{0}-b_{0} S+3 c_{0} T-3 a_{1} U+3 a_{2} U^{2}+3\left(2 c_{1}-\tilde{c}_{1}\right) U T+3 b_{1} S U \\
& -3 c_{3}^{\prime} T^{2}-3 d_{0} S T
\end{aligned}
$$

- Couplings : $G_{(7)}=$ cte,$G_{(4)}=$ linear and metric = quadratic

M-theory vs Type IIA interpretation

- M-theory \rightarrow Type IIA orientifold upon reduction along η^{7}

M-theory origin	Type IIA origin	Flux/coupling
$\omega_{b c}{ }^{a}$	$\omega_{b c}{ }^{a}$	\tilde{c}_{1}
$\omega_{k a}{ }^{j}$	$\omega_{k a}{ }^{j}$	c_{1}
$\omega_{j k}{ }^{a}$	$\omega_{j k}{ }^{a}$	b_{1}
$-\omega_{a i}{ }^{7}$	$F_{a i}$	a_{2}
$-\omega_{7 i}{ }^{a}$	non-geometric	d_{0}
$-\omega_{a 7}{ }^{i}$	non-geometric	c_{3}^{\prime}
$-\frac{1}{2} G_{a i b j}$	$-F_{a i b j}$	a_{1}
$\frac{1}{2} G_{i j k 7}$	$H_{i j k}$	b_{0}
$\frac{1}{2} G_{i b c 7}$	$H_{i b c}$	c_{0}
$\frac{1}{4} G_{a i b j c k 7}$	$F_{a i b j c k}$	a_{0}

- Index splitting $\mathrm{A} \rightarrow(a=1,3,5)+(i=2,4,6)+7$

M-theory vs Type IIA interpretation

- M-theory \rightarrow Type IIA orientifold upon reduction along η^{7}

M-theory origin	Type IIA origin	Flux/coupling
$\omega_{b c}{ }^{a}$	$\omega_{b c}{ }^{a}$	\tilde{c}_{1}
$\omega_{k a}{ }^{j}$	$\omega_{k a}{ }^{j}$	c_{1}
$\omega_{j k}{ }^{a}$	$\omega_{j k}{ }^{a}$	b_{1}
$-\omega_{a i}{ }^{7}$	$F_{a i}$	a_{2}
$-\omega_{7 i}{ }^{a}$	non-geometric	d_{0}
$-\omega_{a 7}{ }^{i}$	non-geometric	c_{3}^{\prime}
$-\frac{1}{2} G_{a i b j}$	$-F_{a i b j}$	a_{1}
$\frac{1}{2} G_{i j k 7}$	$H_{i j k}$	b_{0}
$\frac{1}{2} G_{i b c 7}$	$H_{i b c}$	c_{0}
$\frac{1}{4} G_{a i b j c k 7}$	$F_{a i b j c k}$	a_{0}

$7 d$ twist in M-theory $\rightarrow 6 d$ twist in IIA

- Index splitting $\mathrm{A} \rightarrow(a=1,3,5)+(i=2,4,6)+7$

M-theory vs Type IIA interpretation

- M-theory \rightarrow Type IIA orientifold upon reduction along η^{7}

M-theory origin	Type IIA origin	Flux/coupling
$\omega_{b c}{ }^{a}$	$\omega_{b c}{ }^{a}$	\tilde{c}_{1}
$\omega_{k a^{j}}{ }^{j}$	$\omega_{k a^{j}}$	c_{1}
$\omega_{j k}{ }^{a}$	$\omega_{j k}{ }^{a}$	b_{1}
$-\omega_{a i}{ }^{7}$	$F_{a i}$	a_{2}
$-\omega_{7 i}{ }^{a}$	non-geometric	d_{0}
$-\omega_{a 7^{i}}$	non-geometric	c_{3}^{\prime}
$-\frac{1}{2} G_{a i b j}$	$-F_{a i b j}$	a_{1}
$\frac{1}{2} G_{i j k 7}$	$H_{i j k}$	b_{0}
$\frac{1}{2} G_{i b c 7}$	$H_{i b c}$	c_{0}
$\frac{1}{4} G_{a i b j c k 7}$	$F_{a i b j c k}$	a_{0}

$7 d$ twist in M-theory $\rightarrow F_{(2)}$ in IIA

- Index splitting $\mathrm{A} \rightarrow(a=1,3,5)+(i=2,4,6)+7$

M-theory vs Type IIA interpretation

- M-theory \rightarrow Type IIA orientifold upon reduction along η^{7}

M-theory origin	Type IIA origin	Flux/coupling
$\omega_{b c}{ }^{a}$	$\omega_{b c}{ }^{a}$	\tilde{c}_{1}
$\omega_{k a}{ }^{j}$	$\omega_{k a}{ }^{j}$	c_{1}
$\omega_{j k}{ }^{a}$	$\omega_{j k}{ }^{a}$	b_{1}
$-\omega_{a i}{ }^{7}$	$F_{a i}$	a_{2}
$-\omega_{7 i}{ }^{a}$	non-geometric	d_{0}
$-\omega_{a 7^{i}}$	non-geometric	c_{3}^{\prime}
$-\frac{1}{2} G_{a i b j}$	$-F_{a i b j}$	a_{1}
$\frac{1}{2} G_{i j k 7}$	$H_{i j k}$	b_{0}
$\frac{1}{2} G_{i b c 7}$	$H_{i b c}$	c_{0}
$\frac{1}{4} G_{a i b j c k 7}$	$F_{a i b j c k}$	a_{0}

