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... one-minute summary



Twisted torus  X7  = T7/(Z2 x Z2 x Z2) 

• Twist specified by a metric flux
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• Background gauge fluxes 
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• G2-structure : 7 moduli fields  
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Twisted torus  X7  = T7/(Z2 x Z2 x Z2) 

• Cyclic plane-exchange-symmetry
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=

 and T1 = T2 = T3 ⌘ TU1 = U2 = U3 ⌘ U

• M-theory flux-induced superpotential as an STU-model

which corresponds to a Mscalar = [SU(1, 1)/U(1)]S ⇥ [SU(1, 1)/U(1)]T ⇥ [SU(1, 1)/U(1)]U

manifold described by the moduli fields of the so-called STU-model. This simplification is

also consistent with an isotropic flux Ansatz of the form

c̃
(I)
1 = c̃1 , ĉ

(I)
1 = č

(I)
1 = c1 , b

(I)
1 = b1 , a

(I)
2 = a2 , d

(I)
0 = d0 , c

0(I)
3 = c03 (2.40)

for the M-theory metric !-fluxes in Table 1 and similarly for the gauge fluxes

a
(I)
1 = a1 , c

(I)
0 = c0 . (2.41)

The above content of fields and fluxes has been shown to be part of the SO(3) invariant

sector of the maximal and half-maximal supergravities in four dimensions, the latter being

coupled to six vector multiplets [8, 24]. We will exploit this fact later on in the paper to

investigate the e↵ect of introducing M-theory monopoles in the compactification scheme.

In the isotropic limit, the expression (2.18) of the M-theory flux-induced superpotential

takes the form

W
(iso)
M-theory = a0 � b0 S + 3 c0 T � 3 a1 U + 3 a2 U2 + 3 (2 c1 � c̃1)U T + 3 b1 S U

� 3 c03 T
2 � 3 d0 S T ,

(2.42)

whereas the type IIA superpotential in (2.36) reduces to [4]

W
(iso)
IIA = a0 � b0 S + 3 c0 T � 3 a1 U + 3 a2 U2 + 3 (2 c1 � c̃1)U T + 3 b1 S U

� a3 U
3 .

(2.43)

These are the M-theory and type IIA superpotentials we will consider during the rest of the

paper. Notice that the relation (2.37) still holds in its isotropic version

W
(iso)
M-theory = W

(iso)(a3=0)
IIA +W (iso)

non-geom = W
(iso)(a3=0)
IIA � 3 c03 T

2 � 3 d0 S T , (2.44)

making the connection between M-theory and type IIA e↵ective STU-models manifest.

The simplifications (2.40) and (2.41) on the fluxes also translate into simpler torsion

classes fW1 and fW27 specifying the isotropic G2-structure. The expressions (2.22) and (2.23)

simplify to

W1 = 3 a2 + 3 b1 + 3 (2c1 � c̃1)� 3 d0 � 3 c03 ,

W27 = A
X

I

!̃I +B �0 + C
X

I

↵I ,
(2.45)

with the flux-dependent coe�cients in W27 given by

A = �a2 � 2 b1 � 2 (2c1 � c̃1) + 3 d0 + 3 c03 ,

B = 3 a2 + 3 (2c1 � c̃1)� 3 c03 ,

C = c03 + 2 d0 � 2 (2c1 � c̃1)� 3 a2 � 3 b1 .

(2.46)

Constraining the torsion classes, e.g. demanding fW27 = 0 to have weak G2-holonomy,

imposes linear relations on the background fluxes that simplify the resulting STU-models.
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‣ Couplings :     G(7) = cte       ,     G(4) = linear       and       metric = quadratic                 
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M-theory  vs  Type IIA  interpretation

M-theory origin Type IIA origin Flux/coupling Embedding tensor
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a !jk
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2
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1
2
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Table 6: M-theory/type IIA fluxes and embedding tensor.
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‣ Index splitting   A        ( a = 1,3,5 ) + ( i = 2,4,6 ) + 7!

• M-theory           Type IIA  orientifold upon reduction along ⌘7
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Question : 

What are the consequences of turning on the two genuine M-theory 
metric fluxes  (c3’, d0)  being non-geometric in type IIA ?

W
M-theory

= W
IIA

� 3 c0
3

T 2 � 3 d
0

S T

‣ Recall :                                 and                                             d0 = !i7
ac03 = !7a

i



Twisted tori as Scherk-Schwarz (SS) reductions

3 E↵ective action and gauged supergravitites

In this section we investigate the connection between the consistency conditions in Scherk-

Schwarz reductions of M-theory (top-down) and the consistency conditions in e↵ective N = 4

and N = 8 gauged supergravities (bottom-up). We will link such conditions to the ab-

sence/presence of KK6 monopoles in the M-theory background and characterise the resulting

scalar potential in the e↵ective supergravity action.

3.1 Scherk-Schwarz reductions and BI

The M-theory fluxes are restricted by a set of quadratic constraints coming from the consis-

tency of the reduction down to four dimensions [1,10,25,26]. In an ordinary Scherk-Schwarz

reduction of M-theory these are

![AB
F !C]F

D = 0 and ![AB
F GCDE]F = 0 (3.1)

coming respectively from the nilpotency (d2 = 0) of the twisted derivative operator d = @ + !

as well as from the twisted Bianchi identity (BI) dG(4) = 0 along the internal space X7.

Moreover the symmetries of the X7 = T

7/(Z2 ⇥ Z2 ⇥ Z2) orbifold guarantees !AB
A = 0

(compact X7 with no boundary), thus implying a well-defined Lagrangian upon reduction [1].

The first quadratic constraint in (3.1) gives rise to a set of 6+ 6+3+1+3+6+3 = 28

conditions of the form10

i) ![ai
D !c]D

k = 0 ! �a
(I)
2 c

0(J)
3 + C(KK)

1 C(JI)
1 + C(JK)

1 C(KI)
1 = 0 (I 6= J 6= K)

ii) ![ai
D !k]D

c = 0 ! �d
(I)
0 a

(J)
2 + C(II)

1 b
(K)
1 + C(KI)

1 b
(I)
1 = 0 (I 6= J 6= K)

iii) ![ib
D !c]D

7 = 0 !
X

L

a
(L)
2 C(LI)

1 = 0

iv) ![ij
D !k]D

7 = 0 !
X

K

b
(K)
1 a

(K)
2 = 0

v) ![7a
D !b]D

k = 0 !
X

L

C(IL)
1 c

0(L)
3 = 0

vi) ![7a
D !j]D

c = 0 ! b
(I)
1 c

0(J)
3 + C(II)

1 d
(K)
0 + C(IK)

1 d
(I)
0 = 0 (I 6= J 6= K)

vii) ![7i
D !j]D

k = 0 ! b
(I)
1 c

0(I)
3 + C(IJ)

1 d
(K)
0 + C(IK)

1 d
(J)
0 = 0 (I 6= J 6= K)

(3.2)

whereas the second quadratic constraint in (3.1) is automatically satisfied due to the orbifold

symmetries. This can be straightforwardly verified using the M-theory fluxes in Table 1.

