M-theory beyond twisted tori

Adolfo Guarino

Albert Einstein Center (ITP) Bern, Switzerland

Recent Developments in String Theory 24 July 2014, Ascona

In collaboration with Jean-Pierre Derendinger [arXiv:1406.6930]

... one-minute summary

x x • Factorisation : Х $(\eta^1, \eta^2) \qquad (\eta^3, \eta^4) \qquad (\eta^5, \eta^6)$

• Twist specified by a metric flux

$$d\eta^A + \frac{1}{2} \omega_{BC}{}^A \eta^B \wedge \eta^C = 0 \qquad [A = 1, \dots, 7]$$

Background gauge fluxes

 $\frac{1}{2}G_{(4)} = -a_1 \eta^{3456} + \dots$ and $\frac{1}{\Lambda} G_{(7)} = a_0 \eta^{1234567}$

• *G*₂-structure : 7 moduli fields

$$\frac{1}{2}(A_{(3)} + i\Phi_{(3)}) = U_1 \eta^{127} + U_2 \eta^{347} + U_3 \eta^{567} + S \eta^{135} - T_1 \eta^{146} - T_2 \eta^{362} - T_3 \eta^{524}$$

[Dall'Agata & Prezas '05] [Derendinger & A.G '14]

 η^7

Twisted torus $X_7 = T^7/(Z_2 \times Z_2 \times Z_2)$

[Dall'Agata & Prezas '05] [Derendinger & A.G '14] (η^1, η^2) $(\eta^1 \eta^3, \eta^2 \eta^4)$

 (η^5)

Cyclic plane-exchange-symmetry

[Derendinger, Kounnas, Petropoulos & Zwirner '04]

$$\bigcirc = \bigcirc = \bigcirc = \bigcirc = \bigcirc \\ (\eta^1, \eta^2) = (\eta^3, \eta^4) = (\eta^5, \eta^6)$$

 $(\,\eta^3\,,\,\eta^4\,)$

$$U_1 = U_2 = U_3 \equiv U$$
 and $T_1 = T_2 = T_3 \equiv T$

$$(\eta^1, \eta^2) \qquad (\eta^3, \eta^4) \qquad (\eta^5, \eta^6)$$

• M-theory flux-induced superpotential as an STU-model

$$\begin{split} W_{\rm M-theory} &= a_0 - b_0 \, S + 3 \, c_0 \, T - 3 \, a_1 \, U + 3 \, a_2 \, U^2 + 3 \, (2 \, c_1 - \tilde{c}_1) \, U \, T + 3 \, b_1 \, S \, U \\ &- 3 \, c_3' \, T^2 - 3 \, d_0 \, S \, T _{\rm Thursday, \, July \, 17, \, 14} & {}_{\rm Thursday, \, July \, 17, \, 14} \end{split}$$

 $(\eta^1\,,\,\eta^2\,)$

• Couplings : $G_{(7)} = \text{cte}$, $G_{(4)} = \text{linear}$ and metric = quadratic

[Dall'Agata & Prezas '05] [Derendinger & A.G '14]

• M-theory \rightarrow Type IIA orientifold upon reduction along η^7

M-theory origin	Type IIA origin	Flux/coupling
$\omega_{bc}{}^a$	$\omega_{bc}{}^a$	\tilde{c}_1
$\omega_{ka}{}^{j}$	$\omega_{ka}{}^{j}$	c_1
$\omega_{jk}{}^a$	$\omega_{jk}{}^a$	b_1
$-\omega_{ai}^{7}$	F_{ai}	a_2
$-\omega_{7i}{}^a$	non-geometric	d_0
$-\omega_{a7}{}^i$	non-geometric	c'_3
$-\frac{1}{2}G_{aibj}$	$-F_{aibj}$	a_1
$\frac{1}{2} G_{ijk7}$	H_{ijk}	b_0
$\frac{1}{2}G_{ibc7}$	H_{ibc}	c_0
$\frac{1}{4} G_{aibjck7}$	F_{aibjck}	a_0

[Dall'Agata & Prezas '05] [Derendinger & A.G '14]

• M-theory \rightarrow Type IIA orientifold upon reduction along η^7

M-theory origin	Type IIA origin	Flux/coupling			
$\omega_{bc}{}^a$	$\omega_{bc}{}^a$	\tilde{c}_1			
$\omega_{ka}{}^{j}$	$\omega_{ka}{}^{j}$	c_1			
$\omega_{jk}{}^a$	$\omega_{jk}{}^a$	b_1			
$-\omega_{ai}^{7}$	F_{ai}	a_2			
$-\omega_{7i}{}^a$	non-geometric	d_0			
$-\omega_{a7}{}^i$	non-geometric	c'_3			
$-\frac{1}{2}G_{aibj}$	$-F_{aibj}$	a_1			
$\frac{1}{2}G_{ijk7}$	H_{ijk}	b_0			
$\frac{1}{2}G_{ibc7}$	H_{ibc}	c_0			
$\frac{1}{4} G_{aibjck7}$	F_{aibjck}	a_0			