$7 d$ twist in M-theory \rightarrow non-geom in IIA
[Shelton, Taylor \& Wecht '05]
[Aldazabal, Cámara, Font \& Ibáñez '06]

- Index splitting $\mathrm{A} \rightarrow(a=1,3,5)+(i=2,4,6)+7$

M-theory vs Type IIA interpretation

- M-theory \rightarrow Type IIA orientifold upon reduction along η^{7}

M-theory origin	Type IIA origin	Flux/coupling
$\omega_{b c}{ }^{a}$	$\omega_{b c}{ }^{a}$	\tilde{c}_{1}
$\omega_{k a}{ }^{j}$	$\omega_{k a}{ }^{j}$	c_{1}
$\omega_{j k}{ }^{a}$	$\omega_{j k}{ }^{a}$	b_{1}
$-\omega_{a i}{ }^{7}$	$F_{a i}$	a_{2}
$-\omega_{7 i}{ }^{a}$	non-geometric	d_{0}
$-\omega_{a 7^{i}}$	non-geometric	c_{3}^{\prime}
$-\frac{1}{2} G_{a i b j}$	$-F_{a i b j}$	a_{1}
$\frac{1}{2} G_{i j k 7}$	$H_{i j k}$	b_{0}
$\frac{1}{2} G_{i b c 7}$	$H_{i b c}$	c_{0}
$\frac{1}{4} G_{a i b j c k 7}$	$F_{a i b j c k}$	a_{0}

$G_{(4)}$ in M-theory $\rightarrow F_{(4)}$ in IIA

- Index splitting $\mathrm{A} \rightarrow(a=1,3,5)+(i=2,4,6)+7$

M-theory vs Type IIA interpretation

- M-theory \rightarrow Type IIA orientifold upon reduction along η^{7}

M-theory origin	Type IIA origin	Flux/coupling
$\omega_{b c}{ }^{a}$	$\omega_{b c}{ }^{a}$	\tilde{c}_{1}
$\omega_{k a}{ }^{j}$	$\omega_{k a}{ }^{j}$	c_{1}
$\omega_{j k}{ }^{a}$	$\omega_{j k}{ }^{a}$	b_{1}
$-\omega_{a i}{ }^{7}$	$F_{a i}$	a_{2}
$-\omega_{7 i}{ }^{a}$	non-geometric	d_{0}
$-\omega_{a 7^{i}}$	non-geometric	c_{3}^{\prime}
$-\frac{1}{2} G_{a i b j}$	$-F_{a i b j}$	a_{1}
$\frac{1}{2} G_{i j k 7}$	$H_{i j k}$	b_{0}
$\frac{1}{2} G_{i b c 7}$	$H_{i b c}$	c_{0}
$\frac{1}{4} G_{a i b j c k 7}$	$F_{a i b j c k}$	a_{0}

$G_{(4)}$ in M-theory $\rightarrow H_{(3)}$ in IIA

- Index splitting $\mathrm{A} \rightarrow(a=1,3,5)+(i=2,4,6)+7$

M-theory vs Type IIA interpretation

- M-theory \rightarrow Type IIA orientifold upon reduction along η^{7}

M-theory origin	Type IIA origin	Flux/coupling
$\omega_{b c}{ }^{a}$	$\omega_{b c}{ }^{a}$	\tilde{c}_{1}
$\omega_{k a}{ }^{j}$	$\omega_{k a}{ }^{j}$	c_{1}
$\omega_{j k}{ }^{a}$	$\omega_{j k}{ }^{a}$	b_{1}
$-\omega_{a i}{ }^{7}$	$F_{a i}$	a_{2}
$-\omega_{7 i}{ }^{a}$	non-geometric	d_{0}
$-\omega_{a 7}{ }^{i}$	non-geometric	c_{3}^{\prime}
$-\frac{1}{2} G_{a i b j}$	$-F_{a i b j}$	a_{1}
$\frac{1}{2} G_{i j k 7}$	$H_{i j k}$	b_{0}
$\frac{1}{2} G_{i b c 7}$	$H_{i b c}$	c_{0}
$\frac{1}{4} G_{a i b j c k 7}$	$F_{a i b j c k}$	a_{0}

$G_{(7)}$ in M-theory $\rightarrow F_{(6)}$ in IIA

- Index splitting $\mathrm{A} \rightarrow(a=1,3,5)+(i=2,4,6)+7$

Question :

What are the consequences of turning on the two genuine M-theory metric fluxes $\left(c_{3}{ }^{\prime}, d_{0}\right)$ being non-geometric in type IIA?

$$
W_{\mathrm{M} \text {-theory }}=W_{\mathrm{IIA}}-3 c_{3}^{\prime} T^{2}-3 d_{0} S T
$$

- Recall : $c_{3}^{\prime}=\omega_{7 a}{ }^{i}$ and $d_{0}=\omega_{i 7}{ }^{a}$
- An ordinary SS reduction of M-theory (32 supercharges) requires

$$
\omega_{[A B}^{F} \omega_{C] F}^{D}=0 \quad \text { and } \quad \omega_{[A B}^{F} G_{C D E] F}=0
$$

guaranteed by the $Z_{2} \times Z_{2} \times Z_{2}$ symmetries !!