10In the expressions (3.2) the I 6= J 6= K assignments are understood in two di↵erent manners. For

conditions coming in a triplet (multiplicity 3) they are understood in a cyclic manner as before, namely

(I, J,K) = (1, 2, 3) , (2, 3, 1) , (3, 1, 2). For conditions coming in a sextuplet (multiplicity 6) they are under-

stood as permutations, namely (I, J,K) = (1, 2, 3) , (2, 1, 3) , (2, 3, 1) , (3, 2, 1) , (3, 1, 2) , (1, 3, 2).
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• An ordinary SS reduction of M-theory (32 supercharges) requires

• In terms of the flux parameters
The application of the isotropic limits (2.40) and (2.41) to the flux parameters reduces

the set of quadratic constraints in (3.2) to only 7 conditions. These are given by

i) ![ai
D !c]D

k = 0 ! �a2 c
0
3 + c1 (c1 � c̃1) = 0

ii) ![ai
D !k]D

c = 0 ! �d0 a2 + (c1 � c̃1) b1 = 0

iii) ![ib
D !c]D

7 = 0 ! a2 (2 c1 � c̃1) = 0

iv) ![ij
D !k]D

7 = 0 ! 3 b1 a2 = 0

v) ![7a
D !b]D

k = 0 ! (2 c1 � c̃1) c03 = 0

vi) ![7a
D !j]D

c = 0 ! b1c
0
3 + (c1 � c̃1) d0 = 0

vii) ![7i
D !j]D

k = 0 ! b1c
0
3 + 2 c1 d0 = 0 .

(3.3)

We will investigate the connection between the set of quadratic constraints in (3.3) and those

required if demanding N = 8 or N = 4 supersymmetry in the e↵ective action. We will

discuss it in the framework of the embedding tensor [3].

3.2 Extended supersymmetry and gaugings

The M-theory superpotential in (2.18) is an holomorphic function of the moduli fields and

therefore completely unrestricted from the point of view of N = 1 supergravity. However,

a higher-dimensional origin as an ordinary Scherk-Schwarz reduction of M-theory demands

the additional constraints in (3.2) to be satisfied. We will show now that these conditions

are in one-to-one correspondence with the quadratic constraints on the embedding tensor of

N = 8 supergravity.

Let us start with an intermediate theory between minimal N = 1 and maximal N = 8

supergravity: the half-maximal N = 4 supergravity theory coupled to six vector multiplets.

This theory has a global symmetry group G = SL(2) ⇥ SO(6, 6) reflecting the putative S

and T dualities of string theory upon toroidal reduction. From a purely supergravity point

of view, the flux parameters entering the M-theory superpotential (2.18) determine what

is called a gauging or deformation of the N = 4 free theory. After applying a gauging, a

non-abelian gauge symmetry G0 ⇢ G emerges in the e↵ective action. The gauge algebra is

specified by the commutation relations

[T↵M T�N ] = f↵MN
P T�P , (3.4)

where T↵M denotes the generators associated to the non-abelian vector fields – indices

↵ = +,� and M = 1, ..., 12 are respectively fundamental SL(2) and SO(6,6) indices – and

f↵MN
P (structure constants) is the so-called embedding tensor (ET).
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guaranteed by the Z2 x Z2 x Z2 symmetries !!

NO moduli stabilisation if 
all of them are imposed !! 

‣ Index splitting   A        ( a = 1,3,5 ) + ( i = 2,4,6 ) + 7!
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• Could some of the previous SS conditions be relaxed ?

‣ Index splitting   A        ( a = 1,3,5 ) + ( i = 2,4,6 ) + 7!

would-be companion sources carrying negative charge as KKO6-planes following a similar

terminology to that of ref. [6]. Schematically,

![••
D !•]D

 6= 0 ) Non-vanishing KK6 (KKO6) charge , (3.10)

where  refers to the S1 direction along which the KK6 is fibered and [• • •] specifies

the 3-form dual to the 7-cycle filled by the KK6 and the S1 fiber. The KK6 monopoles

will induce a positive contribution to the scalar potential whereas the one coming from the

KKO6-planes will be negative [6].

In the case of X7 = T

7/(Z2⇥Z2⇥Z2), there are 28 di↵erent KK6 monopoles compatible

with the orbifold symmetries. These KK6’s can be grouped as 6+ 6+ 3+ 1+3+6+3 = 28

and source the r.h.s of the set of conditions in (3.2). KK6 monopoles in M-theory sourcing

the 6 + 6 conditions i) and ii) give rise to KK5’s (fibered over ⌘i) and ]KK5’s (fibered

over ⌘a) monopoles in type IIA upon dimensional reduction. Those fibering ⌘7 source the

3 + 1 conditions iii) and iv) and give rise to D6?’s (threading 3-cycles ⌘ajk) and D6k’s

(threading the 3-cycle ⌘abc) upon reduction to type IIA along the ⌘7 direction. There are

also 3 + 6+ 3 KK6 monopoles sourcing the conditions v) , vi) and vii) which do not have

an interpretation as type IIA sources. We denote them KK6? ’s and ]KK6?’s (threading

3-cycles ⌘ajk and respectively fibered over ⌘i and ⌘a) as well as KK6k’s (threading the 3-

cycle ⌘abc and fibered over ⌘i). By looking at the conditions in (3.2), a non-vanishing net

charge of KK6?’s, ]KK6?’s and KK6k’s requires a non-trivial background for the fluxes

(c0(I)3 , dI0). These are the M-theory fluxes without a type IIA counterpart in Table 2, thus

corresponding to non-geometric type IIA flux backgrounds. For the set of conditions in (3.2),

the corresponding types of KK6 monopoles are summarised in Table 4.

Our last concern is that of supersymmetry breaking in the presence of KK6 monopoles.

From the general discussion of quadratic constraints in N = 4, 8 supergravity of the previous

section, the e↵ective theory preserves N = 8 supersymmetry only if no KK6 net charge is

induced by the M-theory flux backgrounds. In this case the full set of conditions in (3.6)

and (3.8) are satisfied implying an ordinary Scherk-Schwarz reduction of M-theory with no

violation of the constraints (3.1). If the M-theory background fluxes induce a non-vanishing

charge for KK6 (KKO6) monopoles corresponding to D6k (O6k), KK6k (KKO6k) or both,

then N = 4 supersymmetry is still preserved but one goes beyond Scherk-Schwarz reductions

of M-theory due to the violation of (3.1). We will exhaustively explore these two types of

e↵ective theories in the next section.
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• The inclusion of KK6 sources will break some of the 32 supercharges

Type x0 x1 x2 x3 ⌘a ⌘i ⌘b ⌘j ⌘c ⌘k ⌘7 KK6 ! type IIA N = 4 ?

i) ⇥ ⇥ ⇥ ⇥ ⇥ ⇥  ⇥ KK5 (KKO5) no

ii) ⇥ ⇥ ⇥ ⇥ ⇥ ⇥  ⇥ ]KK5 (^KKO5) no

iii) ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥  D6? (O6?) no

iv) ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥  D6k (O6k) yes

v) ⇥ ⇥ ⇥ ⇥ ⇥  ⇥ ⇥ KK6? (KKO6?) no

vi) ⇥ ⇥ ⇥ ⇥ ⇥  ⇥ ⇥ ]KK6? (^KKO6?) no

vii) ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥  KK6k (KKO6k) yes

Table 4: Set of KK6 (KKO6) monopoles compatible with the X7 = T

7/(Z2 ⇥ Z2 ⇥ Z2)

orbifold. They respectively source the r.h.s of the set of conditions in (3.2). Only D6k

(O6k) and KK6k (KKO6k) sources can be consistently introduced in a background preserving

N = 4 supersymmetry in four dimensions.