7*d* twist in M-theory \rightarrow 6*d* twist in IIA

[Dall'Agata & Prezas '05] [Derendinger & A.G '14]

• M-theory \rightarrow Type IIA orientifold upon reduction along η^7

M-theory origin	Type IIA origin	Flux/coupling
$\omega_{bc}{}^a$	$\omega_{bc}{}^a$	$ ilde{c}_1$
$\omega_{ka}{}^{j}$	$\omega_{ka}{}^{j}$	c_1
$\omega_{jk}{}^a$	$\omega_{jk}{}^a$	b_1
$-\omega_{ai}{}^7$	F_{ai}	a_2
$-\omega_{7i}{}^a$	non-geometric	d_0
$-\omega_{a7}{}^i$	non-geometric	c'_3
$-\frac{1}{2}G_{aibj}$	$-F_{aibj}$	a_1
$\frac{1}{2}G_{ijk7}$	H_{ijk}	b_0
$\frac{1}{2}G_{ibc7}$	H_{ibc}	c_0
$rac{1}{4} G_{aibjck7}$	F_{aibjck}	a_0

7*d* twist in M-theory \implies $F_{(2)}$ in IIA

[Dall'Agata & Prezas '05] [Derendinger & A.G '14]

• M-theory \rightarrow Type IIA orientifold upon reduction along η^7

M-theory origin	Type IIA origin	Flux/coupling
$\omega_{bc}{}^{a}$	$\omega_{bc}{}^a$	\tilde{c}_1
$\omega_{ka}{}^{j}$	$\omega_{ka}{}^{j}$	c_1
$\omega_{jk}{}^a$	$\omega_{jk}{}^a$	b_1
$-\omega_{ai}{}^7$	F_{ai}	a_2
$-\omega_{7i}{}^a$	non-geometric	d_0
$-\omega_{a7}{}^i$	non-geometric	c'_3
$-\frac{1}{2}G_{aibj}$	$-F_{aibj}$	a_1
$\frac{1}{2} G_{ijk7}$	H_{ijk}	b_0
$\frac{1}{2}G_{ibc7}$	H_{ibc}	c_0
$\frac{1}{4} G_{aibjck7}$	F_{aibjck}	a_0

7*d* twist in M-theory **→ non-geom** in IIA

[Shelton, Taylor & Wecht '05] [Aldazabal, Cámara, Font & Ibáñez '06]

[Dall'Agata & Prezas '05] [Derendinger & A.G '14]

• M-theory \rightarrow Type IIA orientifold upon reduction along η^7

M-theory origin	Type IIA origin	Flux/coupling
$\omega_{bc}{}^a$	$\omega_{bc}{}^a$	\tilde{c}_1
$\omega_{ka}{}^{j}$	$\omega_{ka}{}^{j}$	c_1
$\omega_{jk}{}^a$	$\omega_{jk}{}^a$	b_1
$-\omega_{ai}{}^7$	F_{ai}	a_2
$-\omega_{7i}{}^a$	non-geometric	d_0
$-\omega_{a7}{}^i$	non-geometric	c'_3
$-\frac{1}{2}G_{aibj}$	$-F_{aibj}$	a_1
$\frac{1}{2} G_{ijk7}$	H_{ijk}	b_0
$\frac{1}{2}G_{ibc7}$	H_{ibc}	c_0
$rac{1}{4} G_{aibjck7}$	F_{aibjck}	a_0

 $G_{(4)}$ in M-theory \rightarrow $F_{(4)}$ in IIA

[Dall'Agata & Prezas '05] [Derendinger & A.G '14]

• M-theory \rightarrow Type IIA orientifold upon reduction along η^7

M-theory origin	Type IIA origin	Flux/coupling
$\omega_{bc}{}^a$	$\omega_{bc}{}^a$	\tilde{c}_1
$\omega_{ka}{}^j$	$\omega_{ka}{}^{j}$	c_1
$\omega_{jk}{}^a$	$\omega_{jk}{}^a$	b_1
$-\omega_{ai}{}^7$	F_{ai}	a_2
$-\omega_{7i}{}^a$	non-geometric	d_0
$-\omega_{a7}{}^i$	non-geometric	c'_3
$-\frac{1}{2}G_{aibj}$	$-F_{aibj}$	a_1
$\frac{1}{2} G_{ijk7}$	H_{ijk}	b_0
$\frac{1}{2}G_{ibc7}$	H_{ibc}	c_0
$rac{1}{4} G_{aibjck7}$	F_{aibjck}	a_0