- In terms of the flux parameters

$$
\begin{array}{rrrrr}
\text { i) } & \omega_{[a i}^{D} \omega_{c] D}^{k}=0 & \rightarrow & -a_{2} c_{3}^{\prime}+c_{1}\left(c_{1}-\tilde{c}_{1}\right)=0 \\
\text { ii) } & \omega_{[a i}^{D} \omega_{k] D}{ }^{c}=0 & \rightarrow & -d_{0} a_{2}+\left(c_{1}-\tilde{c}_{1}\right) b_{1}=0 \\
\text { iii) } & \omega_{[i b}^{D} \omega_{c] D}{ }^{7}=0 & \rightarrow & a_{2}\left(2 c_{1}-\tilde{c}_{1}\right)=0 \\
\text { iv) } & \omega_{[i j}^{D} \omega_{k] D}{ }^{7}=0 & \rightarrow & 3 b_{1} a_{2}=0 \\
\text { v) } & \omega_{[7 a}{ }^{D} \omega_{b] D}=0 & \rightarrow & \left(2 c_{1}-\tilde{c}_{1}\right) c_{3}^{\prime}=0 \\
\text { vi) } & \omega_{[7 a}^{D} \omega_{j] D}^{c}=0 & \rightarrow & b_{1} c_{3}^{\prime}+\left(c_{1}-\tilde{c}_{1}\right) d_{0}=0 \\
\text { vii) } & \omega_{[7 i}^{D} \omega_{j] D}^{k}=0 & \rightarrow & b_{1} c_{3}^{\prime}+2 c_{1} d_{0}=0
\end{array}
$$

NO moduli stabilisation if
all of them are imposed !!
[Derendinger \& A.G '14]

- Index splitting $\mathrm{A} \rightarrow(a=1,3,5)+(i=2,4,6)+7$

Beyond twisted tori by including sources

- Could some of the previous SS conditions be relaxed?

$$
\omega_{[\bullet \bullet}{ }^{D} \omega_{\bullet] D}{ }^{\psi} \neq 0 \Rightarrow \text { Non-vanishing KK6 (KKO6) charge }
$$

- The inclusion of KK6 sources will break some of the 32 supercharges

Type	x^{0}	x^{1}	x^{2}	x^{3}	η^{a}	η^{i}	η^{b}	η^{j}	η^{c}	η^{k}	η^{7}	KK6 \rightarrow type IIA		
i)	\times	\times	\times	\times	\times	\times		ψ			\times	KK5 (KKO5)		
ii)	\times	\times	\times	\times	\times	\times	ψ				\times	$\widetilde{\mathrm{KK5}}(\widetilde{\mathrm{KKO} 5})$		
iii)	\times	\times	\times	\times	\times			\times		\times	ψ	$\mathrm{D} 6 \perp\left(\mathrm{O} 6_{\perp}\right)$		
iv)	\times	\times	\times	\times	\times		\times		\times		ψ	D6 ${ }_{\\|}\left(\mathrm{O} 6_{\\|}\right)$		
$v)$	\times	\times	\times	\times	\times	ψ		\times		\times		KK6 ${ }_{\perp}$ (KKO6 ${ }_{\perp}$)		
vi)	\times	\times	\times	\times	\times		ψ	\times		\times		$\widetilde{\mathrm{KK6}}_{\perp}\left(\widetilde{\mathrm{KKO}}_{\perp}\right)$		
vii)	\times	\times	\times	\times	\times		\times		\times	ψ		KK6 ${ }_{\\|}\left(\mathrm{KKO} 6_{\\|}\right)$		

- Index splitting $\mathrm{A} \rightarrow(a=1,3,5)+(i=2,4,6)+7$

Beyond twisted tori by including sources

- Could some of the previous SS conditions be relaxed?

$$
\omega_{[\bullet \bullet}{ }^{D} \omega_{\bullet] D}{ }^{\psi} \neq 0 \Rightarrow \text { Non-vanishing KK6 (KKO6) charge }
$$

