Logarithmic Corrections to Black Hole Entropy v. 2.0

Finn Larsen

Michigan Center for Theoretical Physics

Recent Developments in String Theory, Ascona, Switzerland, July 24, 2014.

Logarithmic Corrections

- The leading corrections to the area law for black hole entropy are logarithmic

$$
\delta S=\frac{1}{2} D_{0} \log A
$$

- These corrections can be computed from the low energy theory: only massless fields contribute.
- In some situations the corrections give non-trivial support for a known microscopic description.
- In other situations they offer clues to the nature of the unknown microscopic theory.

Updates in v. 2.0

In principle: computations are straightforward applications of techniques from the 70's.

In recent years, Sen (and collaborators) did what we do, and more.
In practice: computations are cumbersome and intransparent.
Updates in v 2.0 focus on short-cuts that add clarity:

- Interactions with background gravity and graviphoton: employ AdS/CFT, specifically organize fluctuations as chiral primaries.
- Contributions from on-shell states only (no ghosts).
- Remnant of unphysical states: simple boundary states .
- Careful with 4D zero-modes (done incorrectly until recent years).

Reference: C. Keeler, FL, P. Lisbao, arXiv: 1404.1379

Setting

- Consider matter in a general theory with $\mathcal{N} \geq 2$ SUSY.
- In terms of $\mathcal{N}=2$ fields: one SUGRA multiplet, $\mathcal{N}-2$ (massive) gravitini, n_{V} vector multiplets, n_{H} hyper multiplets.
- Setting: focus on extremal black holes where it is sufficient to consider the $\mathrm{AdS}_{2} \times S^{2}$ near horizon region.
- The final result:

$$
\delta S=\frac{1}{12}\left[23-11(\mathcal{N}-2)-n_{V}+n_{H}\right] \log A_{H}
$$

- Example (relevant for microscopics): no correction in $\mathcal{N}=4$ theory with an arbitrary number of $\mathcal{N}=4$ matter multiplets.

Prelude: Chiral Primaries

- Massless fields in $\mathrm{AdS}_{2} \times S^{2}$ organize themselves in short representations of the $S U(2 \mid 1,1)$ supergroup.
- CFT language: consider chiral multiplets where (h, j) are

$$
(k, k), 2\left(k+\frac{1}{2}, k-\frac{1}{2}\right),(k+1, k-1) .
$$

Possible values of $k=\frac{1}{2}, 1, \frac{3}{2}, \ldots$. $k=\frac{1}{2}$ extra short).

- In the early days of AdS/CFT three groups independently solved linearized equations of motion and computed spectra.
- They all found the same spectrum for the $\mathcal{N}=2$ SUGRA multiplet.
- We used an indirect argument and found a different result.
- We are right.

Spherical Harmonics

- Expansion on S^{2} of single field component with helicity λ : angular momenta $j=|\lambda|,|\lambda|+1, \ldots$.
- Example: for a gauge field all components organize themselves into two towers with $j=1,2, \ldots$ and two towers with $j=0,1, \ldots$
- The physical components of the vector field components organize themselves into two towers with $j=1,2, \ldots$.
- So: the set of physical angular momenta in each $\mathcal{N}=2$ is unambiguous.
- Example: the $\mathcal{N}=2$ vector multiplet has one vector field and two real scalars so the physical boson towers are: two with $j=1,2, \ldots$ and two with $j=0,1, \ldots$
- Mixing is allowed (for same j) but assembly of towers into chiral multiplets uniquely determine conformal weights.