 $G_{(4)}$ in M-theory $\rightarrow H_{(3)}$ in IIA

[Dall'Agata & Prezas '05] [Derendinger & A.G '14]

• M-theory \rightarrow Type IIA orientifold upon reduction along η^7

M-theory origin	Type IIA origin	Flux/coupling
$\omega_{bc}{}^a$	$\omega_{bc}{}^a$	\tilde{c}_1
$\omega_{ka}{}^{j}$	$\omega_{ka}{}^{j}$	c_1
$\omega_{jk}{}^a$	$\omega_{jk}{}^a$	b_1
$-\omega_{ai}{}^7$	F_{ai}	a_2
$-\omega_{7i}{}^a$	non-geometric	d_0
$-\omega_{a7}{}^i$	non-geometric	c'_3
$-\frac{1}{2}G_{aibj}$	$-F_{aibj}$	a_1
$\frac{1}{2} G_{ijk7}$	H_{ijk}	b_0
$\frac{1}{2}G_{ibc7}$	H_{ibc}	c_0
$rac{1}{4} G_{aibjck7}$	F_{aibjck}	a_0

 $G_{(7)}$ in M-theory \rightarrow $F_{(6)}$ in IIA

Question :

What are the consequences of turning on the two genuine M-theory metric fluxes (c_3' , d_0) being non-geometric in type IIA ?

$$W_{\text{M-theory}} = W_{\text{IIA}} - 3 c'_3 T^2 - 3 d_0 S T$$

• Recall :
$$c'_3 = \omega_{7a}{}^i$$
 and $d_0 = \omega_{i7}{}^a$

Twisted tori as Scherk-Schwarz (SS) reductions

• An ordinary SS reduction of M-theory (32 supercharges) requires

$$\omega_{[AB}{}^F \omega_{C]F}{}^D = 0$$
 and $\omega_{[AB}{}^F G_{CDE]F} = 0$

guaranteed by the $Z_2 x Z_2 x Z_2$ symmetries !!

• In terms of the flux parameters

$$i) \quad \omega_{[ai}{}^{D} \omega_{c]D}{}^{k} = 0 \quad \rightarrow \quad -a_{2} c_{3}' + c_{1} (c_{1} - \tilde{c}_{1}) = 0$$

$$ii) \quad \omega_{[ai}{}^{D} \omega_{k]D}{}^{c} = 0 \quad \rightarrow \quad -d_{0} a_{2} + (c_{1} - \tilde{c}_{1}) b_{1} = 0$$

$$iii) \quad \omega_{[ib}{}^{D} \omega_{c]D}{}^{7} = 0 \quad \rightarrow \qquad a_{2} (2 c_{1} - \tilde{c}_{1}) = 0$$

$$iv) \quad \omega_{[ij}{}^{D} \omega_{k]D}{}^{7} = 0 \quad \rightarrow \qquad 3 b_{1} a_{2} = 0$$

$$all \text{ of } t$$

$$v) \quad \omega_{[7a}{}^{D} \omega_{b]D}{}^{k} = 0 \quad \rightarrow \qquad (2 c_{1} - \tilde{c}_{1}) c_{3}' = 0$$

$$vi) \quad \omega_{[7a}{}^{D} \omega_{j]D}{}^{c} = 0 \quad \rightarrow \qquad b_{1}c_{3}' + (c_{1} - \tilde{c}_{1}) d_{0} = 0$$

$$vii) \quad \omega_{[7i}{}^{D} \omega_{j]D}{}^{k} = 0 \quad \rightarrow \qquad b_{1}c_{3}' + 2 c_{1} d_{0} = 0$$

NO moduli stabilisation if all of them are imposed !!

[Derendinger & A.G '14]

• Index splitting $A \rightarrow (a = 1,3,5) + (i = 2,4,6) + 7$

[Scherk & Schwarz '79]

[Dall'Agata & Prezas '05]

• Could some of the previous SS conditions be relaxed ?

[Villadoro & Zwirner '07]

 $\omega_{\bullet} \omega_{\bullet} \omega_{\bullet} \omega_{\bullet} \omega_{\bullet} \omega_{\bullet} \omega_{\bullet} \psi \neq 0 \implies \text{Non-vanishing KK6 (KKO6) charge}$

• The inclusion of KK6 sources will break some of the 32 supercharges

Type	x^0	x^1	x^2	x^3	η^a	η^i	η^b	η^j	η^c	η^k	η^7	$KK6 \rightarrow type IIA$	
<i>i</i>)	×	×	×	×	×	×		ψ			×	KK5 (KKO5)	
ii)	×	×	×	×	×	×	ψ				×	$\widetilde{\mathrm{KK5}}$ ($\widetilde{\mathrm{KKO5}}$)	
iii)	×	×	×	×	×			×		×	ψ	$D6_{\perp} (O6_{\perp})$	
iv)	×	×	×	×	×		×		×		ψ	$D6_{\parallel} (O6_{\parallel})$	
v)	×	×	×	×	×	ψ		×		×		$\rm KK6_{\perp}~(\rm KKO6_{\perp})$	
vi)	×	×	×	×	×		ψ	×		×		$\widetilde{\mathrm{KK6}}_{\perp} \; (\widetilde{\mathrm{KKO6}}_{\perp})$	
vii)	×	×	×	×	×		×		×	ψ		$\rm KK6_{\parallel}~(\rm KKO6_{\parallel})$	

• Could some of the previous SS conditions be relaxed ?