- The inclusion of KK6 sources will break some of the 32 supercharges

Type	x^{0}	x^{1}	x^{2}	x^{3}	η^{a}	η^{i}	η^{b}	η^{j}	η^{c}	η^{k}	η^{7}	KK6 \rightarrow type IIA		
$i)$	\times	\times	\times	\times	\times	\times		ψ			\times	KK5 $(\mathrm{KKO} 5)$		
$i i)$	\times	\times	\times	\times	\times	\times	ψ				\times	$\widetilde{\mathrm{KK5}}(\widetilde{\mathrm{KKO} 5})$		
$i i i)$	\times	\times	\times	\times	\times			\times		\times	ψ	$\mathrm{D}_{\perp}\left(\mathrm{O} 6_{\perp}\right)$		
$i v)$	\times	\times	\times	\times	\times		\times		\times		ψ	$\mathrm{D} 6_{\\|}\left(\mathrm{O} 6_{\\|}\right)$		
$v)$	\times	\times	\times	\times	\times	ψ		\times		\times		$\mathrm{KK}_{\perp}\left(\mathrm{KKO}_{\perp}\right)$		
$v i)$	\times	\times	\times	\times	\times		ψ	\times		\times		$\widetilde{\mathrm{KK}}{ }_{\perp}\left(\widetilde{\mathrm{KKO}}{ }_{\perp}\right)$		
$v i i)$	\times	\times	\times	\times	\times		\times		\times	ψ		$\mathrm{KK}_{\\|}\left(\mathrm{KKO} 6_{\\|}\right)$		

- Index splitting $\mathrm{A} \rightarrow(a=1,3,5)+(i=2,4,6)+7$

Beyond twisted tori by including sources

- Could some of the previous SS conditions be relaxed?

$$
\omega_{[\bullet \bullet}{ }^{D} \omega_{\bullet] D}{ }^{\psi} \neq 0 \Rightarrow \text { Non-vanishing KK6 (KKO6) charge }
$$

- The inclusion of KK6 sources will break some of the 32 supercharges

Type	x^{0}	x^{1}	x^{2}	x^{3}	η^{a}	η^{i}	η^{b}	η^{j}	η^{c}	η^{k}	η^{7}	KK6 \rightarrow type IIA		
$i)$	\times	\times	\times	\times	\times	\times		ψ			\times	KK5 $(\mathrm{KKO} 5)$		
$i i)$	\times	\times	\times	\times	\times	\times	ψ				\times	$\widetilde{\mathrm{KK5}}(\widetilde{\mathrm{KKO} 5})$		
$i i i)$	\times	\times	\times	\times	\times			\times		\times	ψ	$\mathrm{D}_{\perp}\left(\mathrm{O} 6_{\perp}\right)$		
$i v)$	\times	\times	\times	\times	\times		\times		\times		ψ	$\mathrm{D} 6_{\\|}\left(\mathrm{O} 6_{\\|}\right)$		
$v)$	\times	\times	\times	\times	\times	ψ		\times		\times		$\mathrm{KK}_{\perp}\left(\mathrm{KKO}_{\perp}\right)$		
$v i)$	\times	\times	\times	\times	\times		ψ	\times		\times		$\widetilde{\mathrm{KK}}{ }_{\perp}\left(\widetilde{\mathrm{KKO}}{ }_{\perp}\right)$		
$v i i)$	\times	\times	\times	\times	\times		\times		\times	ψ		$\mathrm{KK}_{\\|}\left(\mathrm{KKO} 6_{\\|}\right)$		

$\mathrm{KK} 6 \rightarrow \mathrm{D} 6$ in IIA
[Villadoro \& Zwirner '07]

- Index splitting $\mathrm{A} \rightarrow(a=1,3,5)+(i=2,4,6)+7$

Beyond twisted tori by including sources

- Could some of the previous SS conditions be relaxed?

$$
\omega_{[\bullet \bullet}{ }^{D} \omega_{\bullet] D}{ }^{\psi} \neq 0 \Rightarrow \text { Non-vanishing KK6 (KKO6) charge }
$$

- The inclusion of KK6 sources will break some of the 32 supercharges

Type	x^{0}	x^{1}	x^{2}	x^{3}	η^{a}	η^{i}	η^{b}	η^{j}	η^{c}	η^{k}	η^{7}	KK6 \rightarrow type IIA		
$i)$	\times	\times	\times	\times	\times	\times		ψ			\times	KK5 $($ KKO5 $)$		
$i i)$	\times	\times	\times	\times	\times	\times	ψ				\times	$\widetilde{\text { KK5 }}(\widetilde{\text { KKO5 }})$		
$i i i)$	\times	\times	\times	\times	\times			\times		\times	ψ	$\mathrm{D}_{\perp}\left(\mathrm{O} 6_{\perp}\right)$		
$i v)$	\times	\times	\times	\times	\times		\times		\times		ψ	$\mathrm{D}_{\\|}\left(\mathrm{O} 6_{\\|}\right)$		
$v)$	\times	\times	\times	\times	\times	ψ		\times		\times		$\mathrm{KK}_{\perp}\left(\mathrm{KKO}_{\perp}\right)$		
$v i)$	\times	\times	\times	\times	\times		ψ	\times		\times		$\widetilde{\mathrm{KK}}{ }_{\perp}\left(\widetilde{\mathrm{KKO}}{ }_{\perp}\right)$		
$v i i)$	\times	\times	\times	\times	\times		\times		\times	ψ		$\mathrm{KK}_{\\|}\left(\mathrm{KKO} 6_{\\|}\right)$		

KK6 \rightarrow Exotic in IIA [absent if $\left(c_{3}{ }^{\prime}, d_{0}\right)=0$]

