

Logarithmic Corrections to Black Hole Entropy v. 2.0

Finn Larsen

Michigan Center for Theoretical Physics

Recent Developments in String Theory, Ascona, Switzerland, July 24, 2014 .

Logarithmic Corrections

• The leading corrections to the area law for black hole entropy are logarithmic

$$\delta S = \frac{1}{2} D_0 \log A \; .$$

- These corrections can be computed from the low energy theory: only massless fields contribute.
- In some situations the corrections give non-trivial support for a known microscopic description.
- In other situations they offer clues to the nature of the unknown microscopic theory.

Updates in v. 2.0

In principle: computations are straightforward applications of techniques from the 70's.

In recent years, Sen (and collaborators) did what we do, and more.

In practice: computations are cumbersome and intransparent.

Updates in v 2.0 focus on short-cuts that add clarity:

- Interactions with background gravity and graviphoton: employ AdS/CFT, specifically organize fluctuations as *chiral primaries*.
- Contributions from *on-shell states only* (no ghosts).
- Remnant of unphysical states: *simple boundary states* .
- Careful with 4D zero-modes (done incorrectly until recent years).

Reference: C. Keeler, FL, P. Lisbao, arXiv: 1404.1379

Setting

- Consider matter in a general theory with $\mathcal{N} \geq 2$ SUSY.
- In terms of $\mathcal{N} = 2$ fields: one SUGRA multiplet, $\mathcal{N} 2$ (massive) gravitini, n_V vector multiplets, n_H hyper multiplets.
- Setting: focus on extremal black holes where it is sufficient to consider the $AdS_2 \times S^2$ near horizon region.
- The final result:

$$\delta S = \frac{1}{12} \left[23 - 11(\mathcal{N} - 2) - n_V + n_H \right] \log A_H \,.$$

• Example (relevant for microscopics): no correction in $\mathcal{N} = 4$ theory with an arbitrary number of $\mathcal{N} = 4$ matter multiplets.

Prelude: Chiral Primaries

- Massless fields in $AdS_2 \times S^2$ organize themselves in short representations of the SU(2|1,1) supergroup.
- CFT language: consider chiral multiplets where (h, j) are

$$(k,k), 2(k+\frac{1}{2},k-\frac{1}{2}), (k+1,k-1)$$
.

Possible values of $k = \frac{1}{2}, 1, \frac{3}{2}, \ldots$ ($k = \frac{1}{2}$ extra short).

- In the early days of AdS/CFT three groups independently solved linearized equations of motion and computed spectra.
- They all found the same spectrum for the $\mathcal{N} = 2$ SUGRA multiplet.
- We used an indirect argument and found a different result.
- We are right.

Spherical Harmonics

- Expansion on S^2 of single field component with helicity λ : angular momenta $j = |\lambda|, |\lambda| + 1, \ldots$
- Example: for a gauge field *all* components organize themselves into two towers with j = 1, 2, ... and two towers with j = 0, 1, ...
- The *physical* components of the vector field components organize themselves into two towers with j = 1, 2, ...
- So: the set of physical angular momenta in each $\mathcal{N}=2$ is unambiguous.
- Example: the $\mathcal{N} = 2$ vector multiplet has one vector field and two real scalars so the *physical* boson towers are: two with $j = 1, 2, \ldots$ and two with $j = 0, 1, \ldots$.
- Mixing is allowed (for same *j*) but assembly of towers into chiral multiplets uniquely determine conformal weights.

The Spectrum of Chiral Primaries

• Result: the spectrum of (h, j) for all chiral primaries:

Supergravity : $2[(k+2, k+2), 2(k+\frac{5}{2}, k+\frac{3}{2}), (k+3, k+1)]$ Gravitino : $2[(k+\frac{3}{2}, k+\frac{3}{2}), 2(k+2, k+1), (k+\frac{5}{2}, k+\frac{1}{2})]$ Vector : $2[(k+1, k+1), 2(k+\frac{3}{2}, k+\frac{1}{2}), (k+2, k)]$ Hyper : $2[(k+\frac{1}{2}, k+\frac{1}{2}), 2(k+1, k), (k+\frac{3}{2}, k-\frac{1}{2})]$

Each tower has $k = 0, 1, \ldots$

Discrepancy: previous work had one more entry in the SUGRA multiplet

$$(1,1), 2(\frac{3}{2},\frac{1}{2}), (2,0).$$

• Clarification: this field exists *only* as a boundary mode.