The Spectrum of Chiral Primaries

- Result: the spectrum of (h, j) for all chiral primaries:

Supergravity: $2\left[(k+2, k+2), 2\left(k+\frac{5}{2}, k+\frac{3}{2}\right),(k+3, k+1)\right]$
Gravitino: $2\left[\left(k+\frac{3}{2}, k+\frac{3}{2}\right), 2(k+2, k+1),\left(k+\frac{5}{2}, k+\frac{1}{2}\right)\right]$
Vector: $2\left[(k+1, k+1), 2\left(k+\frac{3}{2}, k+\frac{1}{2}\right),(k+2, k)\right]$
Hyper: $\quad 2\left[\left(k+\frac{1}{2}, k+\frac{1}{2}\right), 2(k+1, k),\left(k+\frac{3}{2}, k-\frac{1}{2}\right)\right]$
Each tower has $k=0,1, \ldots$

- Discrepancy: previous work had one more entry in the SUGRA multiplet

$$
(1,1), 2\left(\frac{3}{2}, \frac{1}{2}\right),(2,0) .
$$

- Clarification: this field exists only as a boundary mode.

Example: Constraints for Gravity

- The graviton in D dimensions has $D(D+1) / 2$ components, D gauge symmetries (from diffeomorphisms), D constraints (eom's left after gauge fixing).
- So: a graviton has $D(D-3) / 2$ physical components.
- In 2D a graviton has -1 degrees of freedom so a graviton and a scalar combined has no degrees of freedom.
- Details: after gauge fixing some "equations of motion" are in fact constraints (there are no time derivatives).
- Exception: the constraint is solved by one specific spatial profile (the zero-mode on AdS_{2}) so one boundary degree of freedom can be freely specified.
- These boundary modes are physical (standard in AdS/CFT).

Quantum Fluctuations: Strategy

- All contributions from quadratic fluctuations around the classical geometry take the form

$$
e^{-W}=\int \mathcal{D} \phi e^{-\phi \Lambda \phi}=\frac{1}{\sqrt{\operatorname{det} \Lambda}}
$$

- The quantum corrections are encoded in the heat kernel

$$
D(s)=\operatorname{Tr} e^{-s \Lambda}=\sum_{i} e^{-s \lambda_{i}}
$$

- The effective action becomes

$$
W=-\frac{1}{2} \int_{\epsilon^{2}}^{\infty} \frac{d s}{s} D(s)=-\frac{1}{2} \int_{\epsilon^{2}}^{\infty} \frac{d s}{s} \int d^{D} x K(s) .
$$

- The constant D_{0} (or K_{0}) we need is (essentially) the 2 nd Seeley-deWitt coefficient or equivalently the trace anomaly of the EM-tensor.

Simple Heat Kernels in 2D

- The heat kernel for a scalar field on S^{2} is elementary:

$$
K_{S}^{s}(s)=\frac{1}{4 \pi a^{2}} \sum_{k=0}^{\infty} e^{-s k(k+1)}(2 k+1)=\frac{1}{4 \pi a^{2} s}\left(1+\frac{1}{3} s+\frac{1}{15} s^{2}+\ldots\right)
$$

- A massless scalar field on AdS_{2} involves a continuous spectrum:

$$
K_{A}^{s}(s)=\frac{1}{2 \pi a^{2}} \int_{0}^{\infty} e^{-\left(p^{2}+\frac{1}{4}\right) s} p \tanh \pi p d p
$$

- The local terms in the AdS_{2} heat kernel is identical to S^{2} except for the sign of the curvature:

$$
K_{A}^{s}(s)=\frac{1}{4 \pi a^{2} s}\left(1-\frac{1}{3} s+\frac{1}{15} s^{2}+\ldots\right) .
$$

- The heat kernel for a fermion on S^{2} is also elementary:

$$
K_{S}^{f}(s)=\frac{1}{4 \pi a^{2}} \sum_{k=0}^{\infty} e^{-s(k+1)^{2}}(2 k+2)=\frac{1}{4 \pi a^{2} s}\left(1-\frac{1}{6} s-\frac{1}{60} s^{2}+\ldots\right)
$$

