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Logarithmic Corrections

• The leading corrections to the area law for black hole entropy are
logarithmic

δS =
1

2
D0 logA .

• These corrections can be computed from the low energy theory:
only massless fields contribute.

• In some situations the corrections give non-trivial support for a
known microscopic description.

• In other situations they offer clues to the nature of the unknown
microscopic theory.
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Updates in v. 2.0
In principle: computations are straightforward applications of
techniques from the 70’s.

In recent years, Sen (and collaborators) did what we do, and more.

In practice: computations are cumbersome and intransparent.

Updates in v 2.0 focus on short-cuts that add clarity:

• Interactions with background gravity and graviphoton: employ
AdS/CFT, specifically organize fluctuations as chiral primaries.

• Contributions from on-shell states only (no ghosts).

• Remnant of unphysical states: simple boundary states .

• Careful with 4D zero-modes (done incorrectly until recent years).

Reference: C. Keeler, FL, P. Lisbao, arXiv: 1404.1379
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Setting

• Consider matter in a general theory withN ≥ 2 SUSY.

• In terms ofN = 2 fields: one SUGRA multiplet,N − 2 (massive)
gravitini, nV vector multiplets, nH hyper multiplets.

• Setting: focus on extremal black holes where it is sufficient to
consider the AdS2 × S2 near horizon region.

• The final result:

δS =
1

12
[23− 11(N − 2)− nV + nH ] logAH .

• Example (relevant for microscopics): no correction inN = 4
theory with an arbitrary number ofN = 4 matter multiplets.

4



Prelude: Chiral Primaries
• Massless fields in AdS2 × S2 organize themselves in short

representations of the SU(2|1, 1) supergroup.

• CFT language: consider chiral multiplets where (h, j) are

(k, k), 2(k +
1

2
, k − 1

2
), (k + 1, k − 1) .

Possible values of k = 1
2, 1,

3
2, . . .. (k = 1

2 extra short).

• In the early days of AdS/CFT three groups independently solved
linearized equations of motion and computed spectra.

• They all found the same spectrum for theN = 2 SUGRA
multiplet.

• We used an indirect argument and found a different result.

• We are right .
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Spherical Harmonics
• Expansion on S2 of single field component with helicity λ: angular

momenta j = |λ|, |λ| + 1, . . ..

• Example: for a gauge field all components organize themselves
into two towers with j = 1, 2, . . . and two towers with j = 0, 1, . . .

• The physical components of the vector field components
organize themselves into two towers with j = 1, 2, . . ..

• So: the set of physical angular momenta in eachN = 2 is
unambiguous.

• Example: theN = 2 vector multiplet has one vector field and two
real scalars so the physical boson towers are: two with
j = 1, 2, . . . and two with j = 0, 1, . . ..

• Mixing is allowed (for same j) but assembly of towers into chiral
multiplets uniquely determine conformal weights.
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The Spectrum of Chiral Primaries

• Result: the spectrum of (h, j) for all chiral primaries:

Supergravity : 2[(k + 2, k + 2) , 2(k + 5
2, k + 3

2) , (k + 3, k + 1)]
Gravitino : 2[(k + 3

2, k + 3
2) , 2(k + 2, k + 1) , (k + 5

2, k + 1
2)]

Vector : 2[(k + 1, k + 1) , 2(k + 3
2, k + 1

2) , (k + 2, k)]
Hyper : 2[(k + 1

2, k + 1
2) , 2(k + 1, k) , (k + 3

2, k −
1
2)]

Each tower has k = 0, 1, . . ..

• Discrepancy: previous work had one more entry in the SUGRA
multiplet

(1, 1) , 2(
3

2
,
1

2
), (2, 0) .

• Clarification: this field exists only as a boundary mode.
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Example: Constraints for Gravity
• The graviton in D dimensions has D(D + 1)/2 components, D

gauge symmetries (from diffeomorphisms), D constraints (eom’s
left after gauge fixing).

• So: a graviton has D(D − 3)/2 physical components.

• In 2D a graviton has −1 degrees of freedom so a graviton and a
scalar combined has no degrees of freedom.

• Details: after gauge fixing some “equations of motion” are in fact
constraints (there are no time derivatives).

• Exception: the constraint is solved by one specific spatial profile
(the zero-mode on AdS2) so one boundary degree of freedom can
be freely specified.

• These boundary modes are physical (standard in AdS/CFT).
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Quantum Fluctuations: Strategy
• All contributions from quadratic fluctuations around the classical

geometry take the form

e−W =

∫
Dφ e−φΛφ =

1√
detΛ

.

• The quantum corrections are encoded in the heat kernel

D(s) = Tr e−sΛ =
∑
i

e−sλi .

• The effective action becomes

W = −1

2

∫ ∞
ε2

ds

s
D(s) = −1

2

∫ ∞
ε2

ds

s

∫
dDxK(s) .

• The constant D0 (or K0) we need is (essentially) the 2nd
Seeley-deWitt coefficient or equivalently the trace anomaly of the
EM-tensor.
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Simple Heat Kernels in 2D
• The heat kernel for a scalar field on S2 is elementary:

Ks
S(s) =

1

4πa2

∞∑
k=0

e−sk(k+1)(2k+1) =
1

4πa2s

(
1 +

1

3
s +

1

15
s2 + . . .