3.4 Universal IIA moduli, KK6 monopoles and scalar potential

A way of understanding the e↵ect of including M-theory sources in the background is to

analyse the moduli powers appearing in the scalar potential. In order to make contact with

previous results in the literature [29–33] we will reinterpret the M-theory potential from a

type IIA point of view. To this end, let us introduce the three universal IIA moduli fields

(⌧, ⇢, �) entering the 10d metric

ds210 = ⌧�2 ds24 + ⇢ ( ��3 Mab dy
adyb + �3 Mij dy

idyj ) , (3.11)

which are related to the STU fields as

⌧ = Im(S)1/4 Im(T )3/4 , ⇢ = Im(U) , � = Im(S)�1/6 Im(T )1/6 . (3.12)

We follow the conventions in appendix B of ref. [34] regarding dimensional reduction of 10d

type IIA supergravity.

Setting the axions to zero, namely Re(S) = Re(T ) = Re(U) = 0, the computation of the

scalar potential from the M-theory superpotential (2.42) reveals the following ⌧ -dependence

structure

VM-theory(⌧, ⇢, �) =
1

32

4X

n=0

Vn(⌧, ⇢, �) =
1

32

4X

n=0

An(⇢, �) ⌧
�n . (3.13)
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Beyond twisted tori by including sources

[	
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 ]



‣ Index splitting   A        ( a = 1,3,5 ) + ( i = 2,4,6 ) + 7!

would-be companion sources carrying negative charge as KKO6-planes following a similar

terminology to that of ref. [6]. Schematically,

![••
D !•]D

 6= 0 ) Non-vanishing KK6 (KKO6) charge , (3.10)

where  refers to the S1 direction along which the KK6 is fibered and [• • •] specifies

the 3-form dual to the 7-cycle filled by the KK6 and the S1 fiber. The KK6 monopoles

will induce a positive contribution to the scalar potential whereas the one coming from the

KKO6-planes will be negative [6].

In the case of X7 = T

7/(Z2⇥Z2⇥Z2), there are 28 di↵erent KK6 monopoles compatible

with the orbifold symmetries. These KK6’s can be grouped as 6+ 6+ 3+ 1+3+6+3 = 28

and source the r.h.s of the set of conditions in (3.2). KK6 monopoles in M-theory sourcing

the 6 + 6 conditions i) and ii) give rise to KK5’s (fibered over ⌘i) and ]KK5’s (fibered

over ⌘a) monopoles in type IIA upon dimensional reduction. Those fibering ⌘7 source the

3 + 1 conditions iii) and iv) and give rise to D6?’s (threading 3-cycles ⌘ajk) and D6k’s

(threading the 3-cycle ⌘abc) upon reduction to type IIA along the ⌘7 direction. There are

also 3 + 6+ 3 KK6 monopoles sourcing the conditions v) , vi) and vii) which do not have

an interpretation as type IIA sources. We denote them KK6? ’s and ]KK6?’s (threading

3-cycles ⌘ajk and respectively fibered over ⌘i and ⌘a) as well as KK6k’s (threading the 3-

cycle ⌘abc and fibered over ⌘i). By looking at the conditions in (3.2), a non-vanishing net

charge of KK6?’s, ]KK6?’s and KK6k’s requires a non-trivial background for the fluxes

(c0(I)3 , dI0). These are the M-theory fluxes without a type IIA counterpart in Table 2, thus

corresponding to non-geometric type IIA flux backgrounds. For the set of conditions in (3.2),

the corresponding types of KK6 monopoles are summarised in Table 4.

Our last concern is that of supersymmetry breaking in the presence of KK6 monopoles.

From the general discussion of quadratic constraints in N = 4, 8 supergravity of the previous

section, the e↵ective theory preserves N = 8 supersymmetry only if no KK6 net charge is

induced by the M-theory flux backgrounds. In this case the full set of conditions in (3.6)

and (3.8) are satisfied implying an ordinary Scherk-Schwarz reduction of M-theory with no

violation of the constraints (3.1). If the M-theory background fluxes induce a non-vanishing

charge for KK6 (KKO6) monopoles corresponding to D6k (O6k), KK6k (KKO6k) or both,

then N = 4 supersymmetry is still preserved but one goes beyond Scherk-Schwarz reductions

of M-theory due to the violation of (3.1). We will exhaustively explore these two types of

e↵ective theories in the next section.
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• The inclusion of KK6 sources will break some of the 32 supercharges

Type x0 x1 x2 x3 ⌘a ⌘i ⌘b ⌘j ⌘c ⌘k ⌘7 KK6 ! type IIA N = 4 ?

i) ⇥ ⇥ ⇥ ⇥ ⇥ ⇥  ⇥ KK5 (KKO5) no

ii) ⇥ ⇥ ⇥ ⇥ ⇥ ⇥  ⇥ ]KK5 (^KKO5) no

iii) ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥  D6? (O6?) no

iv) ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥  D6k (O6k) yes

v) ⇥ ⇥ ⇥ ⇥ ⇥  ⇥ ⇥ KK6? (KKO6?) no

vi) ⇥ ⇥ ⇥ ⇥ ⇥  ⇥ ⇥ ]KK6? (^KKO6?) no

vii) ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥  KK6k (KKO6k) yes

Table 4: Set of KK6 (KKO6) monopoles compatible with the X7 = T

7/(Z2 ⇥ Z2 ⇥ Z2)

orbifold. They respectively source the r.h.s of the set of conditions in (3.2). Only D6k

(O6k) and KK6k (KKO6k) sources can be consistently introduced in a background preserving

N = 4 supersymmetry in four dimensions.

3.4 Universal IIA moduli, KK6 monopoles and scalar potential

A way of understanding the e↵ect of including M-theory sources in the background is to

analyse the moduli powers appearing in the scalar potential. In order to make contact with

previous results in the literature [29–33] we will reinterpret the M-theory potential from a

type IIA point of view. To this end, let us introduce the three universal IIA moduli fields

(⌧, ⇢, �) entering the 10d metric

ds210 = ⌧�2 ds24 + ⇢ ( ��3 Mab dy
adyb + �3 Mij dy

idyj ) , (3.11)

which are related to the STU fields as

⌧ = Im(S)1/4 Im(T )3/4 , ⇢ = Im(U) , � = Im(S)�1/6 Im(T )1/6 . (3.12)

We follow the conventions in appendix B of ref. [34] regarding dimensional reduction of 10d

type IIA supergravity.