- Index splitting $\mathrm{A} \rightarrow(a=1,3,5)+(i=2,4,6)+7$

An EFT to describe M-theory/strings backgrounds

- The embedding tensor formalism (ET) provides an EFT to describe $4 d$ effective actions irrespective of their higher-dimensional origin
[Nicolai, Samtleben, de Wit, Trigiante, ...]
- Fluxes in M-theory / strings $=$ Parameters in the EFT

$$
f_{\alpha M N P} \in \mathrm{SL}(2) \times \mathrm{SO}(6,6)
$$

- Backgrounds preserving $16(N=4)$ or $32(N=8)$ supercharges

$$
\left.\left.\begin{array}{rl}
\left.f_{\alpha R[M N} f_{\beta P Q}\right]^{R}=0 & \rightarrow \\
\epsilon^{\alpha \beta} f_{\alpha M N R} f_{\beta P Q}{ }^{R}=0 & \rightarrow
\end{array} \quad \text { Conditions } i\right), \text { Conditions iii) and } v\right)
$$

[Schön \& Weidner '06]

$$
N=8 \text { (extra) } \quad\left\{\begin{array}{rll}
\left.\epsilon^{\alpha \beta} f_{\alpha[M N P} f_{\beta Q R S]}\right|_{\mathrm{SD}}=0 & \rightarrow & \text { Conditions iv) and vii) } \\
f_{\alpha M N P} f_{\beta}{ }^{M N P}=0 & \rightarrow & \text { No additional conditions }
\end{array}\right.
$$

An EFT to describe M-theory / strings backgrounds

- The embedding tensor formalism (ET) provides an EFT to describe $4 d$ effective actions irrespective of their higher-dimensional origin
[Nicolai, Samtleben, de Wit, Trigiante, ...]
- Fluxes in M-theory/strings = Parameters in the EFT

$$
f_{\alpha M N P} \in \mathrm{SL}(2) \times \mathrm{SO}(6,6)
$$

- Backgrounds preserving $16(N=4)$ or $32(N=8)$ supercharges

$$
\quad \begin{aligned}
&\left.f_{\alpha R[M N} f_{\beta P Q}\right]^{R}=0 \rightarrow \\
& {[\text { [Schön \& Weidner 066] }}
\end{aligned}\left\{\begin{aligned}
& \rightarrow \text { Conditions } i), \text { iii) and v) } \\
\epsilon^{\alpha \beta} f_{\alpha M N R} f_{\beta P Q}{ }^{R}=0 & \rightarrow
\end{aligned}\right. \text { Conditions ii) and vi) }
$$

can be relaxed !!

$$
N=8 \text { (extra) } \quad\left\{\begin{array}{rll}
\left.\epsilon^{\alpha \beta} f_{\alpha[M N P} f_{\beta Q R S]}\right|_{\mathrm{SD}}=0 & \rightarrow \text { Conditions iv) and vii) } \\
f_{\alpha M N P} f_{\beta}^{M N P}=0 & \rightarrow \text { No additional conditions }
\end{array}\right.
$$

Backgrounds preserving 16 supercharges

- SS conditions iv) and vii) can be relaxed if demanding only 16 supercharges

$$
\begin{array}{rlll}
\text { iv) } & \omega_{[i j}^{D} \omega_{k] D}^{7} \neq 0 & \rightarrow \quad 3 b_{1} a_{2} \neq 0 \\
\text { vii) } & \omega_{[7 i}^{D} \omega_{j] D}{ }^{k} \neq 0 & \rightarrow \quad b_{1} c_{3}^{\prime}+2 c_{1} d_{0} \neq 0
\end{array}
$$

- KK6 \rightarrow D6 in IIA (iv) \& KK6 \rightarrow Exotic in IIA (vii) can be included
- KK6 sources induce new terms in the scalar potential
- Situation 1: Only KK6 \rightarrow D6 in IIA $\quad \rightarrow \quad$ No moduli stabilisation
-Situation 2: Only KK6 \rightarrow exotic in IIA
- Situation 3: Both types of KK6 sources

\rightarrow

Full moduli stabilisation
Full moduli stabilisation

- KKO6 sources crucial to stabilise moduli in backgrounds with 16 supercharges
- Unique gauging : $G=\mathrm{SO}(3) \ltimes \mathrm{Nil}_{9}$