 $\omega_{\bullet} \omega_{\bullet} \omega_{\bullet} \omega_{\bullet} \omega_{\bullet} \omega_{\bullet} \omega_{\bullet} \omega_{\bullet} \psi \neq 0 \Rightarrow \text{Non-vanishing KK6 (KKO6) charge}$

• The inclusion of KK6 sources will break some of the 32 supercharges

Type	x^0	x^1	x^2	x^3	η^a	η^i	η^b	η^j	η^c	η^k	η^7	$\mathrm{KK6} \rightarrow \mathrm{type} \ \mathrm{IIA}$	
<i>i</i>)	×	×	×	×	×	×		ψ			×	KK5 (KKO5)	
ii)	×	×	×	×	×	×	ψ				×	KK5 (KKO5)	
iii)	×	×	×	×	×			×		×	ψ	$D6_{\perp} (O6_{\perp})$	
iv)	×	×	×	×	×		×		×		ψ	$D6_{\parallel} (O6_{\parallel})$	
v)	×	×	×	×	×	ψ		×		×		$\rm KK6_{\perp}~(\rm KKO6_{\perp})$	
vi)	×	×	×	×	×		ψ	×		×		$\widetilde{\mathrm{KK6}}_{\perp} \ (\widetilde{\mathrm{KKO6}}_{\perp})$	
vii)	×	×	×	×	×		×		×	ψ		$\rm KK6_{\parallel}~(\rm KKO6_{\parallel})$	

[Villadoro & Zwirner '07]

[Villadoro & Zwirner '07]

• Could some of the previous SS conditions be relaxed ?

 $\omega_{\bullet} \omega_{\bullet} \omega_{\bullet} \omega_{\bullet} \omega_{\bullet} \omega_{\bullet} \omega_{\bullet} \omega_{\bullet} \psi \neq 0 \Rightarrow \text{Non-vanishing KK6 (KKO6) charge}$

• The inclusion of KK6 sources will break some of the 32 supercharges

Type	x^0	x^1	x^2	x^3	η^a	η^i	η^b	η^j	η^c	η^k	η^7	$\rm KK6 \rightarrow type IIA$
<i>i</i>)	×	×	×	×	×	×		ψ			×	KK5 (KKO5)
ii)	×	×	×	×	×	×	ψ				×	KK5 (KKO5)
iii)	×	×	×	×	×			×		×	ψ	$D6_{\perp} (O6_{\perp})$
iv)	×	×	×	×	×		×		×		ψ	$D6_{\parallel} (O6_{\parallel})$
v)	×	×	×	×	×	ψ		×		×		$\rm KK6_{\perp}~(\rm KKO6_{\perp})$
vi)	×	×	×	×	×		ψ	×		×		$\widetilde{\mathrm{KK6}}_{\perp} \ (\widetilde{\mathrm{KKO6}}_{\perp})$
vii)	×	×	×	×	×		×		×	ψ		$ KK6_{\parallel} (KKO6_{\parallel})$

[Villadoro & Zwirner '07]

[Villadoro & Zwirner '07]

• Could some of the previous SS conditions be relaxed ?

[Villadoro & Zwirner '07]

 $\omega_{\bullet} \omega_{\bullet} \omega_{\bullet} \omega_{\bullet} \omega_{\bullet} \omega_{\bullet} \omega_{\bullet} \omega_{\bullet} \psi \neq 0 \Rightarrow \text{Non-vanishing KK6 (KKO6) charge}$

• The inclusion of KK6 sources will break some of the 32 supercharges

Type	x^0	x^1	x^2	x^3	η^a	η^i	η^b	η^j	η^c	η^k	η^7	$\mathrm{KK6} \rightarrow \mathrm{type} \ \mathrm{IIA}$	
<i>i</i>)	×	×	×	×	×	×		ψ			×	KK5 (KKO5)	
ii)	×	×	×	×	×	×	ψ				×	$\widetilde{\mathrm{KK5}}$ ($\widetilde{\mathrm{KKO5}}$)	
iii)	×	×	×	×	×			×		×	ψ	$D6_{\perp} (O6_{\perp})$	
iv)	×	×	×	×	×		×		×		ψ	$\mathrm{D6}_{\parallel}~(\mathrm{O6}_{\parallel})$	
<i>v</i>)	×	×	×	×	×	ψ		×		×		$\rm KK6_{\perp}~(\rm KKO6_{\perp})$	
vi)	×	×	×	×	×		ψ	×		×		$\widetilde{\mathrm{KK6}}_{\perp} \ (\widetilde{\mathrm{KKO6}}_{\perp})$	
vii)	×	×	×	×	×		×		×	ψ		$\rm KK6_{\parallel}~(\rm KKO6_{\parallel})$	