Setting the axions to zero, namely Re(S) = Re(T ) = Re(U) = 0, the computation of the

scalar potential from the M-theory superpotential (2.42) reveals the following ⌧ -dependence

structure

VM-theory(⌧, ⇢, �) =
1

32

4X

n=0

Vn(⌧, ⇢, �) =
1

32

4X

n=0

An(⇢, �) ⌧
�n . (3.13)
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KK6          KK5 in IIA

Beyond twisted tori by including sources

[	
 Villadoro & Zwirner ’07	
 ]• Could some of the previous SS conditions be relaxed ?
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 Villadoro & Zwirner ’07	
 ]



‣ Index splitting   A        ( a = 1,3,5 ) + ( i = 2,4,6 ) + 7!

would-be companion sources carrying negative charge as KKO6-planes following a similar

terminology to that of ref. [6]. Schematically,

![••
D !•]D

 6= 0 ) Non-vanishing KK6 (KKO6) charge , (3.10)

where  refers to the S1 direction along which the KK6 is fibered and [• • •] specifies

the 3-form dual to the 7-cycle filled by the KK6 and the S1 fiber. The KK6 monopoles

will induce a positive contribution to the scalar potential whereas the one coming from the

KKO6-planes will be negative [6].

In the case of X7 = T

7/(Z2⇥Z2⇥Z2), there are 28 di↵erent KK6 monopoles compatible

with the orbifold symmetries. These KK6’s can be grouped as 6+ 6+ 3+ 1+3+6+3 = 28

and source the r.h.s of the set of conditions in (3.2). KK6 monopoles in M-theory sourcing

the 6 + 6 conditions i) and ii) give rise to KK5’s (fibered over ⌘i) and ]KK5’s (fibered

over ⌘a) monopoles in type IIA upon dimensional reduction. Those fibering ⌘7 source the

3 + 1 conditions iii) and iv) and give rise to D6?’s (threading 3-cycles ⌘ajk) and D6k’s

(threading the 3-cycle ⌘abc) upon reduction to type IIA along the ⌘7 direction. There are

also 3 + 6+ 3 KK6 monopoles sourcing the conditions v) , vi) and vii) which do not have

an interpretation as type IIA sources. We denote them KK6? ’s and ]KK6?’s (threading

3-cycles ⌘ajk and respectively fibered over ⌘i and ⌘a) as well as KK6k’s (threading the 3-

cycle ⌘abc and fibered over ⌘i). By looking at the conditions in (3.2), a non-vanishing net

charge of KK6?’s, ]KK6?’s and KK6k’s requires a non-trivial background for the fluxes

(c0(I)3 , dI0). These are the M-theory fluxes without a type IIA counterpart in Table 2, thus

corresponding to non-geometric type IIA flux backgrounds. For the set of conditions in (3.2),

the corresponding types of KK6 monopoles are summarised in Table 4.

Our last concern is that of supersymmetry breaking in the presence of KK6 monopoles.

From the general discussion of quadratic constraints in N = 4, 8 supergravity of the previous

section, the e↵ective theory preserves N = 8 supersymmetry only if no KK6 net charge is

induced by the M-theory flux backgrounds. In this case the full set of conditions in (3.6)

and (3.8) are satisfied implying an ordinary Scherk-Schwarz reduction of M-theory with no

violation of the constraints (3.1). If the M-theory background fluxes induce a non-vanishing

charge for KK6 (KKO6) monopoles corresponding to D6k (O6k), KK6k (KKO6k) or both,

then N = 4 supersymmetry is still preserved but one goes beyond Scherk-Schwarz reductions

of M-theory due to the violation of (3.1). We will exhaustively explore these two types of

e↵ective theories in the next section.
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• The inclusion of KK6 sources will break some of the 32 supercharges

Type x0 x1 x2 x3 ⌘a ⌘i ⌘b ⌘j ⌘c ⌘k ⌘7 KK6 ! type IIA N = 4 ?

i) ⇥ ⇥ ⇥ ⇥ ⇥ ⇥  ⇥ KK5 (KKO5) no

ii) ⇥ ⇥ ⇥ ⇥ ⇥ ⇥  ⇥ ]KK5 (^KKO5) no

iii) ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥  D6? (O6?) no

iv) ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥  D6k (O6k) yes

v) ⇥ ⇥ ⇥ ⇥ ⇥  ⇥ ⇥ KK6? (KKO6?) no

vi) ⇥ ⇥ ⇥ ⇥ ⇥  ⇥ ⇥ ]KK6? (^KKO6?) no

vii) ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥  KK6k (KKO6k) yes

Table 4: Set of KK6 (KKO6) monopoles compatible with the X7 = T

7/(Z2 ⇥ Z2 ⇥ Z2)

orbifold. They respectively source the r.h.s of the set of conditions in (3.2). Only D6k

(O6k) and KK6k (KKO6k) sources can be consistently introduced in a background preserving

N = 4 supersymmetry in four dimensions.

3.4 Universal IIA moduli, KK6 monopoles and scalar potential

A way of understanding the e↵ect of including M-theory sources in the background is to

analyse the moduli powers appearing in the scalar potential. In order to make contact with

previous results in the literature [29–33] we will reinterpret the M-theory potential from a

type IIA point of view. To this end, let us introduce the three universal IIA moduli fields

(⌧, ⇢, �) entering the 10d metric

ds210 = ⌧�2 ds24 + ⇢ ( ��3 Mab dy
adyb + �3 Mij dy

idyj ) , (3.11)

which are related to the STU fields as

⌧ = Im(S)1/4 Im(T )3/4 , ⇢ = Im(U) , � = Im(S)�1/6 Im(T )1/6 . (3.12)

We follow the conventions in appendix B of ref. [34] regarding dimensional reduction of 10d

type IIA supergravity.

Setting the axions to zero, namely Re(S) = Re(T ) = Re(U) = 0, the computation of the

scalar potential from the M-theory superpotential (2.42) reveals the following ⌧ -dependence

structure

VM-theory(⌧, ⇢, �) =
1

32

4X

n=0

Vn(⌧, ⇢, �) =
1

32

4X

n=0

An(⇢, �) ⌧
�n . (3.13)
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KK6          D6 in IIA
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Beyond twisted tori by including sources

‣ Index splitting   A        ( a = 1,3,5 ) + ( i = 2,4,6 ) + 7!

would-be companion sources carrying negative charge as KKO6-planes following a similar

terminology to that of ref. [6]. Schematically,

![••
D !•]D

 6= 0 ) Non-vanishing KK6 (KKO6) charge , (3.10)

where  refers to the S1 direction along which the KK6 is fibered and [• • •] specifies

the 3-form dual to the 7-cycle filled by the KK6 and the S1 fiber. The KK6 monopoles

will induce a positive contribution to the scalar potential whereas the one coming from the

KKO6-planes will be negative [6].

In the case of X7 = T

7/(Z2⇥Z2⇥Z2), there are 28 di↵erent KK6 monopoles compatible

with the orbifold symmetries. These KK6’s can be grouped as 6+ 6+ 3+ 1+3+6+3 = 28

and source the r.h.s of the set of conditions in (3.2). KK6 monopoles in M-theory sourcing

the 6 + 6 conditions i) and ii) give rise to KK5’s (fibered over ⌘i) and ]KK5’s (fibered

over ⌘a) monopoles in type IIA upon dimensional reduction. Those fibering ⌘7 source the

3 + 1 conditions iii) and iv) and give rise to D6?’s (threading 3-cycles ⌘ajk) and D6k’s

(threading the 3-cycle ⌘abc) upon reduction to type IIA along the ⌘7 direction. There are

also 3 + 6+ 3 KK6 monopoles sourcing the conditions v) , vi) and vii) which do not have

an interpretation as type IIA sources. We denote them KK6? ’s and ]KK6?’s (threading

3-cycles ⌘ajk and respectively fibered over ⌘i and ⌘a) as well as KK6k’s (threading the 3-

cycle ⌘abc and fibered over ⌘i). By looking at the conditions in (3.2), a non-vanishing net

charge of KK6?’s, ]KK6?’s and KK6k’s requires a non-trivial background for the fluxes

(c0(I)3 , dI0). These are the M-theory fluxes without a type IIA counterpart in Table 2, thus

corresponding to non-geometric type IIA flux backgrounds. For the set of conditions in (3.2),

the corresponding types of KK6 monopoles are summarised in Table 4.

