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Logarithmic Corrections

e The leading corrections to the area law for black hole entropy are

logarithmic

1
05 = §D0 log A .

e These corrections can be computed from the low energy theory:
only massless fields contribute.

e In some situations the corrections give non-trivial support for a
known microscopic description.

e In other situations they offer clues to the nature of the unknown
microscopic theory.



Updates in v. 2.0

In principle: computations are straightforward applications of
techniques from the 70’s.

In recent years, Sen (and collaborators) did what we do, and more.
In practice: computations are cumbersome and intransparent.
Updates in v 2.0 focus on short-cuts that add clarity:

e Interactions with background gravity and graviphoton: employ
AdS/CFT, specifically organize fluctuations as chiral primaries.

e Contributions from on-shell states only (no ghosts).

e Remnant of unphysical states: simple boundary states .

e Careful with 4D zero-modes (done incorrectly until recent years).

Reference: C. Keeler, FL, P. Lisbao, arXiv: 1404.1379



Setting

e Consider matter in a general theory with A/ > 2 SUSY.

e In terms of N = 2 fields: one SUGRA multiplet, N' — 2 (massive)
gravitini, ny, vector multiplets, n g hyper multiplets.

e Setting: focus on extremal black holes where it is sufficient to
consider the AdS, x S? near horizon region.

e The final result:

1
0S = E[23— 1IN —=2) — ny +ngl|log Ay .

e Example (relevant for microscopics): no correction in N = 4
theory with an arbitrary number of A/ = 4 matter multiplets.



Prelude: Chiral Primaries

e Massless fields in AdS, X S? organize themselves in short
representations of the SU (2|1, 1) supergroup.

e CFT language: consider chiral multiplets where (h, 7) are

11
(k) 20k 4 5,k = 2), (k + Lk — 1)

L1,3,.... (k = % extra short).

Possible values of £ = 5, 1,5, ..

e In the early days of AdS/CFT three groups independently solved
linearized equations of motion and computed spectra.

e They all found the same spectrum for the A/ = 2 SUGRA
multiplet.

e We used an indirect argument and found a different result.

e We are right.



Spherical Harmonics

e Expansion on S? of single field component with helicity \: angular
momenta j = |A|, [A| +1,.. ..

e Example: for a gauge field all components organize themselves
into two towers with 7 = 1,2, ... and two towers with y =0, 1, . ..

e The physical components of the vector field components
organize themselves into two towers with 7 = 1,2, .. ..

e So: the set of physical angular momenta in each N = 2 is
unambiguous.

e Example: the A/ = 2 vector multiplet has one vector field and two
real scalars so the physical boson towers are: two with
7=12,...andtwowithy =0,1,....

e Mixing is allowed (for same ) but assembly of towers into chiral
multiplets uniquely determine conformal weights.



The Spectrum of Chiral Primaries

e Result: the spectrum of (h, 7) for all chiral primaries:

Supergravity : 2[(k+2,k+2),2(k+2,k+2),(k+3,k+1)]

Gravitino : 2[(k+2,k+32) ,2(k+2,k+1),(k+ 3,k + 1)
Vector :  2[(k+1,k+1),2(k+2,k+12),(k+2,k)
Hyper: 2[(k+%,k+12),2(k+1,k),(k+32k—3)]

Each towerhas k = 0,1, .. ..

e Discrepancy: previous work had one more entry in the SUGRA

multiplet -
1,1),2(=,=),(2,0) .
( Y >7 (272)7< Y )

e Clarification: this field exists only as a boundary mode.



Example: Constraints for Gravity

e The graviton in D dimensions has D(D + 1)/2 components, D
gauge symmetries (from diffeomorphisms), ) constraints (eom’s
left after gauge fixing).

e So: a graviton has D(D — 3)/2 physical components.

e In 2D a graviton has —1 degrees of freedom so a graviton and a
scalar combined has no degrees of freedom.

e Details: after gauge fixing some “equations of motion” are in fact
constraints (there are no time derivatives).

e Exception: the constraint is solved by one specific spatial profile
(the zero-mode on AdS,) so one boundary degree of freedom can
be freely specified.

e These boundary modes are physical (standard in AdS/CFT).