KK6 \longrightarrow Exotic in IIA [absent if $(c_3', d_0) = 0$]

• Index splitting $A \rightarrow (a = 1,3,5) + (i = 2,4,6) + 7$

[Derendinger & A.G '14]

An EFT to describe M-theory/strings backgrounds

• The embedding tensor formalism (ET) provides an EFT to describe 4*d* effective actions irrespective of their higher-dimensional origin

[Nicolai, Samtleben, de Wit, Trigiante, ...]

• Fluxes in M-theory/strings = Parameters in the EFT

 $f_{\alpha MNP} \in SL(2) \times SO(6,6)$ [Schön & Weidner '06]

• Backgrounds preserving 16 (N = 4) or 32 (N = 8) supercharges

$$N = 4$$
Schön & Weidner '06]
$$\begin{cases}
\int_{\alpha R[MN} f_{\beta PQ}]^{\alpha} = 0 \rightarrow \text{Conditions } i), \quad iii) \text{ and } v) \\
\epsilon^{\alpha\beta} f_{\alpha MNR} f_{\beta PQ}^{R} = 0 \rightarrow \text{Conditions } ii) \text{ and } vi)
\end{cases}$$

$$N = 8 \text{ (extra)} \qquad \begin{cases}
\epsilon^{\alpha\beta} f_{\alpha [MNP} f_{\beta QRS]} |_{SD} = 0 \rightarrow \text{Conditions } iv) \text{ and } vii)
\end{cases}$$

R

C

 $f_{\alpha MNP} f_{\beta}^{MNP} = 0 \quad \rightarrow \qquad \text{No additional conditions}$

0 . . . 0

[Dibitetto, A.G & Roest '11]

 η^1

 (η)

An EFT to describe M-theory/strings backgrounds

• The embedding tensor formalism (ET) provides an EFT to describe 4*d* effective actions irrespective of their higher-dimensional origin

[Nicolai, Samtleben, de Wit, Trigiante, ...]

• Fluxes in M-theory/strings = Parameters in the EFT

 $f_{\alpha MNP} \in \mathrm{SL}(2) \times \mathrm{SO}(6,6)$ [Schön & Weidner '06]

• Backgrounds preserving 16 (N = 4) or 32 (N = 8) supercharges

$$N = 4$$
[Schön & Weidner '06]
$$\begin{cases}
f_{\alpha R[MN} f_{\beta PQ]}^{R} = 0 \rightarrow \text{Conditions } i), iii) \text{ and } v) \\
\epsilon^{\alpha\beta} f_{\alpha MNR} f_{\beta PQ}^{R} = 0 \rightarrow \text{Conditions } ii) \text{ and } vi) \\
can be relaxed !!
\\
N = 8 \text{ (extra)} \\
[Dibitetto, A.G & Roest '11]}
\end{cases}
\begin{cases}
f_{\alpha MNP} f_{\beta}^{MNP} f_{\beta}^{MNP} = 0 \rightarrow \text{No additional conditions}
\end{cases}$$

[Derendinger & A.G '14]

 η^1

Backgrounds preserving 16 supercharges

• SS conditions *iv*) and *vii*) can be relaxed if demanding only 16 supercharges

$$iv$$
) $\omega_{[ij}{}^D \omega_{k]D}{}^7 \neq 0 \rightarrow 3b_1 a_2 \neq 0$

 $vii) \qquad \omega_{[7i}{}^D \,\omega_{j]D}{}^k \neq 0 \qquad \rightarrow \qquad b_1c'_3 + 2c_1 \,d_0 \neq 0$

• KK6 \rightarrow D6 in IIA (*iv*) & KK6 \rightarrow Exotic in IIA (*vii*) can be included

