On Exceptional Geometry and Supergravity

Hermann Nicolai
MPI für Gravitationsphysik, Potsdam (Albert-Einstein-Institut)

Based on joint work with B. deWit, and H. and M. Godazgar: [dWN:NPB274(1986),1302.6219; GGN:1303.1013,1307.8295,1309.0266,1312.1061] as well as with O. Hohm and H. Samtleben [gGnHs: 1406.3235]

Motivation

There are many indications of exceptional geometrical structures in maximal supergravity and M theory:

- Ubiquity of exceptional groups: $\mathrm{E}_{6(6)}, \mathrm{E}_{7(7)}, \mathrm{E}_{8(8)}, \ldots$ [Cremmer, Julia(1979)]
- Presence of form fields beyond standard geometry
- Extra (central charge) coordinates beyond $D=11$?
\rightarrow have led to several attempts to generalise geometry
- Double Field Theory [Si egel (1992); ;u11 (2005); Hobm, Hul1, Zuiebach (2010), ...]
- Generalised geometry (and ‘non-geometry’) [Berman, Cederval1, Kleinschmidt,Thompson(2013); Coimbra,Strickland-Constable,Waldram(2014); ...]
- Exceptional geometry $[\operatorname{dWV}(1986,2001) ; \operatorname{HV}(1987) ; \operatorname{KNS}(2000) ; \operatorname{Hil1} \operatorname{mann}(2009)$; Coimbra,Strickland-Constable, Waldram(2011); GGN(2013);Hohm,Samtleben(2013)]

Generalised Geometry

Idea: 'lift' exceptional structures found in lower dimensions back up to $D=11$ (or $D=10$).

- Extend tangent space in accordance with R symmetries [dwN(1986);HN(1987)]
- Extend tangent space to include p-forms [Hitchin(2003); Gualtieri (2004)]
- Include windings of M2,M5, and KK branes [Hull(2007);Pacheco,Waldram(2008)]
- Extend base space: extra (central charge) coordinates [... , Siegel(1993) ; dWN(2001) ; West (2003) ;Hillmann(2009) ;Berman, Perry (2011)]

Exceptional duality symmetries necessitate new geometric structures (vielbeine, connections,...) and (perhaps) extra dimensions beyond $D=11 \rightarrow$ two options:

- Postulate new structures ad hoc ('top-down approach').
- Derive them by re-writing original theory ('bottom-up').
- In either case must ascertain full consistency, either intrinsically or by comparison with original theory.

Cartan's Theorem (1909)

... states that the most general algebra of vector fields on a manifold is (essentially) one of the following three: diffeomeorphisms, volume preserving diffeomorphisms, or symplectomorphisms. Or: there are no exceptional algebras of vector fields! Thus, if a generalised vielbein $\mathcal{V}^{\mathcal{M}}{ }_{\mathcal{A}}$ transforms according to

$$
\mathcal{V}^{\mathcal{M}}{ }_{\mathcal{A}}(y) \rightarrow \mathcal{V}^{\mathcal{M}}{ }_{\mathcal{A}}\left(y^{\prime}\right)=\frac{\partial y^{\prime \mathcal{M}}}{\partial y^{\mathcal{N}}} \mathcal{V}^{\mathcal{N}}{ }_{\mathcal{A}}(y)
$$

we can never arrange things such that

$$
\frac{\partial y^{\prime \mathcal{M}}(y)}{\partial y^{\mathcal{N}}} \in \mathrm{E}_{7(7)} \subset \mathrm{GL}(56, \mathbb{R}) \quad \text { for all } y
$$

\Rightarrow extra coordinates are not for real!
... as was to be expected since there appear to exist no consistent supergravity theories beyond $D=11$ dimensions (at least, no one has found any so far...)!

More Motivation

What is to be gained from re-writing a known theory ($D=11$ supergravity [cos(1978)]) into a form that is (or is not??) on-shell equivalent to the original theory?

- Derivation of non-linear Kaluza-Klein ansätze
- Consistency of S^{7} compactification [dwv(1987), Pilch, $\left.\operatorname{Hv}(2012), \operatorname{GqN}(2013)\right]$
- Scherk-Schwarz compactifications [Samtleben (2008); GGN (2013)]
- Understanding origin of embedding tensor from higher dimensions and compactification.
- New maximal supergravities? [Da11’ 'Agata, Inverso, Trigi iante (2012) ;dwr (2013)]
- Ashtekar-like variables for M Theory?
- Infinite dimensional dualities: E_{10} (JJulia(1983); phif(2002),...] or $\mathrm{E}_{11}[$ [West(2001)] and emergent space-time?