Taxonomy of M-theory flux vacua

ID	D6 $\\|\left(\mathrm{O} 6_{\\|}\right) / \mathrm{KK} 6_{\\|}\left(\mathrm{KKO}_{\\|}\right)$	Stable	Flat dir.	SUSY	$\operatorname{dim}\left(G_{\text {res }}\right)$	\widetilde{W}_{27}
vac 0	yes / no	\checkmark	yes	$\mathcal{N}=0$	3	$\neq 0$
vac 1	no / yes	\checkmark	yes	$\mathcal{N}=3$	3	$\neq 0$
vac 2	no / yes	\checkmark	yes	$\mathcal{N}=0$	3	$\neq 0$
vac 3	no / yes	\checkmark	no	$\mathcal{N}=0$	3	0
vac 4	no / yes	\checkmark	no	$\mathcal{N}=1$	3	0
vac 5	no / yes	\checkmark	no	$\mathcal{N}=0$	3	0
vac 6	no / yes	\times	no	$\mathcal{N}=0$	3	$\neq 0$
vac 7	no / yes	\times	no	$\mathcal{N}=0$	3	$\neq 0$
vac 8	no / yes	\checkmark	no	$\mathcal{N}=0$	3	$\neq 0$
vac 9	yes / yes	\checkmark	yes	$\mathcal{N}=3$	6	$\neq 0$
vac 10	yes / yes	\checkmark	no	$\mathcal{N}=0$	6	$\neq 0$
vac 11	yes / yes	\checkmark	no	$\mathcal{N}=1$	6	0
vac 12	yes / yes	\checkmark	no	$\mathcal{N}=0$	6	0
vac 13	yes / yes	\times	no	$\mathcal{N}=0$	6	0
vac 14	yes / yes	\times	no	$\mathcal{N}=0$	3	$\neq 0$
vac 15	yes / yes	\times	no	$\mathcal{N}=0$	3	$\neq 0$
vac 16	yes / yes	\times	no	$\mathcal{N}=0$	3	$\neq 0$
vac 17	yes / yes	\times	no	$\mathcal{N}=0$	3	$\neq 0$

Taxonomy of M-theory flux vacua

Weak G_{2}-holonomy

- Weak G_{2}-holonomy

ID	D6 $\\|\left(\mathrm{O}_{\\|}\right) / \mathrm{KK} 6_{\\|}\left(\mathrm{KKO}_{\\|}\right)$	Stable	Flat dir.	SUSY	$\operatorname{dim}\left(G_{\text {res }}\right)$	\widetilde{W}_{27}
vac 0	yes / no	\checkmark	yes	$\mathcal{N}=0$	3	$\neq 0$
vac 1	no / yes	\checkmark	yes	$\mathcal{N}=3$	3	$\neq 0$
vac 2	no / yes	\checkmark	yes	$\mathcal{N}=0$	3	$\neq 0$
vac 3	no / yes	\checkmark	no	$\mathcal{N}=0$	3	0
vac 4	no / yes	\checkmark	no	$\mathcal{N}=1$	3	0
vac 5	no / yes	\checkmark	no	$\mathcal{N}=0$	3	0
vac 6	no / yes	\times	no	$\mathcal{N}=0$	3	$\neq 0$
vac 7	no / yes	\times	no	$\mathcal{N}=0$	3	$\neq 0$
vac 8	no / yes	\checkmark	no	$\mathcal{N}=0$	3	$\neq 0$
vac 9	yes / yes	\checkmark	yes	$\mathcal{N}=3$	6	$\neq 0$
vac 10	yes / yes	\checkmark	no	$\mathcal{N}=0$	6	$\neq 0$
vac 11	yes / yes	\checkmark	no	$\mathcal{N}=1$	6	0
vac 12	yes / yes	\checkmark	no	$\mathcal{N}=0$	6	0
vac 13	yes / yes	\times	no	$\mathcal{N}=0$	6	0
vac 14	yes / yes	\times	no	$\mathcal{N}=0$	3	$\neq 0$
vac 15	yes / yes	\times	no	$\mathcal{N}=0$	3	$\neq 0$
vac 16	yes / yes	\times	no	$\mathcal{N}=0$	3	$\neq 0$
vac 17	yes / yes	\times	no	$\mathcal{N}=0$	3	$\neq 0$

Taxonomy of M-theory flux vacua

- $N=3$ SUSY
- $N=1$ SUSY
- $N=3$ SUSY
- $N=1$ SUSY

ID	D6 ${ }_{\\|}\left(\mathrm{O} 6_{\\|}\right) / \mathrm{KK} 6_{\\|}\left(\mathrm{KKO}_{\\|}\right)$	Stable	Flat dir.	SUSY	$\operatorname{dim}\left(G_{\text {res }}\right)$	\widetilde{W}_{27}
vac 0	yes / no	\checkmark	yes	$\mathcal{N}=0$	3	$\neq 0$
vac 1	no / yes	\checkmark	yes	$\mathcal{N}=3$	3	$\neq 0$
vac 2	no / yes	\checkmark	yes	$\mathcal{N}=0$	3	$\neq 0$
vac 3	no / yes	\checkmark	no	$\mathcal{N}=0$	3	0
vac 4	no / yes	\checkmark	no	$\mathcal{N}=1$	3	0
vac 5	no / yes	\checkmark	no	$\mathcal{N}=0$	3	0
vac 6	no / yes	\times	no	$\mathcal{N}=0$	3	$\neq 0$
vac 7	no / yes	\times	no	$\mathcal{N}=0$	3	$\neq 0$
vac 8	no / yes	\checkmark	no	$\mathcal{N}=0$	3	$\neq 0$
vac 9	yes / yes	\checkmark	yes	$\mathcal{N}=3$	6	$\neq 0$
vac 10	yes / yes	\checkmark	no	$\mathcal{N}=0$	6	$\neq 0$
vac 11	yes / yes	\checkmark	no	$\mathcal{N}=1$	6	0
vac 12	yes / yes	\checkmark	no	$\mathcal{N}=0$	6	0
vac 13	yes / yes	\times	no	$\mathcal{N}=0$	6	0
vac 14	yes / yes	\times	no	$\mathcal{N}=0$	3	$\neq 0$
vac 15	yes / yes	\times	no	$\mathcal{N}=0$	3	$\neq 0$
vac 16	yes / yes	\times	no	$\mathcal{N}=0$	3	$\neq 0$
vac 17	yes / yes	\times	no	$\mathcal{N}=0$	3	$\neq 0$