• KK6 sources induce new terms in the scalar potential

• KKO6 sources crucial to stabilise moduli in backgrounds with 16 supercharges

• Unique gauging : $G = SO(3) \ltimes Nil_9$

Taxonomy of M-theory flux vacua

ID	$\mathrm{D6}_{\parallel}~(\mathrm{O6}_{\parallel})~/~\mathrm{KK6}_{\parallel}~(\mathrm{KKO6}_{\parallel})$	Stable	Flat dir.	SUSY	$\dim(G_{\rm res})$	\widetilde{W}_{27}
vac 0	yes / no	\checkmark	yes	$\mathcal{N} = 0$	3	$\neq 0$
vac 1	no / yes	\checkmark	yes	$\mathcal{N}=3$	3	$\neq 0$
vac 2	no / yes	\checkmark	yes	$\mathcal{N} = 0$	3	$\neq 0$
vac 3	no / yes	~	no	$\mathcal{N} = 0$	3	0
vac 4	no / yes	\checkmark	no	$\mathcal{N} = 1$	3	0
vac 5	no / yes	\checkmark	no	$\mathcal{N} = 0$	3	0
vac 6	no / yes	×	no	$\mathcal{N} = 0$	3	$\neq 0$
vac 7	no / yes	×	no	$\mathcal{N} = 0$	3	$\neq 0$
vac 8	no / yes	\checkmark	no	$\mathcal{N} = 0$	3	$\neq 0$
vac 9	yes / yes	~	yes	$\mathcal{N}=3$	6	$\neq 0$
vac 10	yes / yes	\checkmark	no	$\mathcal{N}=0$	6	$\neq 0$
vac 11	yes / yes	~	no	$\mathcal{N} = 1$	6	0
vac 12	yes / yes	\checkmark	no	$\mathcal{N} = 0$	6	0
vac 13	yes / yes	×	no	$\mathcal{N} = 0$	6	0
vac 14	yes / yes	×	no	$\mathcal{N} = 0$	3	$\neq 0$
vac 15	yes / yes	×	no	$\mathcal{N} = 0$	3	$\neq 0$
vac 16	yes / yes	×	no	$\mathcal{N} = 0$	3	$\neq 0$
vac 17	yes / yes	×	no	$\mathcal{N} = 0$	3	$\neq 0$

 \widetilde{W}_{27}

 $\neq 0$

 $\neq 0$

 $\neq 0$

0

0

0

 $\neq 0$

 $\neq 0$

 $\neq 0$

 $\neq 0$

 $\neq 0$

0

0

0

 $\neq 0$

 $\neq 0$

 $\neq 0$

 $\neq 0$

3

 $\dim(G_{\rm res})$

Taxonomy of M-theory flux vacua

ID

vac 17

 $D6_{\parallel} (O6_{\parallel}) / KK6_{\parallel} (KKO6_{\parallel})$

yes / yes

	vac 0	yes / no	\checkmark	yes	$\mathcal{N} = 0$	3
	vac 1	no / yes	~	yes	$\mathcal{N}=3$	3
	vac 2	no / yes	\checkmark	yes	$\mathcal{N} = 0$	3
	vac 3	no / yes	\checkmark	no	$\mathcal{N} = 0$	3
y	vac 4	no / yes	\checkmark	no	$\mathcal{N} = 1$	3
	vac 5	no / yes	\checkmark	no	$\mathcal{N} = 0$	3
	vac 6	no / yes	×	no	$\mathcal{N} = 0$	3
	vac 7	no / yes	×	no	$\mathcal{N}=0$	3
	vac 8	no / yes	\checkmark	no	$\mathcal{N} = 0$	3
	vac 9	yes / yes	1	yes	$\mathcal{N}=3$	6
	vac 10	yes / yes	~	no	$\mathcal{N} = 0$	6
	vac 11	yes / yes	~	no	$\mathcal{N} = 1$	6
y	vac 12	yes / yes	1	no	$\mathcal{N} = 0$	6
	vac 13	yes / yes	×	no	$\mathcal{N} = 0$	6
	vac 14	yes / yes	×	no	$\mathcal{N} = 0$	3
	vac 15	yes / yes	×	no	$\mathcal{N} = 0$	3
	vac 16	yes / yes	×	no	$\mathcal{N} = 0$	3

Х

no

Stable

Flat dir.