Simple Heat Kernels on $\mathbf{A d S}_{2} \times S^{2}$

- For a product space heat kernels multiply so for a scalar on $\mathrm{AdS}_{2} \times S^{2}$:

$$
K_{4}^{s}(s)=K_{S}^{s}(s) K_{A}^{s}(s)=\frac{1}{16 \pi^{2} a^{4} s^{2}}\left(1+\frac{1}{45} s^{2}+\ldots\right)
$$

- For a Dirac fermion on $\mathrm{AdS}_{2} \times S^{2}$:

$$
K_{4}^{f}(s)=4 K_{S}^{f}(s) K_{A}^{f}(s)=-\frac{1}{4 \pi^{2} a^{4} s^{2}}\left(1-\frac{11}{180} s^{2}+\ldots\right)
$$

- A benchmark for results in $\mathcal{N}=2$ theory: a "free hyper"

$$
K_{4}^{\min }(s)=4 K_{4}^{s}(s)+K_{4}^{f}(s)=\frac{1}{4 \pi^{2} a^{4} s^{2}} \cdot \frac{1}{12} s^{2}
$$

- The leading $1 / s^{2}$ singularity cancels: no cosmological constant for equal number of fermion and bosons.
- The $1 / s$ order also cancels: this is an accident.

The AdS_{2} Perspective

- The canonical heat kernel on AdS_{2} of for a massless field.
- A field with conformal weight h (mass $m^{2}=h(h-1)$) and $S U(2)$ quantum number j (degeneracy $2 j+1$):

$$
K_{A}(h, j ; s)=K_{A}(h=1, j=0 ; s) e^{-h(h-1) s}(2 j+1) .
$$

- A free $4 D$ boson is a tower of $2 D$ bosons with $(h, j)=(k+1, k)$ with $k=0,1, \ldots$ so

$$
\begin{aligned}
K_{4}^{s}(s) & =K_{A}^{s}(s) \cdot \frac{1}{4 \pi a^{2}} \sum_{k=0}^{\infty} e^{-s k(k+1)}(2 k+1) \\
& =\frac{1}{16 \pi^{2} a^{4} s^{2}}\left(1+\frac{1}{45} s^{2}+\ldots\right) .
\end{aligned}
$$

- The sum over the tower of AdS_{2} fields computes the factor from the heat kernel on S^{2}.

The Vector-Multiplet: Bulk

- The conformal weights for fields in supergravity are "shifted" from the free values.
- The fermions in the vector multiplet are canonical but bosons interact: this is the attractor mechanism.
- The "shifted" sum on S^{2} for all four physical bosons:

$$
\begin{aligned}
K_{4}^{V, b}(s) & =\frac{2 K_{A}^{s}(s)}{4 \pi a^{2}} \sum_{k=0}^{\infty}\left(e^{-s k(k+1)}(2 k+3)+e^{-s(k+1)(k+2)}(2 k+1)\right) \\
& =\frac{1}{4 \pi^{2} a^{4} s^{2}}\left(1+\frac{1}{45} s^{2}+\ldots+\frac{1}{2} s\left(1-\frac{1}{3} s\right)+\ldots\right)
\end{aligned}
$$

- Heat kernel for the full vector multiplet including fermions:

$$
K_{4}^{V}(s)=\frac{1}{4 \pi^{2} a^{4}}\left(\frac{1}{2 s}-\frac{1}{12}+\ldots\right)
$$

- A $1 /$ s term was generated by interactions.
- The constant term changed sign due to interactions.

The Hyper-Multiplet

- The bosons in the hyper multiplet are canonical - just four free fields.
- The fermions interact with the graviphoton so the conformal weights differ from a free field.
- The S^{2} tower of fermions is shifted relative to a free fermion.
- Heat kernel for the complete hyper-multiplet:

$$
K_{4}^{H}(s)=\frac{1}{4 \pi^{2} a^{4}}\left(-\frac{1}{s}-\frac{1}{12}+\ldots\right)
$$

- A $1 /$ s term was generated by interactions.
- The constant term changed sign due to interactions.