Our last concern is that of supersymmetry breaking in the presence of KK6 monopoles.

From the general discussion of quadratic constraints in N = 4, 8 supergravity of the previous

section, the e↵ective theory preserves N = 8 supersymmetry only if no KK6 net charge is

induced by the M-theory flux backgrounds. In this case the full set of conditions in (3.6)

and (3.8) are satisfied implying an ordinary Scherk-Schwarz reduction of M-theory with no

violation of the constraints (3.1). If the M-theory background fluxes induce a non-vanishing

charge for KK6 (KKO6) monopoles corresponding to D6k (O6k), KK6k (KKO6k) or both,

then N = 4 supersymmetry is still preserved but one goes beyond Scherk-Schwarz reductions

of M-theory due to the violation of (3.1). We will exhaustively explore these two types of

e↵ective theories in the next section.
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• The inclusion of KK6 sources will break some of the 32 supercharges

Type x0 x1 x2 x3 ⌘a ⌘i ⌘b ⌘j ⌘c ⌘k ⌘7 KK6 ! type IIA N = 4 ?

i) ⇥ ⇥ ⇥ ⇥ ⇥ ⇥  ⇥ KK5 (KKO5) no

ii) ⇥ ⇥ ⇥ ⇥ ⇥ ⇥  ⇥ ]KK5 (^KKO5) no

iii) ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥  D6? (O6?) no

iv) ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥  D6k (O6k) yes

v) ⇥ ⇥ ⇥ ⇥ ⇥  ⇥ ⇥ KK6? (KKO6?) no

vi) ⇥ ⇥ ⇥ ⇥ ⇥  ⇥ ⇥ ]KK6? (^KKO6?) no

vii) ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥  KK6k (KKO6k) yes

Table 4: Set of KK6 (KKO6) monopoles compatible with the X7 = T

7/(Z2 ⇥ Z2 ⇥ Z2)

orbifold. They respectively source the r.h.s of the set of conditions in (3.2). Only D6k

(O6k) and KK6k (KKO6k) sources can be consistently introduced in a background preserving

N = 4 supersymmetry in four dimensions.

3.4 Universal IIA moduli, KK6 monopoles and scalar potential

A way of understanding the e↵ect of including M-theory sources in the background is to

analyse the moduli powers appearing in the scalar potential. In order to make contact with

previous results in the literature [29–33] we will reinterpret the M-theory potential from a

type IIA point of view. To this end, let us introduce the three universal IIA moduli fields

(⌧, ⇢, �) entering the 10d metric

ds210 = ⌧�2 ds24 + ⇢ ( ��3 Mab dy
adyb + �3 Mij dy

idyj ) , (3.11)

which are related to the STU fields as

⌧ = Im(S)1/4 Im(T )3/4 , ⇢ = Im(U) , � = Im(S)�1/6 Im(T )1/6 . (3.12)

We follow the conventions in appendix B of ref. [34] regarding dimensional reduction of 10d

type IIA supergravity.

Setting the axions to zero, namely Re(S) = Re(T ) = Re(U) = 0, the computation of the

scalar potential from the M-theory superpotential (2.42) reveals the following ⌧ -dependence

structure

VM-theory(⌧, ⇢, �) =
1

32

4X

n=0

Vn(⌧, ⇢, �) =
1

32

4X

n=0

An(⇢, �) ⌧
�n . (3.13)
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An EFT to describe M-theory/strings backgrounds

• The embedding tensor formalism (ET) provides an EFT to describe 4d effective 
actions irrespective of their higher-dimensional origin 

• Fluxes in M-theory/strings  =  Parameters in the EFT

f↵MNP 2 SL(2)⇥ SO(6, 6)

• Backgrounds preserving  16 (N = 4)  or  32 (N = 8)  supercharges

where ✏↵� = ✏↵� with ✏+� = �✏�+ = 1 is used to raise and lower the SL(2) index ↵. In order

to make contact with the Scherk-Schwarz conditions in (3.1) for M-theory reductions, we have

to set the Romans mass to zero, i.e. a3 = 0, among the fluxes in Table 3 as it corresponds

to a non-geometric flux in M-theory. The explicit computation of the constraints in (3.6)

produces the following conditions

f↵R[MN f�PQ]
R = 0 ! Conditions i) , iii) and v) in (3.2) ,

✏↵� f↵MNR f�PQ
R = 0 ! Conditions ii) and vi) in (3.2) .

(3.7)

As a result, the quadratic constraints of N = 4 supergravity (3.6) fail to reproduce the two

additional conditions iv) and vii) in (3.2). Therefore, demanding N = 4 in the e↵ective

theory is less restrictive than demanding a higher-dimensional interpretation as an ordinary

Scherk-Schwarz reduction of M-theory.

In ref. [28] it was shown that the N = 4 constraints (3.6) must be supplemented with

two additional ones

✏↵� f↵[MNP f�QRS]

��
SD

= 0 and f↵MNP f�
MNP = 0 (3.8)

in order to have an N = 4 ! N = 8 supersymmetry enhancement in the e↵ective action.

The label SD in the first constraint in (3.8) restricts it to the self-dual part of the SO(6,6)

six-form ✏↵� f↵[MNP f�QRS]. Once more, an explicit computation of these two constraints

produces

✏↵� f↵[MNP f�QRS]

��
SD

= 0 ! Conditions iv) and vii) in (3.2) ,

f↵MNP f�
MNP = 0 ! No additional conditions ,

(3.9)

hence completing the set of conditions in (3.2). In other words, there is a one-to-one cor-

respondence between the N = 8 quadratic constraints and the conditions required by an

ordinary Scherk-Schwarz reduction of M-theory.

3.3 KK6 monopoles and N = 8 ! N = 4 breaking

In the previous section we have seen that requiring an N = 4 description of the e↵ective

supergravity allows for a relaxation of the conditions iv) and vii) in (3.2). However these

still have to be imposed in any ordinary Scherk-Schwarz reduction of M-theory establishing

the link to N = 8 supergravity.