Quantum Fluctuations: Strategy

e All contributions from quadratic fluctuations around the classical
geometry take the form
1

-W _ —oAop __
e = [ Doe - —.
/ ¢ v detA

e The quantum corrections are encoded in the heat kernel

D(s) =Tre " = Z e N

e The effective action becomes

W:—%/ % (s _——/ ds/deK
62

e The constant Dy (or K) we need is (essentially) the 2nd
Seeley-deWitt coefficient or equivalently the trace anomaly of the
EM-tensor.



Simple Heat Kernels in 2D

e The heat kernel for a scalar field on S? is elementary:

] — 1 1 1
5(9) Ama? kz—o c (2k+1) Ama?s i 38 158
e A massless scalar field on AdSs involves a continuous spectrum:
1 0
Ki(s) = / e~ WSy tanh 7rp dp .
0

2ma?
e The local terms in the AdS, heat kernel is identical to S? except
for the sign of the curvature:

| 11
K |- 54— .
als) = oo ( RS TR )

e The heat kernel for a fermion on S? is also elementary:

1 11
K1(s s (2 42) = (1 — -5 — —s*+.. )

4wa2
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Simple Heat Kernels on AdS, x s

e For a product space heat kernels multiply so for a scalar on

Ad82 X 522
S S S 1 1
K4<S> = K5<S)KA<S> = 1672a452 1 —+ 4_58 + . .
e For a Dirac fermion on AdS, x S?:
1 11
i _ J / _
K4 <S> = 4KS<S>KA(S) = _47'('2&432 (1 — @S + . ) .

e A benchmark for results in N = 2 theory: a “free hyper”

1 1
K0 (o) = 4K3(s) + K s
() = 4G3(s) + K{(s) = 55
e The leading l/s2 singularity cancels: no cosmological constant
for equal number of fermion and bosons.

e The 1/s order also cancels: this is an accident.
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The AdS, Perspective

e The canonical heat kernel on AdSs of for a massless field.

e A field with conformal weight /1 (mass m* = h(h — 1)) and SU(2)
quantum number j (degeneracy 27 + 1):

Ku(h, j;s) = Ka(h=1,j=0;s) e ""=17(25 4+ 1) .

e Afree 4D boson is a tower of 2D bosons with (h, j) = (k+ 1, k)
with £k =0,1,...s0

Ki(s) = Kj(s) -

e The sum over the tower of AdSs fields computes the factor from
the heat kernel on S°.
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The Vector-Multiplet: Bulk

e The conformal weights for fields in supergravity are “shifted” from
the free values.

e The fermions in the vector multiplet are canonical but bosons
interact: this is the attractor mechanism.

e The “shifted” sum on S? for all four physical bosons:

2K5(8) —
KX,b(S) _ 47;-465;) Z (e—sk’(kﬁ—f—l)(Qk + 3) _|_ 6—8<k+1)(k‘+2)(2k + 1))
k=0
L (14 tey +1(11)+
= — s+ ... +=-s(l—=s8)+...] .
A2 s2 45 2 3

e Heat kernel for the full vector multiplet including fermions:

1 1 1
V _

e A 1/s term was generated by interactions.

e The constant term changed sign due to interactions.
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The Hyper-Multiplet

e The bosons in the hyper multiplet are canonical — just four free
fields.

e The fermions interact with the graviphoton so the conformal
weights differ from a free field.

e The S? tower of fermions is shifted relative to a free fermion.
e Heat kernel for the complete hyper-multiplet:
1 1 1
KH(s) = — — — 4+ ... ] .
i (s) 4mlat ( s 12 )

e A 1/s term was generated by interactions.

e The constant term changed sign due to interactions.

14



The Vector-Multiplet: Boundary
e The vector multiplet has a feature not yet discussed: gauge
invariance.

e Two auxiliary towers cancel: unphysical states (violate gauge
condition) and physical (but pure gauge).

e The boundary state: one of the would-be gauge functions is not
normalizable so one state survives.

e Alternatively: one equation of motion is a constraint so one
spatial profile survives.

e The boundary state is a massless boson on S*:
~V!§A; = -V*A =0

e Final result for the heat kernel:

KV (s) 1 1 1 N 1 1+1 1 1+
S p— _—— —_ p— J— _
4 A2 \2s  12) 4n2a* \ 25 6 4204 \ s 12
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The (Massive) Gravitino Multiplet

e Bulk modes: bosons and fermions all have conformal weight
shifted from the free value.

e Boundary modes: two vectors each have a gauge symmetry and
SO a boundary scalar.