)
.

• A massless scalar field on AdS2 involves a continuous spectrum:

Ks
A(s) =

1

2πa2

∫ ∞
0

e−(p2+1
4)sp tanhπp dp .

• The local terms in the AdS2 heat kernel is identical to S2 except
for the sign of the curvature:

Ks
A(s) =

1

4πa2s

(
1− 1

3
s +

1

15
s2 + . . .

)
.

• The heat kernel for a fermion on S2 is also elementary:

Kf
S(s) =

1

4πa2

∞∑
k=0

e−s(k+1)2(2k+2) =
1

4πa2s

(
1− 1

6
s− 1

60
s2 + . . .

)
.
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Simple Heat Kernels on AdS2 × S2

• For a product space heat kernels multiply so for a scalar on
AdS2 × S2:

Ks
4(s) = Ks

S(s)Ks
A(s) =

1

16π2a4s2

(
1 +

1

45
s2 + . . .

)
.

• For a Dirac fermion on AdS2 × S2:

Kf
4 (s) = 4Kf

S(s)Kf
A(s) = − 1

4π2a4s2

(
1− 11

180
s2 + . . .

)
.

• A benchmark for results inN = 2 theory: a “free hyper”

Kmin
4 (s) = 4Ks

4(s) + Kf
4 (s) =

1

4π2a4s2
· 1

12
s2 .

• The leading 1/s2 singularity cancels: no cosmological constant
for equal number of fermion and bosons.

• The 1/s order also cancels: this is an accident.
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The AdS2 Perspective
• The canonical heat kernel on AdS2 of for a massless field.

• A field with conformal weight h (mass m2 = h(h− 1)) and SU(2)
quantum number j (degeneracy 2j + 1):

KA(h, j; s) = KA(h = 1, j = 0; s) e−h(h−1)s(2j + 1) .

• A free 4D boson is a tower of 2D bosons with (h, j) = (k + 1, k)
with k = 0, 1, . . . so

Ks
4(s) = Ks

A(s) · 1

4πa2

∞∑
k=0

e−sk(k+1)(2k + 1)

=
1

16π2a4s2

(
1 +

1

45
s2 + . . .

)
.

• The sum over the tower of AdS2 fields computes the factor from
the heat kernel on S2.

12



The Vector-Multiplet: Bulk
• The conformal weights for fields in supergravity are “shifted” from

the free values.

• The fermions in the vector multiplet are canonical but bosons
interact: this is the attractor mechanism.

• The “shifted” sum on S2 for all four physical bosons:

KV,b
4 (s) =

2Ks
A(s)

4πa2

∞∑
k=0

(
e−sk(k+1)(2k + 3) + e−s(k+1)(k+2)(2k + 1)

)
=

1

4π2a4s2

(
1 +

1

45
s2 + . . . +

1

2
s(1− 1

3
s) + . . .

)
.

• Heat kernel for the full vector multiplet including fermions:

KV
4 (s) =

1

4π2a4

(
1

2s
− 1

12
+ . . .

)
.

• A 1/s term was generated by interactions.

• The constant term changed sign due to interactions.
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The Hyper-Multiplet
• The bosons in the hyper multiplet are canonical – just four free

fields.

• The fermions interact with the graviphoton so the conformal
weights differ from a free field.

• The S2 tower of fermions is shifted relative to a free fermion.

• Heat kernel for the complete hyper-multiplet:

KH
4 (s) =

1

4π2a4

(
−1

s
− 1

12
+ . . .

)
.

• A 1/s term was generated by interactions.

• The constant term changed sign due to interactions.
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The Vector-Multiplet: Boundary
• The vector multiplet has a feature not yet discussed: gauge

invariance.

• Two auxiliary towers cancel: unphysical states (violate gauge
condition) and physical (but pure gauge).

• The boundary state: one of the would-be gauge functions is not
normalizable so one state survives.

• Alternatively: one equation of motion is a constraint so one
spatial profile survives.

• The boundary state is a massless boson on S2:

−∇IδAI = −∇2Λ = 0

• Final result for the heat kernel:

KV
4 (s) =

1

4π2a4

(
1

2s
− 1

12

)
+

1

4π2a4

(
1

2s
+

1

6

)
=

1

4π2a4

(
1

s
+

1

12

)
.
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The (Massive) Gravitino Multiplet
• Bulk modes: bosons and fermions all have conformal weight

shifted from the free value.

• Boundary modes: two vectors each have a gauge symmetry and
so a boundary scalar.

• The SUSY variation is a fermionic gauge symmetry of the
gravitino that gives a boundary fermion

γI∇Iε = 0 .

• The boundary heat kernel is constant because of boson-fermion
degeneracy

K
(3/2)
bndy =

1

4π2a4
· 1

2
.

• The full heat kernel:

K(3/2) =
1

4π2a4
·
(

(−1

s
+

5

12
) +

1

2

)
=

1

4π2a4
·
(
−1

s
+

11

12

)
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The Graviton Multiplet

• Five bosonic boundary modes: four from diffeomorphisms and
one from gauge symmetry.