On the other hand, a violation of some of the ! ! = 0 conditions in (3.1) has been

connected to the presence of KK6 monopoles in the compactification scheme, thus going

beyond twisted tori [6]. From the e↵ective field theory point of view, we will refer to the
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An EFT to describe M-theory/strings backgrounds

• The embedding tensor formalism (ET) provides an EFT to describe 4d effective 
actions irrespective of their higher-dimensional origin 

• Fluxes in M-theory/strings  =  Parameters in the EFT

f↵MNP 2 SL(2)⇥ SO(6, 6)

• Backgrounds preserving  16 (N = 4)  or  32 (N = 8)  supercharges

where ✏↵� = ✏↵� with ✏+� = �✏�+ = 1 is used to raise and lower the SL(2) index ↵. In order

to make contact with the Scherk-Schwarz conditions in (3.1) for M-theory reductions, we have

to set the Romans mass to zero, i.e. a3 = 0, among the fluxes in Table 3 as it corresponds

to a non-geometric flux in M-theory. The explicit computation of the constraints in (3.6)

produces the following conditions

f↵R[MN f�PQ]
R = 0 ! Conditions i) , iii) and v) in (3.2) ,

✏↵� f↵MNR f�PQ
R = 0 ! Conditions ii) and vi) in (3.2) .

(3.7)

As a result, the quadratic constraints of N = 4 supergravity (3.6) fail to reproduce the two

additional conditions iv) and vii) in (3.2). Therefore, demanding N = 4 in the e↵ective

theory is less restrictive than demanding a higher-dimensional interpretation as an ordinary

Scherk-Schwarz reduction of M-theory.

In ref. [28] it was shown that the N = 4 constraints (3.6) must be supplemented with

two additional ones

✏↵� f↵[MNP f�QRS]

��
SD

= 0 and f↵MNP f�
MNP = 0 (3.8)

in order to have an N = 4 ! N = 8 supersymmetry enhancement in the e↵ective action.

The label SD in the first constraint in (3.8) restricts it to the self-dual part of the SO(6,6)

six-form ✏↵� f↵[MNP f�QRS]. Once more, an explicit computation of these two constraints

produces

✏↵� f↵[MNP f�QRS]

��
SD

= 0 ! Conditions iv) and vii) in (3.2) ,

f↵MNP f�
MNP = 0 ! No additional conditions ,

(3.9)

hence completing the set of conditions in (3.2). In other words, there is a one-to-one cor-

respondence between the N = 8 quadratic constraints and the conditions required by an

ordinary Scherk-Schwarz reduction of M-theory.

3.3 KK6 monopoles and N = 8 ! N = 4 breaking

In the previous section we have seen that requiring an N = 4 description of the e↵ective

supergravity allows for a relaxation of the conditions iv) and vii) in (3.2). However these

still have to be imposed in any ordinary Scherk-Schwarz reduction of M-theory establishing

the link to N = 8 supergravity.

On the other hand, a violation of some of the ! ! = 0 conditions in (3.1) has been

connected to the presence of KK6 monopoles in the compactification scheme, thus going

beyond twisted tori [6]. From the e↵ective field theory point of view, we will refer to the

17

Example :  Twisted torus  X7  = T7/(Z2 x Z2 x Z2) 

• SO(3) plane-exchange-symmetry

( ⌘1 , ⌘2 ) ( ⌘3 , ⌘4 ) ( ⌘5 , ⌘6 )

Thursday, July 17, 14

Example :  Twisted torus  X7  = T7/(Z2 x Z2 x Z2) 

• SO(3) plane-exchange-symmetry

( ⌘1 , ⌘2 ) ( ⌘3 , ⌘4 ) ( ⌘5 , ⌘6 )

Thursday, July 17, 14

Example :  Twisted torus  X7  = T7/(Z2 x Z2 x Z2) 

• SO(3) plane-exchange-symmetry

( ⌘1 , ⌘2 ) ( ⌘3 , ⌘4 ) ( ⌘5 , ⌘6 )

Thursday, July 17, 14

Example :  Twisted torus  X7  = T7/(Z2 x Z2 x Z2) 

• SO(3) plane-exchange-symmetry

( ⌘1 , ⌘2 ) ( ⌘3 , ⌘4 ) ( ⌘5 , ⌘6 )

Thursday, July 17, 14

N = 4

[	
 Schön & Weidner ’06	
 ]

[	
 Schön & Weidner ’06	
 ]

[	
 Nicolai, Samtleben, de Wit, Trigiante, ...	
 ]

[	
 Derendinger & A.G ’14	
 ]



Backgrounds preserving 16 supercharges 

• SS conditions  iv)  and  vii)  can be relaxed if demanding only 16 supercharges 

• KK6 sources induce new terms in the scalar potential

c03 = d0 = 0) showed the necessity of a non-vanishing Romans mass (a3 6= 0) in order to

achieve full moduli stabilisation. The Romans flux parameter in type IIA does not descend

directly from M-theory (see Table 3), so the IIA solutions in ref. [24] will not appear in

an M-theory context. Finally the M-theory !-twist corresponds to G! = Solv6 o U(1) in

agreement with the analysis of twist groups performed in ref. [10].

4.3 Backgrounds with KK6 (KKO6)

We have rederived the result that there is no moduli stabilisation (without flat directions)

in the absence of KK6 (KKO6) monopoles [10]. Next step is then to remove the conditions

iv) ![ij
D !k]D

7 = 0 ! 3 b1 a2 = 0 ,

vii) ![7i
D !j]D

k = 0 ! b1c
0
3 + 2 c1 d0 = 0 ,

(4.8)

from the system (3.3) in order to preserve only N = 4 and investigate the physical impli-

cations. Running the primary decomposition algorithm for the relaxed algebraic system in

(4.3) one finds three prime factors they all of dimension one. We will discuss each of them

separately and show how full moduli stabilisation can take place in M-theory backgrounds

containing KK6 (KKO6) monopoles.

4.3.1 Including only KK6 (KKO6) ! D6k (O6k) sources

The first prime factor in the decomposition of (4.3) is compatible with a relaxation of the

condition

iv) ![ij
D !k]D

7 6= 0 ! 3 b1 a2 6= 0 , (4.9)

whereas the rest of conditions in (3.3) are still satisfied. This case is then interpreted as

an M-theory background which only includes those KK6 (KKO6) monopoles that can be

interpreted as D6k (O6k) type IIA sources upon reduction.

By explicitly solving this prime factor we find a one dimensional family of M-theory flux

backgrounds of the form

a0 = b0 = a1 = c0 = c1 = c̃1 = c03 = d0 = 0 and b1 = a2 = � . (4.10)

After substitution into (2.42), the M-theory superpotential reads

W
(iso)
M-Theory = 3�U (S + U) , (4.11)

corresponding to a no-scale STU-model analogous to that in (4.7) upon exchanging T $ U .

The associated vacuum – we will refer to it as “vac 0” from now on – is a non-supersymmetric

Minkowski vacuum with non-vanishing fW1 and fW27 torsion classes in (2.19).
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Using the mass formula in ref. [36], the scalar mass spectrum is given by

m2 =
9

8
�2 (⇥1) ,

1

2
�2 (⇥6) ,

1

8
�2 (⇥9) , 0 (⇥22) , (4.12)

so it does not contain tachyons but presents thirteen flat directions, i.e., zero-mass modes

not associated to Goldstone bosons. The spectrum of vector masses reads

m2 =
1

2
�2 (⇥3) ,

1

8
�2 (⇥6) , 0 (⇥3) , (4.13)

and contains three massless vectors reflecting the residual Gres = SO(3) cyclic symmetry of

the isotropic STU-model.