e The SUSY variation is a fermionic gauge symmetry of the
gravitino that gives a boundary fermion

”}/IVIE = 0.

e The boundary heat kernel is constant because of boson-fermion
degeneracy

329 1 1
Rinay = Ar2gt 2

e The full heat kernel:
1 1 5 1 1 1 11
KGB/2) = N ) — R e
dm2a4 ( S + 12) + 2 4m2q? S + 12
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The Graviton Multiplet

e Five bosonic boundary modes: four from diffeomorphisms and
one from gauge symmetry.

e Boundary modes for diffeomorphisms acquire a mass

(g1 V> + R/ =0

e The S? vectors have helicity A = £1 so angular momenta
17=1,2,...

e The mass of modes due to S? diffeomorphisms

m*=k(k+1)—2: k=12,...

e The mass of modes due to AdS, diffeomorphisms
m*=k(k+1)+2,m*=k(k+1); k=01,2,...
17



e Four fermionic boundary modes (two preserved SUSYs) with
contribution to mass from background graviphoton

m*=(k+17*-1, k=01,...
e The heat kernel for all boundary modes in the graviton multiplet
1 5,1 1 1 2 b 1 1 5
Kgra\f:—.__ N = Y _ Y
budy — 4n2q4 2(5+3) 4m2a? (3 " 3) 4m2q? (23 6)

e Bulk modes: bosons and fermions all have conformal weight
shifted from the free value.

e Full heat kernel

1 1 1 I 5 1 I 11
sV . - = _ _
4m2at <(28 12> " <23 6>> 4m2at (3 12)
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The Quadratic Divergence

e Heat kernel for all multiplets, including physical states in bulk and
on boundary

11 I 1 I 1

12) + nv( + nH(—— — —)

Kphys = ; [(1 - E) + (N - 2) (_1 + 12) s 12

A2t |'s 12

e Contributions to the quadratic divergence (the 1/s term):
interactions in bulk and counting boundary degrees of freedom.

e Net result: alternating sign.

e Special case ' > 4 theory (with any matter): quadratic
divergence cancels (a consistency check).

e For N = 3: all divergences cancel for any ny = ny.

e For N = 2: a new result.
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4D Zero Modes: General

e 4D zero modes: AdSsy boundary states and also massless on
S2.

e Physical origin: the global part of each unbroken gauge
symmetry.

e Zero-modes play a special role in the 4D heat kernel:

D(s) = Z e "N = Z e 5N 4 Ny

1 Ai#0

e The path integral reduces to an ordinary integral
eV = / Doy = Vol[gpg] ~ e M0

e The correct zero-mode contribution: larger than the naive result
by a factor of the scaling dimension A.
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4D Zero Modes: Computation

e Vector fields: no new issue since A = 1 for a vector field.

e Bosonic 0-modes in SUGRA multiplet: 6 diff’s on S? (two with
4 = 1) and scaling dimension Ay = 2. (Heat kernel counts as if
Ay = 1).

e Fermionic 0-modes in SUGRA multiplet: 8 preserved SUSYs
Azj9 = 2. (Heat kernel counts as if Agjp = 1).

e Correction due to 0-modes

6.2-1) -8 -1 )

sz —
2 2 Am2ag4

Sm2at

e Note: much of the literature accounts incorrectly for 0-modes.
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Example: Reissner-Nordstrom

Consider a purely bosonic solution: gravity+Maxwell.

Contributions are the bosonic terms from the N’ = 2 SUGRA
multiplet:

e Four free bulk bosons (2 gravity + 2 gauge field):
05 = —% log Ay .

e Interactions (bulk bosons not quite free): 6.5 = —2log Ay .

e 5 Boundary modes (4 gravity+1 gauge field): 0.5 = —2log Ay .

e Zero-modes: 0.5 = —3log Ap.
Total: 05 = —%1ogAH :

(Fermions in SUGRA multiplet add 0.5 = 32 log Ap)
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Summary

We re-computed quadratic fluctuation determinants around an
AdS, x S? near horizon geometry.

Some features of our strategy:

e Setting: a general theory with A/ > 2 SUSY.
e Focus on states that are on-shell.
e Interactions due to background: encoded in chiral primaries.

e Compute also the renormalization of the gravitational coupling
constant (quadratic divergence, 1/s term in the heat kernel).

e Contributions from bulk (4D), Boundary (2D), and Zero-mode
(0D).
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