The Vector-Multiplet: Boundary

- The vector multiplet has a feature not yet discussed: gauge invariance.
- Two auxiliary towers cancel: unphysical states (violate gauge condition) and physical (but pure gauge).
- The boundary state: one of the would-be gauge functions is not normalizable so one state survives.
- Alternatively: one equation of motion is a constraint so one spatial profile survives.
- The boundary state is a massless boson on S^{2} :

$$
-\nabla^{I} \delta \mathcal{A}_{I}=-\nabla^{2} \Lambda=0
$$

- Final result for the heat kernel:

$$
K_{4}^{V}(s)=\frac{1}{4 \pi^{2} a^{4}}\left(\frac{1}{2 s}-\frac{1}{12}\right)+\frac{1}{4 \pi^{2} a^{4}}\left(\frac{1}{2 s}+\frac{1}{6}\right)=\frac{1}{4 \pi^{2} a^{4}}\left(\frac{1}{s}+\frac{1}{12}\right)
$$

The (Massive) Gravitino Multiplet

- Bulk modes: bosons and fermions all have conformal weight shifted from the free value.
- Boundary modes: two vectors each have a gauge symmetry and so a boundary scalar.
- The SUSY variation is a fermionic gauge symmetry of the gravitino that gives a boundary fermion

$$
\gamma^{I} \nabla_{I} \epsilon=0
$$

- The boundary heat kernel is constant because of boson-fermion degeneracy

$$
K_{\text {bndy }}^{(3 / 2)}=\frac{1}{4 \pi^{2} a^{4}} \cdot \frac{1}{2} .
$$

- The full heat kernel:

$$
K^{(3 / 2)}=\frac{1}{4 \pi^{2} a^{4}} \cdot\left(\left(-\frac{1}{s}+\frac{5}{12}\right)+\frac{1}{2}\right)=\frac{1}{4 \pi^{2} a^{4}} \cdot\left(-\frac{1}{s}+\frac{11}{12}\right)
$$

The Graviton Multiplet

- Five bosonic boundary modes: four from diffeomorphisms and one from gauge symmetry.
- Boundary modes for diffeomorphisms acquire a mass

$$
\left(g_{I J} \nabla^{2}+R_{I J}\right) \xi^{J}=0
$$

- The S^{2} vectors have helicity $\lambda= \pm 1$ so angular momenta $j=1,2, \ldots$
- The mass of modes due to S^{2} diffeomorphisms

$$
m^{2}=k(k+1)-2 ; \quad k=1,2, \ldots
$$

- The mass of modes due to AdS_{2} diffeomorphisms

$$
m^{2}=k(k+1)+2, m^{2}=k(k+1) ; \quad k=0,1,2, \ldots
$$

- Four fermionic boundary modes (two preserved SUSYs) with contribution to mass from background graviphoton

$$
m^{2}=(k+1)^{2}-1, \quad k=0,1, \ldots
$$

- The heat kernel for all boundary modes in the graviton multiplet

$$
K_{\text {bndy }}^{\text {grav }}=\frac{1}{4 \pi^{2} a^{4}} \cdot \frac{5}{2}\left(\frac{1}{s}+\frac{1}{3}\right)-\frac{1}{4 \pi^{2} a^{4}}\left(\frac{2}{s}+\frac{5}{3}\right)=\frac{1}{4 \pi^{2} a^{4}}\left(\frac{1}{2 s}-\frac{5}{6}\right)
$$

- Bulk modes: bosons and fermions all have conformal weight shifted from the free value.
- Full heat kernel

$$
K^{\text {grav }}=\frac{1}{4 \pi^{2} a^{4}}\left(\left(\frac{1}{2 s}-\frac{1}{12}\right)+\left(\frac{1}{2 s}-\frac{5}{6}\right)\right)=\frac{1}{4 \pi^{2} a^{4}}\left(\frac{1}{s}-\frac{11}{12}\right)
$$