SUSY

 $\mathcal{N} = 0$

• Weak G₂-holonomy

• Weak G₂-holonomy

 \blacktriangleright N = 3 SUSY

▶ N = 1 SUSY

•	<i>N</i> =	= 3	SL	JSY

► N = 1 SUSY

ID	$\mathrm{D6}_{\parallel}~(\mathrm{O6}_{\parallel})~/~\mathrm{KK6}_{\parallel}~(\mathrm{KKO6}_{\parallel})$	Stable	Flat dir.	SUSY	$\dim(G_{\rm res})$	\widetilde{W}_{27}
vac 0	yes / no	\checkmark	yes	$\mathcal{N} = 0$	3	$\neq 0$
vac 1	no / yes	~	yes	$\mathcal{N}=3$	3	$\neq 0$
vac 2	no / yes	\checkmark	yes	$\mathcal{N}=0$	3	$\neq 0$
vac 3	no / yes	\checkmark	no	$\mathcal{N} = 0$	3	0
vac 4	no / yes	\checkmark	no	$\mathcal{N} = 1$	3	0
vac 5	no / yes	\checkmark	no	$\mathcal{N}=0$	3	0
vac 6	no / yes	×	no	$\mathcal{N} = 0$	3	$\neq 0$
vac 7	no / yes	×	no	$\mathcal{N} = 0$	3	$\neq 0$
vac 8	no / yes	\checkmark	no	$\mathcal{N} = 0$	3	$\neq 0$
vac 9	yes / yes	~	yes	$\mathcal{N}=3$	6	$\neq 0$
vac 10	yes / yes	\checkmark	no	$\mathcal{N} = 0$	6	$\neq 0$
vac 11	yes / yes	\checkmark	no	$\mathcal{N} = 1$	6	0
vac 12	yes / yes	\checkmark	no	$\mathcal{N} = 0$	6	0
vac 13	yes / yes	×	no	$\mathcal{N} = 0$	6	0
vac 14	yes / yes	×	no	$\mathcal{N} = 0$	3	$\neq 0$
vac 15	yes / yes	×	no	$\mathcal{N} = 0$	3	$\neq 0$
vac 16	yes / yes	×	no	$\mathcal{N} = 0$	3	$\neq 0$
vac 17	yes / yes	×	no	$\mathcal{N} = 0$	3	$\neq 0$

Taxonomy of M-theory flux vacua

ID	$\mathrm{D6}_{\parallel}~(\mathrm{O6}_{\parallel})~/~\mathrm{KK6}_{\parallel}~(\mathrm{KKO6}_{\parallel})$	Stable	Flat dir.	SUSY	$\dim(G_{\rm res})$	\widetilde{W}_{27}
vac 0	yes / no	\checkmark	yes	$\mathcal{N} = 0$	3	$\neq 0$
vac 1	no / yes	\checkmark	yes	$\mathcal{N}=3$	3	$\neq 0$
vac 2	no / yes	~	yes	$\mathcal{N} = 0$	3	$\neq 0$
vac 3	no / yes	~	no	$\mathcal{N} = 0$	3	0
vac 4	no / yes	~	no	$\mathcal{N} = 1$	3	0
vac 5	no / yes	~	no	$\mathcal{N} = 0$	3	0
vac 6	no / yes	×	no	$\mathcal{N} = 0$	3	$\neq 0$
vac 7	no / yes	×	no	$\mathcal{N} = 0$	3	$\neq 0$
vac 8	no / yes	\checkmark	no	$\mathcal{N} = 0$	3	$\neq 0$
vac 9	yes / yes	~	yes	$\mathcal{N}=3$	6	$\neq 0$
vac 10	yes / yes	\checkmark	no	$\mathcal{N} = 0$	6	$\neq 0$
vac 11	yes / yes	~	no	$\mathcal{N} = 1$	6	0
vac 12	yes / yes	~	no	$\mathcal{N} = 0$	6	0
vac 13	yes / yes	×	no	$\mathcal{N} = 0$	6	0
vac 14	yes / yes	×	no	$\mathcal{N} = 0$	3	$\neq 0$
vac 15	yes / yes	×	no	$\mathcal{N} = 0$	3	$\neq 0$
vac 16	yes / yes	×	no	$\mathcal{N} = 0$	3	$\neq 0$
vac 17	yes / yes	×	no	$\mathcal{N} = 0$	3	$\neq 0$

• $\dim(G_{res}) = 6$

Final remarks

• Moduli stabilisation can be achieved upon twisted reductions of *massless* M-theory if KK6 (KKO6) sources are included.

• Using the ET formalism (4*d*) as a guiding principle, the minimal setup corresponds to N = 4 backgrounds (16 supercharges) violating some of the SS conditions

 $\omega_{\bullet} \omega_{\bullet} \omega_{\bullet$

• New situation compared to IIA orientifolds (7d vs 6d isometries within SO(6,6))

• M-theory interpretation of *non-geometric* fluxes in a type IIA incarnation of the effective STU-models → KK6 (KKO6) corresponding to exotic IIA sources

In progress [with Uppsala group] :

- understand the 7*d*/6*d* interplay at the level of SU(3)-structures
- 11d/10d lifting of 1/2-BPS backgrounds corresponding to KK6/exotic IIA sources

Thanks !!

Extra material...