Example: Constraints for Gravity

- The graviton in D dimensions has D(D+1)/2 components, D gauge symmetries (from diffeomorphisms), D constraints (eom's left after gauge fixing).
- So: a graviton has D(D-3)/2 physical components.
- In 2D a graviton has -1 degrees of freedom so a graviton and a scalar combined has no degrees of freedom.
- Details: after gauge fixing some "equations of motion" are in fact constraints (there are no time derivatives).
- Exception: the constraint is solved by one specific spatial profile (the zero-mode on AdS₂) so one boundary degree of freedom can be freely specified.
- These *boundary modes are physical* (standard in AdS/CFT).

Quantum Fluctuations: Strategy

• All contributions from quadratic fluctuations around the classical geometry take the form

$$e^{-W} = \int \mathcal{D}\phi \ e^{-\phi\Lambda\phi} = \frac{1}{\sqrt{\det\Lambda}}$$

• The quantum corrections are encoded in the heat kernel

$$D(s) = \operatorname{Tr} e^{-s\Lambda} = \sum_{i} e^{-s\lambda_{i}}$$

• The effective action becomes

$$W = -\frac{1}{2}\int_{\epsilon^2}^\infty \frac{ds}{s} D(s) = -\frac{1}{2}\int_{\epsilon^2}^\infty \frac{ds}{s}\int d^D x K(s) \ .$$

• The constant D_0 (or K_0) we need is (essentially) the 2nd Seeley-deWitt coefficient or equivalently the trace anomaly of the EM-tensor.

Simple Heat Kernels in 2D

• The heat kernel for a scalar field on S^2 is elementary:

$$K_S^s(s) = \frac{1}{4\pi a^2} \sum_{k=0}^{\infty} e^{-sk(k+1)} (2k+1) = \frac{1}{4\pi a^2 s} \left(1 + \frac{1}{3}s + \frac{1}{15}s^2 + \dots \right)$$

• A massless scalar field on AdS₂ involves a continuous spectrum:

$$K_A^s(s) = \frac{1}{2\pi a^2} \int_0^\infty e^{-(p^2 + \frac{1}{4})s} p \tanh \pi p \, dp \, .$$

• The local terms in the AdS_2 heat kernel is identical to S^2 except for the sign of the curvature:

$$K_A^s(s) = \frac{1}{4\pi a^2 s} \left(1 - \frac{1}{3}s + \frac{1}{15}s^2 + \dots \right)$$

• The heat kernel for a fermion on S^2 is also elementary:

$$K_S^f(s) = \frac{1}{4\pi a^2} \sum_{k=0}^{\infty} e^{-s(k+1)^2} (2k+2) = \frac{1}{4\pi a^2 s} \left(1 - \frac{1}{6}s - \frac{1}{60}s^2 + \dots \right)$$

Simple Heat Kernels on $AdS_2 \times S^2$

• For a product space heat kernels multiply so for a scalar on $AdS_2 \times S^2$:

$$K_4^s(s) = K_S^s(s)K_A^s(s) = \frac{1}{16\pi^2 a^4 s^2} \left(1 + \frac{1}{45}s^2 + \ldots\right) \;.$$

• For a Dirac fermion on $AdS_2 \times S^2$:

$$K_4^f(s) = 4K_S^f(s)K_A^f(s) = -\frac{1}{4\pi^2 a^4 s^2} \left(1 - \frac{11}{180}s^2 + \dots\right)$$

 \bullet A benchmark for results in $\mathcal{N}=2$ theory: a "free hyper"

$$K_4^{\min}(s) = 4K_4^s(s) + K_4^f(s) = \frac{1}{4\pi^2 a^4 s^2} \cdot \frac{1}{12}s^2$$

- The leading $1/s^2$ singularity cancels: no cosmological constant for equal number of fermion and bosons.
- The 1/s order also cancels: this is an accident.

The AdS_2 Perspective

- The canonical heat kernel on AdS₂ of for a massless field.
- A field with conformal weight h (mass $m^2 = h(h-1)$) and SU(2) quantum number j (degeneracy 2j + 1):

$$K_A(h, j; s) = K_A(h = 1, j = 0; s) e^{-h(h-1)s}(2j+1)$$

• A free 4D boson is a tower of 2D bosons with (h,j)=(k+1,k) with $k=0,1,\ldots$ so

$$K_4^s(s) = K_A^s(s) \cdot \frac{1}{4\pi a^2} \sum_{k=0}^{\infty} e^{-sk(k+1)} (2k+1)$$
$$= \frac{1}{16\pi^2 a^4 s^2} \left(1 + \frac{1}{45}s^2 + \dots\right).$$

• The sum over the tower of AdS₂ fields computes the factor from the heat kernel on S².