• Boundary modes for diffeomorphisms acquire a mass

(gIJ∇2 + RIJ)ξJ = 0 .

• The S2 vectors have helicity λ = ±1 so angular momenta
j = 1, 2, . . .

• The mass of modes due to S2 diffeomorphisms

m2 = k(k + 1)− 2 ; k = 1, 2, . . .

• The mass of modes due to AdS2 diffeomorphisms

m2 = k(k + 1) + 2 ,m2 = k(k + 1) ; k = 0, 1, 2, . . .
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• Four fermionic boundary modes (two preserved SUSYs) with
contribution to mass from background graviphoton

m2 = (k + 1)2 − 1 , k = 0, 1, . . .

• The heat kernel for all boundary modes in the graviton multiplet

Kgrav
bndy =

1

4π2a4
· 5
2

(
1

s
+

1

3
)− 1

4π2a4

(
2

s
+

5

3

)
=

1

4π2a4

(
1

2s
− 5

6

)
• Bulk modes: bosons and fermions all have conformal weight

shifted from the free value.

• Full heat kernel

Kgrav =
1

4π2a4

(
(

1

2s
− 1

12
) + (

1

2s
− 5

6
)

)
=

1

4π2a4

(
1

s
− 11

12

)
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The Quadratic Divergence
• Heat kernel for all multiplets, including physical states in bulk and

on boundary

Kphys =
1

4π2a4

[
(
1

s
− 11

12
) + (N − 2) · (−1

s
+

11

12
) + nV (

1

s
+

1

12
) + nH(−1

s
− 1

12
)

]
.

• Contributions to the quadratic divergence (the 1/s term):
interactions in bulk and counting boundary degrees of freedom.

• Net result: alternating sign.

• Special caseN ≥ 4 theory (with any matter): quadratic
divergence cancels (a consistency check).

• ForN = 3: all divergences cancel for any nV = nH .

• ForN = 2: a new result .
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4D Zero Modes: General
• 4D zero modes: AdS2 boundary states and also massless on
S2.

• Physical origin: the global part of each unbroken gauge
symmetry.

• Zero-modes play a special role in the 4D heat kernel:

D(s) =
∑
i

e−sλi =
∑
λi 6=0

e−sλi + N0

• The path integral reduces to an ordinary integral

e−W =

∫
Dφ0 = Vol[φ0] ∼ ε−N0∆ .

• The correct zero-mode contribution: larger than the naı̈ve result
by a factor of the scaling dimension ∆.
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4D Zero Modes: Computation

• Vector fields: no new issue since ∆ = 1 for a vector field.

• Bosonic 0-modes in SUGRA multiplet: 6 diff’s on S2 (two with
j = 1) and scaling dimension ∆2 = 2. (Heat kernel counts as if
∆2 = 1).

• Fermionic 0-modes in SUGRA multiplet: 8 preserved SUSYs
∆3/2 = 3

2. (Heat kernel counts as if ∆3/2 = 1
2).

• Correction due to 0-modes

Kzm =
1

8π2a4
·
[

6 · (2− 1)− 8 · (3

2
− 1

2
)

]
=

1

4π2a4
(−1) .

• Note: much of the literature accounts incorrectly for 0-modes.
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Example: Reissner-Nordström

Consider a purely bosonic solution: gravity+Maxwell.

Contributions are the bosonic terms from theN = 2 SUGRA
multiplet:

• Four free bulk bosons (2 gravity + 2 gauge field):
δS = − 1

45 logAH .

• Interactions (bulk bosons not quite free): δS = −3
2 logAH .

• 5 Boundary modes (4 gravity+1 gauge field): δS = −5
6 logAH .

• Zero-modes: δS = −3 logAH .

Total: δS = −241
45 logAH .

(Fermions in SUGRA multiplet add δS = 1309
180 logAH)
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Summary

We re-computed quadratic fluctuation determinants around an
AdS2 × S2 near horizon geometry.

Some features of our strategy:

• Setting: a general theory withN ≥ 2 SUSY.

• Focus on states that are on-shell.

• Interactions due to background: encoded in chiral primaries.

• Compute also the renormalization of the gravitational coupling
constant (quadratic divergence, 1/s term in the heat kernel).

• Contributions from bulk (4D), Boundary (2D), and Zero-mode
(0D).

23


	Title slide
	Logarithmic Corrections
	Updates in v. 2.0
	Setting
	Prelude: Chiral Primaries
	Spherical Harmonics
	The Spectrum of Chiral Primaries
	Example: Constraints for Gravity
	Quantum Fluctuations: Strategy
	Simple Heat Kernels in 2D
	Simple Heat Kernels on AdS2S2
	The AdS2 Perspective
	The Vector-Multiplet: Bulk
	The Hyper-Multiplet
	The Vector-Multiplet: Boundary
	The (Massive) Gravitino Multiplet
	The Graviton Multiplet
	The Quadratic Divergence
	4D Zero Modes: General
	4D Zero Modes: Computation
	Example: Reissner-Nordström
	Summary