The Quadratic Divergence

- Heat kernel for all multiplets, including physical states in bulk and on boundary

$$
K_{\text {phys }}=\frac{1}{4 \pi^{2} a^{4}}\left[\left(\frac{1}{s}-\frac{11}{12}\right)+(\mathcal{N}-2) \cdot\left(-\frac{1}{s}+\frac{11}{12}\right)+n_{V}\left(\frac{1}{s}+\frac{1}{12}\right)+n_{H}\left(-\frac{1}{s}-\frac{1}{12}\right)\right]
$$

- Contributions to the quadratic divergence (the $1 /$ s term): interactions in bulk and counting boundary degrees of freedom.
- Net result: alternating sign.
- Special case $\mathcal{N} \geq 4$ theory (with any matter): quadratic divergence cancels (a consistency check).
- For $\mathcal{N}=3$: all divergences cancel for any $n_{V}=n_{H}$.
- For $\mathcal{N}=2$: a new result.

4D Zero Modes: General

- 4D zero modes: AdS_{2} boundary states and also massless on S^{2}.
- Physical origin: the global part of each unbroken gauge symmetry.
- Zero-modes play a special role in the 4D heat kernel:

$$
D(s)=\sum_{i} e^{-s \lambda_{i}}=\sum_{\lambda_{i} \neq 0} e^{-s \lambda_{i}}+N_{0}
$$

- The path integral reduces to an ordinary integral

$$
e^{-W}=\int \mathcal{D} \phi_{0}=\operatorname{Vol}\left[\phi_{0}\right] \sim \epsilon^{-N_{0} \Delta}
$$

- The correct zero-mode contribution: larger than the naïve result by a factor of the scaling dimension Δ.

4D Zero Modes: Computation

- Vector fields: no new issue since $\Delta=1$ for a vector field.
- Bosonic 0-modes in SUGRA multiplet: 6 diff's on S^{2} (two with $j=1$) and scaling dimension $\Delta_{2}=2$. (Heat kernel counts as if $\Delta_{2}=1$).
- Fermionic 0-modes in SUGRA multiplet: 8 preserved SUSYs $\Delta_{3 / 2}=\frac{3}{2}$. (Heat kernel counts as if $\Delta_{3 / 2}=\frac{1}{2}$).
- Correction due to 0-modes

$$
K_{z m}=\frac{1}{8 \pi^{2} a^{4}} \cdot\left[6 \cdot(2-1)-8 \cdot\left(\frac{3}{2}-\frac{1}{2}\right)\right]=\frac{1}{4 \pi^{2} a^{4}}(-1) .
$$

- Note: much of the literature accounts incorrectly for 0-modes.

Example: Reissner-Nordström

Consider a purely bosonic solution: gravity+Maxwell.
Contributions are the bosonic terms from the $\mathcal{N}=2$ SUGRA multiplet:

- Four free bulk bosons (2 gravity + 2 gauge field):

$$
\delta S=-\frac{1}{45} \log A_{H}
$$

- Interactions (bulk bosons not quite free): $\delta S=-\frac{3}{2} \log A_{H}$.
- 5 Boundary modes (4 gravity+1 gauge field): $\delta S=-\frac{5}{6} \log A_{H}$.
- Zero-modes: $\delta S=-3 \log A_{H}$.

Total: $\delta S=-\frac{241}{45} \log A_{H}$.
(Fermions in SUGRA multiplet add $\delta S=\frac{1309}{180} \log A_{H}$)

Summary

We re-computed quadratic fluctuation determinants around an $\mathrm{AdS}_{2} \times S^{2}$ near horizon geometry.

Some features of our strategy:

- Setting: a general theory with $\mathcal{N} \geq 2$ SUSY.
- Focus on states that are on-shell.
- Interactions due to background: encoded in chiral primaries.
- Compute also the renormalization of the gravitational coupling constant (quadratic divergence, $1 / \mathrm{s}$ term in the heat kernel).
- Contributions from bulk (4D), Boundary (2D), and Zero-mode (0D).