The Vector-Multiplet: Bulk

- The conformal weights for fields in supergravity are "shifted" from the free values.
- The fermions in the vector multiplet are canonical but bosons interact: this is the *attractor mechanism*.
- The "shifted" sum on S^2 for all four physical bosons:

$$\begin{split} K_4^{V,b}(s) \ &= \ \frac{2K_A^s(s)}{4\pi a^2} \sum_{k=0}^\infty \left(e^{-sk(k+1)}(2k+3) + e^{-s(k+1)(k+2)}(2k+1) \right) \\ &= \ \frac{1}{4\pi^2 a^4 s^2} \left(1 + \frac{1}{45}s^2 + \ldots + \frac{1}{2}s(1 - \frac{1}{3}s) + \ldots \right) \,. \end{split}$$

• Heat kernel for the full vector multiplet including fermions:

$$K_4^V(s) = \frac{1}{4\pi^2 a^4} \left(\frac{1}{2s} - \frac{1}{12} + \dots\right)$$

- A 1/s term was generated by interactions.
- The constant term changed sign due to interactions.

The Hyper-Multiplet

- The bosons in the hyper multiplet are canonical just four free fields.
- The fermions interact with the graviphoton so the conformal weights differ from a free field.
- The S^2 tower of fermions is shifted relative to a free fermion.
- Heat kernel for the complete hyper-multiplet:

$$K_4^H(s) = \frac{1}{4\pi^2 a^4} \left(-\frac{1}{s} - \frac{1}{12} + \dots \right)$$

- A 1/s term was generated by interactions.
- The constant term changed sign due to interactions.

The Vector-Multiplet: Boundary

- The vector multiplet has a feature not yet discussed: gauge invariance.
- Two auxiliary towers cancel: unphysical states (violate gauge condition) and physical (but pure gauge).
- The boundary state: one of the would-be gauge functions is not normalizable so *one* state survives.
- Alternatively: one equation of motion is a *constraint* so one spatial profile survives.
- The **boundary state is a massless boson on** S^2 :

$$-\nabla^I \delta \mathcal{A}_I = -\nabla^2 \Lambda = 0$$

• Final result for the heat kernel:

$$K_4^V(s) = \frac{1}{4\pi^2 a^4} \left(\frac{1}{2s} - \frac{1}{12}\right) + \frac{1}{4\pi^2 a^4} \left(\frac{1}{2s} + \frac{1}{6}\right) = \frac{1}{4\pi^2 a^4} \left(\frac{1}{s} + \frac{1}{12}\right)$$

The (Massive) Gravitino Multiplet

- Bulk modes: bosons and fermions all have conformal weight shifted from the free value.
- Boundary modes: two vectors each have a gauge symmetry and so a boundary scalar.
- The SUSY variation is a fermionic gauge symmetry of the gravitino that gives a boundary fermion

$$\gamma^I \nabla_I \epsilon = 0 \; .$$

• The boundary heat kernel is constant because of boson-fermion degeneracy

$$K_{\text{bndy}}^{(3/2)} = \frac{1}{4\pi^2 a^4} \cdot \frac{1}{2}$$

• The full heat kernel:

$$K^{(3/2)} = \frac{1}{4\pi^2 a^4} \cdot \left(\left(-\frac{1}{s} + \frac{5}{12} \right) + \frac{1}{2} \right) = \frac{1}{4\pi^2 a^4} \cdot \left(-\frac{1}{s} + \frac{11}{12} \right)$$

The Graviton Multiplet

- *Five bosonic boundary modes*: four from diffeomorphisms and one from gauge symmetry.
- Boundary modes for diffeomorphisms acquire a mass

$$(g_{IJ}\nabla^2 + R_{IJ})\xi^J = 0 \; .$$

- The S^2 vectors have helicity $\lambda=\pm 1$ so angular momenta $j=1,2,\ldots$
- \bullet The mass of modes due to S^2 diffeomorphisms

$$m^2 = k(k+1) - 2; \quad k = 1, 2, \dots$$

 \bullet The mass of modes due to AdS_2 diffeomorphisms

$$m^2 = k(k+1) + 2, m^2 = k(k+1); \quad k = 0, 1, 2, \dots$$

• *Four fermionic boundary modes* (two preserved SUSYs) with contribution to mass from background graviphoton

$$m^2 = (k+1)^2 - 1$$
, $k = 0, 1, ...$

• The heat kernel for all *boundary modes* in the graviton multiplet

$$K_{\text{bndy}}^{\text{grav}} = \frac{1}{4\pi^2 a^4} \cdot \frac{5}{2} \left(\frac{1}{s} + \frac{1}{3}\right) - \frac{1}{4\pi^2 a^4} \left(\frac{2}{s} + \frac{5}{3}\right) = \frac{1}{4\pi^2 a^4} \left(\frac{1}{2s} - \frac{5}{6}\right)$$