In a type IIA interpretation of this M-theory flux vacuum, we have introduced D6k/O6k

sources in the background wrapping the 3-cycle ⌘abc in order to cancel a flux-induced tadpole

for the R-R gauge potential C(7). The BI for F(2) along the internal space X6 reads

dF(2) = !F(2) = NO6k �ND6k = 3 b1 a2 = 3�2 > 0 , (4.14)

thus demanding O6k orientifold planes lifting to KKO6-planes in M-theory (see ref. [6] and

references therein for a discussion of the lifting).

4.3.2 Including only KK6 (KKO6) ! KK6k (KKO6k) sources

The second prime factor in the decomposition of the algebraic system (4.3) is compatible

with relaxing

vii) ![7i
D !j]D

k 6= 0 ! b1c
0
3 + 2 c1 d0 6= 0 , (4.15)

but still requires the rest of the conditions in (3.3) to vanish. Therefore, the resulting

M-theory backgrounds only include KK6k (KKO6k) monopoles. Backgrounds including a net

charge of these objects do not admit a description in terms of ordinary type IIA orientifolds.

Instead, they correspond to non-geometric type IIA backgrounds.

Solving this prime factor explicitly reveals a rich structure of M-theory flux vacua they

all compatible with

a2 = c03 = 0 and c1 = c̃1 = � , (4.16)

so that the U2 and T 2 terms in the superpotential (2.42) are absent. Up to some discrete

multiplicities there are eight inequivalent vacua we have denoted “vac 1” to “vac 8”. The

physical implications of these M-theory backgrounds are very diverse and we have carried

out a detailed analysis in Appendix A. A brief summary of the main results is presented

also in Table 5. In all the solutions the net charge of KK6k (KKO6k) sources is

NKK6k �NKKO6k = b1 c
0
3 + 2 c1 d0 < 0 , (4.17)

25

‣ KK6       D6 in IIA  (iv)   &   KK6       Exotic in IIA  (vii)  can be included! !

‣ Situation 1 :   Only KK6       D6 in IIA                             No moduli stabilisation!

‣ Situation 2 :   Only KK6       exotic in IIA                        Full moduli stabilisation!

‣ Situation 3 :   Both types of KK6 sources                        Full moduli stabilisation

• KKO6 sources crucial to stabilise moduli in backgrounds with 16 supercharges
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‣ Unique gauging  :  G = SO(3)nNil9



Taxonomy of M-theory flux vacua

ID D6k (O6k) / KK6k (KKO6k) Stable Flat dir. SUSY dim(Gres) fW27

vac 0 yes / no X yes N = 0 3 6= 0

vac 1 no / yes X yes N = 3 3 6= 0

vac 2 no / yes X yes N = 0 3 6= 0

vac 3 no / yes X no N = 0 3 0

vac 4 no / yes X no N = 1 3 0

vac 5 no / yes X no N = 0 3 0

vac 6 no / yes ⇥ no N = 0 3 6= 0

vac 7 no / yes ⇥ no N = 0 3 6= 0

vac 8 no / yes X no N = 0 3 6= 0

vac 9 yes / yes X yes N = 3 6 6= 0

vac 10 yes / yes X no N = 0 6 6= 0

vac 11 yes / yes X no N = 1 6 0

vac 12 yes / yes X no N = 0 6 0

vac 13 yes / yes ⇥ no N = 0 6 0

vac 14 yes / yes ⇥ no N = 0 3 6= 0

vac 15 yes / yes ⇥ no N = 0 3 6= 0

vac 16 yes / yes ⇥ no N = 0 3 6= 0

vac 17 yes / yes ⇥ no N = 0 3 6= 0

Table 6: Data associated to the M-theory landscape compatible with KK6 (KKO6) sources

preserving N = 4 supersymmetry in four dimensions. All the M-theory backgrounds happen

to require a non-vanishing torsion class fW1 6= 0.
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Final remarks

• Moduli stabilisation can be achieved upon twisted reductions of massless M-theory 
if KK6 (KKO6) sources are included.

• Using the ET formalism (4d) as a guiding principle, the minimal setup corresponds 
to N = 4 backgrounds (16 supercharges) violating some of the SS conditions                        

• M-theory interpretation of non-geometric fluxes in a type IIA incarnation of the 
effective STU-models           KK6 (KKO6) corresponding to exotic IIA sources

‣ New situation compared to IIA orientifolds  ( 7d vs 6d  isometries within SO(6,6) ) 

In progress  [with Uppsala group]  :

‣  understand the 7d/6d interplay at the level of SU(3)-structures

‣  11d/10d lifting of 1/2-BPS backgrounds corresponding to KK6/exotic IIA sources    

would-be companion sources carrying negative charge as KKO6-planes following a similar

terminology to that of ref. [6]. Schematically,

![••
D !•]D

 6= 0 ) Non-vanishing KK6 (KKO6) charge , (3.10)

where  refers to the S1 direction along which the KK6 is fibered and [• • •] specifies

the 3-form dual to the 7-cycle filled by the KK6 and the S1 fiber. The KK6 monopoles

will induce a positive contribution to the scalar potential whereas the one coming from the

KKO6-planes will be negative [6].

In the case of X7 = T

7/(Z2⇥Z2⇥Z2), there are 28 di↵erent KK6 monopoles compatible

with the orbifold symmetries. These KK6’s can be grouped as 6+ 6+ 3+ 1+3+6+3 = 28

and source the r.h.s of the set of conditions in (3.2). KK6 monopoles in M-theory sourcing

the 6 + 6 conditions i) and ii) give rise to KK5’s (fibered over ⌘i) and ]KK5’s (fibered

over ⌘a) monopoles in type IIA upon dimensional reduction. Those fibering ⌘7 source the

3 + 1 conditions iii) and iv) and give rise to D6?’s (threading 3-cycles ⌘ajk) and D6k’s

(threading the 3-cycle ⌘abc) upon reduction to type IIA along the ⌘7 direction. There are

also 3 + 6+ 3 KK6 monopoles sourcing the conditions v) , vi) and vii) which do not have

an interpretation as type IIA sources. We denote them KK6? ’s and ]KK6?’s (threading

3-cycles ⌘ajk and respectively fibered over ⌘i and ⌘a) as well as KK6k’s (threading the 3-

cycle ⌘abc and fibered over ⌘i). By looking at the conditions in (3.2), a non-vanishing net

charge of KK6?’s, ]KK6?’s and KK6k’s requires a non-trivial background for the fluxes

(c0(I)3 , dI0). These are the M-theory fluxes without a type IIA counterpart in Table 2, thus

corresponding to non-geometric type IIA flux backgrounds. For the set of conditions in (3.2),

the corresponding types of KK6 monopoles are summarised in Table 4.

Our last concern is that of supersymmetry breaking in the presence of KK6 monopoles.

From the general discussion of quadratic constraints in N = 4, 8 supergravity of the previous

section, the e↵ective theory preserves N = 8 supersymmetry only if no KK6 net charge is

induced by the M-theory flux backgrounds. In this case the full set of conditions in (3.6)

and (3.8) are satisfied implying an ordinary Scherk-Schwarz reduction of M-theory with no

violation of the constraints (3.1). If the M-theory background fluxes induce a non-vanishing

charge for KK6 (KKO6) monopoles corresponding to D6k (O6k), KK6k (KKO6k) or both,

then N = 4 supersymmetry is still preserved but one goes beyond Scherk-Schwarz reductions

of M-theory due to the violation of (3.1). We will exhaustively explore these two types of

e↵ective theories in the next section.
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Extra material...