M-theory on G_2 -manifolds (X_7) with fluxes

• 7*d* manifolds with G₂-structure possess an invariant 3-form

$$\Phi_{(3)} = \eta^{127} + \eta^{347} + \eta^{567} + \eta^{135} - \eta^{146} - \eta^{362} - \eta^{524}$$

• Co-calibrated *G*₂-structure

[Friedrich '02] [Bryant '03]

 (η^1, η^2)

$$d\Phi_{(3)} = \widetilde{W}_1 \star_7 \Phi_{(3)} + 2 \widetilde{W}_{27}$$
$$d \star_7 \Phi_{(3)} = 0$$

• Enhancements to weak G_2 -holonomy ($\widetilde{W}_{27} = 0$) or G_2 -holonomy ($\widetilde{W}_{27} = \widetilde{W}_1 = 0$)

• N = 1 supergravity in terms of a complex 3-form (moduli fields in 4*d*):

$$W_{\text{M-theory}} = \frac{1}{4} \int_{X_7} G_{(7)} + \frac{1}{4} \int_{X_7} (A_{(3)} + i\Phi_{(3)}) \wedge \left[G_{(4)} + \frac{1}{2} d(A_{(3)} + i\Phi_{(3)}) \right]$$

[House & Micu '04] [Dall'Agata & Prezas '05]

M-theory fluxes / ET dictionary

M-theory origin	Type IIA origin	Fluxes	Embedding tensor
$\omega_{bc}{}^{a}$	$\omega_{bc}{}^a$	$\tilde{c}_1^{(I)}$	$f_{+ \ a}^{\ bc}$
$\omega_{aj}{}^k$	$\omega_{aj}{}^k$	$\hat{c}_1^{(I)}$	$f_+{}^{aj}{}_k$
$\omega_{ka}{}^{j}$	$\omega_{ka}{}^{j}$	$\check{c}_1^{(I)}$	$f_+{}^{ka}_{j}$
$\omega_{jk}{}^a$	$\omega_{jk}{}^a$	$b_1^{(I)}$	f_{-}^{ibc}
$-\omega_{ai}{}^7$	F_{ai}	$a_2^{(I)}$	$-f_+{}^{ajk}$
$-\omega_{7i}{}^a$	non-geometric	$d_0^{(I)}$	$f_{-}{}^{bc}{}_{i}$
$-\omega_{a7}{}^i$	non-geometric	$c_{3}^{\prime (I)}$	$f_{+jk}{}^a$
$-\frac{1}{2}G_{aibj}$	$-F_{aibj}$	$a_1^{(I)}$	$f_+{}^{abk}$
$\frac{1}{2}G_{ijk7}$	H_{ijk}	b_0	$-f_{-}^{abc}$
$\frac{1}{2} G_{ibc7}$	H_{ibc}	$c_0^{(I)}$	$f_{+}{}^{bc}{}_{i}$
$\frac{1}{4} G_{aibjck7}$	F_{aibjck}	a_0	$-f_+{}^{abc}$
non-geometric	$-F_{(0)}$ (Romans mass)	a_3	$f_+{}^{ijk}$

(Non-iso) example : Twisted torus $X_7 = T^7/(Z_2 \times Z_2 \times Z_2)$

• Factorisation :

 $\begin{bmatrix} 7 = 2 + 2 + 2 + 1 \end{bmatrix}$ $\begin{bmatrix} A = (i = 1,3,5, a = 2,4,6) + 7 \end{bmatrix}$

• Twist specified by a metric flux

$$d\eta^A + \frac{1}{2}\,\omega_{BC}{}^A\eta^B \wedge \eta^C = 0$$

• Background gauge fluxes

$$\frac{1}{2}G_{(4)} = -\sum_{I=1}^{3} a_{1}{}^{(I)}\tilde{\omega}^{I} + b_{0}\beta^{0} + \sum_{I=1}^{3} c_{0}{}^{(I)}\alpha_{I} \quad \text{and} \quad \frac{1}{4}G_{(7)} = a_{0}\eta^{1234567}$$

• Moduli fields

$$\frac{1}{2}(A_{(3)} + i\Phi_{(3)}) = \sum_{I=1}^{3} U_{I} \omega_{I} + S \alpha_{0} - \sum_{I=1}^{3} T_{I} \beta^{I}$$

× (- Orbifold action $\theta_1 : (\eta^1, \eta^2, \eta^3, \eta^4, \eta^5, \eta^6) \rightarrow (\eta^1, \eta^2, -\eta^3, -\eta^4, -\eta^5, -\eta^6)$ $\times \eta^4 \times \eta^6$ $\theta_2 : (\eta^1, \eta^2, \eta^3, \eta^4, \eta^5, \eta^6) \rightarrow (-\eta^1, -\eta^2, \eta^3, \eta^4, -\eta^5, -\eta^6)$ - Invariant forms 0-forms **→** points 1-forms — none 2-forms $\rightarrow \omega_1 = \eta^{12}$, $\omega_2 = \eta^{34}$, $\omega_3 = \eta^{56}$ 4-forms $\rightarrow \tilde{\omega}^1 = \eta^{3456}$, $\tilde{\omega}^2 = \eta^{1256}$, $\tilde{\omega}^3 = \eta^{1234}$ 5-forms \rightarrow none 6-forms internal volume

Geometry of the $Z_2 \times Z_2$ orbifold of T^6