- **Bulk modes**: bosons and fermions all have conformal weight shifted from the free value.
- Full heat kernel

$$K^{\text{grav}} = \frac{1}{4\pi^2 a^4} \left(\left(\frac{1}{2s} - \frac{1}{12}\right) + \left(\frac{1}{2s} - \frac{5}{6}\right) \right) = \frac{1}{4\pi^2 a^4} \left(\frac{1}{s} - \frac{11}{12}\right)$$

The Quadratic Divergence

 Heat kernel for all multiplets, including physical states in bulk and on boundary

$$K_{\rm phys} = \frac{1}{4\pi^2 a^4} \left[\left(\frac{1}{s} - \frac{11}{12}\right) + \left(\mathcal{N} - 2\right) \cdot \left(-\frac{1}{s} + \frac{11}{12}\right) + n_V \left(\frac{1}{s} + \frac{1}{12}\right) + n_H \left(-\frac{1}{s} - \frac{1}{12}\right) \right]$$

- Contributions to the quadratic divergence (the 1/s term): interactions in bulk and counting boundary degrees of freedom.
- Net result: alternating sign.
- Special case $\mathcal{N} \ge 4$ theory (with any matter): *quadratic divergence cancels* (a consistency check).
- For $\mathcal{N} = 3$: *all divergences cancel* for any $n_V = n_H$.
- For $\mathcal{N} = 2$: *a new result*.

4D Zero Modes: General

- 4D zero modes: AdS_2 *boundary states and also massless* on S^2 .
- Physical origin: the *global part* of each unbroken gauge symmetry.
- Zero-modes play a special role in the 4D heat kernel:

$$D(s) = \sum_{i} e^{-s\lambda_i} = \sum_{\lambda_i \neq 0} e^{-s\lambda_i} + N_0$$

• The path integral reduces to an ordinary integral

$$e^{-W} = \int \mathcal{D}\phi_0 = \operatorname{Vol}[\phi_0] \sim \epsilon^{-N_0\Delta}$$

• The correct zero-mode contribution: *larger than the naïve result* by a factor of the scaling dimension Δ .

4D Zero Modes: Computation

- Vector fields: no new issue since $\Delta = 1$ for a vector field.
- Bosonic 0-modes in SUGRA multiplet: 6 diff's on S^2 (two with j = 1) and scaling dimension $\Delta_2 = 2$. (Heat kernel counts as if $\Delta_2 = 1$).
- Fermionic 0-modes in SUGRA multiplet: 8 preserved SUSYs $\Delta_{3/2} = \frac{3}{2}$. (Heat kernel counts as if $\Delta_{3/2} = \frac{1}{2}$).
- Correction due to 0-modes

$$K_{zm} = \frac{1}{8\pi^2 a^4} \cdot \left[6 \cdot (2-1) - 8 \cdot \left(\frac{3}{2} - \frac{1}{2}\right) \right] = \frac{1}{4\pi^2 a^4} \left(-1\right) \; .$$

• Note: much of the literature accounts incorrectly for 0-modes.

Example: Reissner-Nordström

Consider a purely bosonic solution: gravity+Maxwell.

Contributions are the bosonic terms from the $\mathcal{N} = 2$ SUGRA multiplet:

- Four free bulk bosons (2 gravity + 2 gauge field): $\delta S = -\frac{1}{45} \log A_H$.
- Interactions (bulk bosons not quite free): $\delta S = -\frac{3}{2}\log A_H$.
- 5 Boundary modes (4 gravity+1 gauge field): $\delta S = -\frac{5}{6} \log A_H$.
- Zero-modes: $\delta S = -3 \log A_H$.

Total: $\delta S = -\frac{241}{45} \log A_H$.

(Fermions in SUGRA multiplet add $\delta S = \frac{1309}{180} \log A_H$)

Summary

We re-computed quadratic fluctuation determinants around an $AdS_2 \times S^2$ near horizon geometry.

Some features of our strategy:

- Setting: a general theory with $\mathcal{N} \geq 2$ SUSY.
- Focus on states that are on-shell.
- Interactions due to background: encoded in chiral primaries.
- Compute also the renormalization of the gravitational coupling constant (quadratic divergence, 1/s term in the heat kernel).
- Contributions from bulk (4D), Boundary (2D), and Zero-mode (0D).