Taxonomy of M-theory flux vacua

ID	D6 ${ }_{\\|}\left(\mathrm{O} 6_{\\|}\right) / \mathrm{KK} 6_{\\|}\left(\mathrm{KKO}_{\\|}\right)$	Stable	Flat dir.	SUSY	$\operatorname{dim}\left(G_{\text {res }}\right)$	\widetilde{W}_{27}
vac 0	yes / no	\checkmark	yes	$\mathcal{N}=0$	3	$\neq 0$
vac 1	no / yes	\checkmark	yes	$\mathcal{N}=3$	3	$\neq 0$
vac 2	no / yes	\checkmark	yes	$\mathcal{N}=0$	3	$\neq 0$
vac 3	no / yes	\checkmark	no	$\mathcal{N}=0$	3	0
vac 4	no / yes	\checkmark	no	$\mathcal{N}=1$	3	0
vac 5	no / yes	\checkmark	no	$\mathcal{N}=0$	3	0
vac 6	no / yes	\times	no	$\mathcal{N}=0$	3	$\neq 0$
vac 7	no / yes	\times	no	$\mathcal{N}=0$	3	$\neq 0$
vac 8	no / yes	\checkmark	no	$\mathcal{N}=0$	3	$\neq 0$
vac 9	yes / yes	\checkmark	yes	$\mathcal{N}=3$	6	$\neq 0$
vac 10	yes / yes	\checkmark	no	$\mathcal{N}=0$	6	$\neq 0$
vac 11	yes / yes	\checkmark	no	$\mathcal{N}=1$	6	0
vac 12	yes / yes	\checkmark	no	$\mathcal{N}=0$	6	0
vac 13	yes / yes	\times	no	$\mathcal{N}=0$	6	0
vac 14	yes / yes	\times	no	$\mathcal{N}=0$	3	$\neq 0$
vac 15	yes / yes	\times	no	$\mathcal{N}=0$	3	$\neq 0$
vac 16	yes / yes	\times	no	$\mathcal{N}=0$	3	$\neq 0$
vac 17	yes / yes	\times	no	$\mathcal{N}=0$	3	$\neq 0$

Final remarks

- Moduli stabilisation can be achieved upon twisted reductions of massless M-theory if KK6 (KKO6) sources are included.
- Using the ET formalism (4d) as a guiding principle, the minimal setup corresponds to $N=4$ backgrounds (16 supercharges) violating some of the SS conditions

$$
\omega_{[\bullet \bullet} \omega_{\bullet] D}{ }^{\psi} \neq 0 \Rightarrow \text { Non-vanishing KK6 (KKO6) charge }
$$

- New situation compared to IIA orientifolds ($7 d$ vs $6 d$ isometries within $\mathrm{SO}(6,6)$)
- M-theory interpretation of non-geometric fluxes in a type IIA incarnation of the effective STU-models \rightarrow KK6 (KKO6) corresponding to exotic IIA sources

In progress [with Uppsala group] :

- understand the $7 d / 6 d$ interplay at the level of SU(3)-structures
- 11d/10d lifting of 1/2-BPS backgrounds corresponding to KK6/ exotic IIA sources

Thanks !!

Extra material...

M-theory on G_{2}-manifolds $\left(X_{7}\right)$ with fluxes

- 7d manifolds with G_{2}-structure possess an invariant 3-form

$$
\Phi_{(3)}=\eta^{127}+\eta^{347}+\eta^{567}+\eta^{135}-\eta^{146}-\eta^{362}-\eta^{524}
$$

- Co-calibrated G_{2}-structure

$$
\begin{aligned}
d \Phi_{(3)} & =\widetilde{W}_{1} \star_{7} \Phi_{(3)}+2 \widetilde{W}_{27} \\
d \star_{7} \Phi_{(3)} & =0
\end{aligned}
$$

- Enhancements to weak G_{2}-holonomy $\left(\widetilde{W}_{27}=0\right)$ or G_{2}-holonomy ($\left.\widetilde{W}_{27}=\widetilde{W}_{1}=0\right)$
- $N=1$ supergravity in terms of a complex 3-form (moduli fields in $4 d$):

$$
W_{\text {M-theory }}=\frac{1}{4} \int_{X_{7}} G_{(7)}+\frac{1}{4} \int_{X_{7}}\left(A_{(3)}+i \Phi_{(3)}\right) \wedge\left[G_{(4)}+\frac{1}{2} d\left(A_{(3)}+i \Phi_{(3)}\right)\right]
$$