M-theory on G2-manifolds (X7) with fluxes

�(3) = ⌘127 + ⌘347 + ⌘567 + ⌘135 � ⌘146 � ⌘362 � ⌘524 .

• 7d manifolds with G2-structure possess an invariant 3-form

where S , TI and UI have the type IIA interpretation of dilaton, complex structure and

Kähler moduli, respectively6. Moreover we also find

1
2
d(A(3) + i�(3)) =

X

I

PI !̃
I + �0

X

K

⇣
d
(K)
0 TK � b

(K)
1 UK

⌘
+
X

I

QI ↵I , (2.15)

where we have defined the quantities7

PI = a
(J)
2 UK + a

(K)
2 UJ + b

(I)
1 S +

X

L

C(IL)
1 TL (I 6= J 6= K) ,

QI = �c
0(J)
3 TK � c

0(K)
3 TJ � d

(I)
0 S +

X

L

UL C(LI)
1 (I 6= J 6= K) ,

(2.16)

and where C1 is the flux matrix introduced in ref. [19]

C(IJ)
1 =

0

B@
�c̃

(1)
1 č

(3)
1 ĉ

(2)
1

ĉ
(3)
1 �c̃

(2)
1 č

(1)
1

č
(2)
1 ĉ

(1)
1 �c̃

(3)
1

1

CA . (2.17)

By plugging (2.12)-(2.15) into the flux-induced superpotential (2.6) and using the orthogo-

nality conditions (2.11), one finds the M-theory superpotential

WM-theory = a0 � b0 S +
3X

K=1

c
(K)
0 TK �

3X

K=1

a
(K)
1 UK

+
3X

K=1

a
(K)
2

U1U2U3

UK
+

3X

I,J=1

UI C (IJ)
1 TJ + S

3X

K=1

b
(K)
1 UK

�
3X

K=1

c
0 (K)
3

T1T2T3

TK
� S

3X

K=1

d
(K)
0 TK .

(2.18)

With this we conclude the re-derivation of the e↵ective supergravities coming from twisted

reductions of M-theory on an X7 = T

7/(Z2 ⇥ Z2 ⇥ Z2) orbifold with fluxes and set up the

scenario we will analyse later.

2.2 G2-structure of the M-theory reduction

The geometry of the twisted X7 = T

7/(Z2⇥Z2⇥Z2) orbifold we are considering determines

the set of G2-structure relations

d�(3) = fW1 ?7 �(3) + 2fW27 ,

d ?7 �(3) = 0 ,
(2.19)

6Notice the somehow unconventional names for the type IIA moduli fields. We have made this choice

in order to exactly reproduce the generalised superpotential of ref. [8] derived in the context of type IIB

compactifications and further connected to the embedding tensor framework for N = 4 supergravity.
7In the expressions (2.16) the I 6= J 6= K assignments have to be understood in a cyclic manner, namely

(I, J,K) = (1, 2, 3) , (2, 3, 1) , (3, 1, 2). For instance one has P1 = a(2)2 U3 + a(3)2 U2 + b(1)1 S +
P

L C(1L)
1 TL and

similarly for the rest.

8

• Co-calibrated G2-structure 

• N = 1 supergravity in terms of a complex 3-form  (moduli fields in 4d) :  

W
M-theory

=
1

4

Z

X7

G
(7)

+
1

4

Z

X7

(A
(3)

+ i�
(3)

) ^

G

(4)

+
1

2
d(A

(3)

+ i�
(3)

)

�

‣ Enhancements to weak G2-holonomy  (               )  or G2-holonomy  (                          ) fW27 = 0 fW27 = fW1 = 0

[	
 Friedrich ’02 ]
[	
 Bryant ’03 ]

[	
 House & Micu ’04	
 ]
[	
 Dall’Agata & Prezas ’05	
 ]

Example :  Twisted torus  X7  = T7/(Z2 x Z2 x Z2) 

• SO(3) plane-exchange-symmetry

( ⌘1 , ⌘2 ) ( ⌘3 , ⌘4 ) ( ⌘5 , ⌘6 )
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M-theory fluxes / ET dictionary

M-theory origin Type IIA origin Fluxes Embedding tensor

!bc
a !bc

a c̃
(I)
1 f bc

+ a

!aj
k !aj

k ĉ
(I)
1 f aj

+ k

!ka
j !ka

j č
(I)
1 f ka

+ j

!jk
a !jk

a b
(I)
1 f�

ibc

�!ai
7 Fai a

(I)
2 �f+

ajk

�!7i
a non-geometric d

(I)
0 f bc

� i

�!a7
i non-geometric c

0 (I)
3 f+jk

a

�1
2
Gaibj �Faibj a

(I)
1 f+

abk

1
2
Gijk7 Hijk b0 �f�

abc

1
2
Gibc7 Hibc c

(I)
0 f bc

+ i

1
4
Gaibjck7 Faibjck a0 �f+

abc

non-geometric �F(0) (Romans mass) a3 f+
ijk

Table 3: M-theory/type IIA fluxes and embedding tensor.

The M-theory fluxes in (2.18) can be mapped to di↵erent components of the embedding

tensor. To be more precise, this connection was established [7, 8] in a type IIA (and also

IIB) incarnation of the four-dimensional STU-model defined by (2.18). Using light-cone

coordinates for the SO(6,6) fundamental index M amounts to choosing

⌘ =

 
0 I6

I6 0

!
(3.5)

as the invariant metric to raise and lower SO(6,6) indices. If we further split the index

M as M = (a , i ,
a , i) , then the fluxes/ET dictionary is presented in Table 3. Notice the

presence of electric (↵ = +) as well as magnetic (↵ = �) components within the embedding

tensor f↵MNP = f↵MN
Q ⌘QP . Both are simultaneously required in order to avoid a runaway

behaviour for the dilaton modulus [27].

The consistency of a gauging in N = 4 supergravity [3] imposes a set of quadratic

constraints on the embedding tensor f↵MNP . These are given by

f↵R[MN f�PQ]
R = 0 and ✏↵� f↵MNR f�PQ

R = 0 (3.6)
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(Non-iso) example :  Twisted torus  X7  = T7/(Z2 x Z2 x Z2) 

• Twist specified by a metric flux 

d⌘A +
1

2
!BC

A⌘B ^ ⌘C = 0

• Background gauge fluxes 

1

2
G(4) = �

3X

I=1

a1
(I) !̃I + b0 �

0 +
3X

I=1

c0
(I) ↵I

1

4
G(7) = a0 ⌘

1234567and

• Moduli fields
1

2
(A(3) + i�(3)) =

3X

I=1

UI !I + S ↵0 �
3X

I=1

TI �
I

• Factorisation : x
[ 7  =            2  +  2 +  2              + 1 ]

[A  =  ( i = 1,3,5   ,    a = 2,4,6 )  + 7 ] ( ⌘1 , ⌘2 ) ( ⌘3 , ⌘4 ) ( ⌘5 , ⌘6 ) ⌘7



Geometry of the Z2 x Z2 orbifold of T6

- Orbifold action

- Invariant forms

1-forms          none

2-forms        

3-forms        

4-forms        

5-forms          none

6-forms          internal volume

0-forms          points