M-theory fluxes / ET dictionary

M-theory origin	Type IIA origin	Fluxes	Embedding tensor
$\omega_{b c}{ }^{a}$	$\omega_{b c}{ }^{a}$	$\tilde{c}_{1}{ }^{(I)}$	$f_{+}{ }^{b c}{ }_{a}$
$\omega_{a j}{ }^{k}$	$\omega_{a j}{ }^{k}$	$\hat{c}_{1}^{(I)}$	$f_{+}{ }^{a j}{ }_{k}$
$\omega_{k a}{ }^{j}$	$\omega_{k a}{ }^{j}$	$\check{c}_{1}^{(I)}$	$f_{+}{ }^{k a}{ }_{j}$
$\omega_{j k}{ }^{a}$	$\omega_{j k}{ }^{a}$	$b_{1}^{(I)}$	$f_{-}{ }^{i b c}$
$-\omega_{a i}{ }^{7}$	$F_{a i}$	$a_{2}^{(I)}$	$-f_{+}{ }^{a j k}$
$-\omega_{7 i}{ }^{a}$	non-geometric	$d_{0}^{(I)}$	$f_{-}{ }^{b c}{ }_{i}{ }_{i}$
$-\omega_{a 7}{ }^{i}$	non-geometric	$c_{3}^{\prime(I)}$	$f_{+j k}{ }^{a}$
$-\frac{1}{2} G_{a i b j}$	$-F_{a i b j}$	$a_{1}^{(I)}$	$f_{+}{ }^{a b k}$
$\frac{1}{2} G_{i j k 7}$	$H_{i j k}$	b_{0}	$-f_{-}{ }^{a b c}$
$\frac{1}{2} G_{i b c 7}$	$H_{i b c}$	$c_{0}^{(I)}$	$f_{+}{ }^{b c}{ }_{i}$
$\frac{1}{4} G_{a i b j c k 7}$	$F_{a i b j c k}$	a_{0}	$-f_{+}{ }^{a b c}$
non-geometric	$-F_{(0)}$ (Romans mass)	a_{3}	$f_{+}{ }^{i j k}$

(Non-iso) example: Twisted torus $X_{7}=T^{7} /\left(Z_{2} \times Z_{2} \times Z_{2}\right)$

- Factorisation :

$$
\begin{aligned}
& {[7=2+2+2 \quad+1]} \\
& {[\mathrm{A}=(i=1,3,5, \quad a=2,4,6)+7]}
\end{aligned}
$$

- Twist specified by a metric flux

$$
d \eta^{A}+\frac{1}{2} \omega_{B C}^{A} \eta^{B} \wedge \eta^{C}=0
$$

- Background gauge fluxes

$$
\frac{1}{2} G_{(4)}=-\sum_{I=1}^{3} a_{1}{ }^{(I)} \tilde{\omega}^{I}+b_{0} \beta^{0}+\sum_{I=1}^{3} c_{0}{ }^{(I)} \alpha_{I} \quad \text { and } \quad \frac{1}{4} G_{(7)}=a_{0} \eta^{1234567}
$$

- Moduli fields

$$
\frac{1}{2}\left(A_{(3)}+i \Phi_{(3)}\right)=\sum_{I=1}^{3} U_{I} \omega_{I}+S \alpha_{0}-\sum_{I=1}^{3} T_{I} \beta^{I}
$$

Geometry of the $Z_{2} \times Z_{2}$ orbifold of T^{6}

- Orbifold action

$$
\begin{aligned}
& \theta_{1}:\left(\eta^{1}, \eta^{2}, \eta^{3}, \eta^{4}, \eta^{5}, \eta^{6}\right) \rightarrow\left(\eta^{1}, \eta^{2},-\eta^{3},-\eta^{4},-\eta^{5},-\eta^{6}\right) \\
& \theta_{2}:\left(\eta^{1}, \eta^{2}, \eta^{3}, \eta^{4}, \eta^{5}, \eta^{6}\right) \rightarrow\left(-\eta^{1},-\eta^{2}, \eta^{3}, \eta^{4},-\eta^{5},-\eta^{6}\right)
\end{aligned}
$$

- Invariant forms
0-forms \rightarrow points
1-forms \rightarrow none
2-forms $\rightarrow \omega_{1}=\eta^{12} \quad, \quad \omega_{2}=\eta^{34} \quad, \quad \omega_{3}=\eta^{56}$
3-forms $\rightarrow \alpha_{0}=\eta^{135} \quad, \quad \alpha_{1}=\eta^{235} \quad, \quad \alpha_{2}=\eta^{451} \quad, \quad \eta_{3}^{246} \quad, \quad \beta^{1}=\eta^{146} \quad, \quad \beta^{2}=\eta^{362} \quad, \quad \beta^{313}=\eta^{524}$
4-forms $\rightarrow \tilde{\omega}^{1}=\eta^{3456} \quad, \quad \tilde{\omega}^{2}=\eta^{1256} \quad, \quad \tilde{\omega}^{3}=\eta^{1234}$
5-forms \rightarrow none
6-forms \rightarrow internal volume