Reminder: $\mathbf{E}_{7(7)}$ from dimensional reduction

Starting from $D=11$ supergravity [Cremmer, Julia, Scherk (1978)] split coordinates as $z^{M}=\left(x^{\mu}, y^{m}\right)$ and perform $4+7$ split of bosonic fields $G_{M N}$ and $A_{M N P}$:

$$
\begin{aligned}
G_{M N}: & G_{m n}(28) \oplus G_{m \mu}(7) \oplus G_{\mu \nu}(1) \\
A_{M N P}: & A_{m n p}(35) \oplus A_{\mu m n}(21) \oplus A_{\mu \nu m}(7) \oplus A_{\mu \nu \rho}(1)
\end{aligned}
$$

To get proper count of scalar degrees of freedom \rightarrow dualize seven 2 -form fields $A_{\mu \nu m}$ [Cremmer, Julia (1979)]

$$
28+35+7=70 \rightarrow \mathcal{V}(x) \in \mathrm{E}_{7(7)} / \mathrm{SU}(8)
$$

Key Question: is this structure peculiar to torus reduction, or can it be lifted back up to $D=11$?
And: is there a way to reformulate known maximal supergravities ($D=11$, IIA, IIB,...) that makes these hidden symmetries manifest?

Dualities in eleven dimensions

3-form/6-form duality

$$
\begin{aligned}
F_{M_{1} \cdots M_{7}}= & 7!D_{\left[M_{1}\right.} A_{\left.M_{2} \cdots M_{7}\right]}+7!\frac{\sqrt{2}}{2} A_{\left[M_{1} M_{2} M_{3}\right.} D_{M_{4}} A_{\left.M_{5} M_{6} M_{7}\right]} \\
& -\frac{\sqrt{2}}{192} i \epsilon_{M_{1} \cdots M_{11}}\left(\bar{\Psi}_{R} \tilde{\Gamma}^{M_{8} \cdots M_{11} R S} \Psi_{S}+12 \bar{\Psi}^{M_{8}} \tilde{\Gamma}^{M_{9} M_{10}} \Psi^{M_{11}}\right)
\end{aligned}
$$

defines dual 6-form $A^{(6)} \equiv A_{M N P Q R S}$, with

$$
\delta A_{M N P Q R S}=-\frac{3}{6!\sqrt{2}} \bar{\varepsilon} \Gamma_{M N P Q R} \Psi_{S]}+\frac{1}{8} \bar{\varepsilon} \Gamma_{[M N} \Psi_{P} A_{Q R S]}
$$

Relations are valid on-shell and at full non-linear level.
By contrast, dualisation of gravity works only at linear level, and without matter sources:

$$
G_{M N}=\eta_{M N}+h_{M N}: \quad h_{M N} \longleftrightarrow h_{M_{1} \cdots M_{8} \mid N}
$$

In particular, 'dual supergravity' does not even exist at linear level. [Bergshoeff, deRoo,Kerstan, Kleinschmidt,Riccioni (2008)]

Existing no go theorems suggest that $D=11$ Lorentz covariance must be abandoned if interactions are to be included consistently! [Bekaert,Boulanger,Henneaux(2003)]
More $4+7$ decompositions from dualization:

$$
\begin{aligned}
A_{M N P Q R S}: & A_{\text {mnpqrs }}(7) \oplus A_{\mu m n p q r}(21) \oplus A_{\mu \nu m n p q}(35) \oplus A_{\mu \nu \rho m n p}(35) \oplus \cdots \\
h_{M_{1} \cdots M_{8} \mid N}: & \emptyset \oplus h_{\mu m n p q r s t \mid u}(7) \oplus h_{\mu \nu m n p q r s \mid t}(49) \oplus h_{\mu \nu \rho m n p q r \mid s}(147) \oplus \cdots
\end{aligned}
$$

Now we see that also fields other than scalars can be re-packaged into $E_{7(7)}$ multiplets in eleven dimensions:

Vectors :	$7 \oplus 21 \oplus 21 \oplus \overline{7}=\mathbf{5 6}$	(electromagnetic duality)
2-forms :	$7 \oplus 35 \oplus 49 \oplus \cdots=\mathbf{1 3 3}$	(E $\mathrm{E}_{7(7)}$ Noether current)
3-forms :	$1 \oplus 35 \oplus 147 \oplus \cdots=\mathbf{9 1 2}$	(embedding tensor)

\rightarrow Beyond kinematics main challenge is to show that full $D=11$ theory (supersymmetry variations and field equations) can be rewritten in an $\mathrm{E}_{7(7)} \times \mathrm{SU}(8)$ covariant way!

$\mathrm{E}_{7(7)}$ Vielbein 'from the ground up'

$[\rightarrow$ dWN $(1986,2013)$; GGN (2013)]
$4+7$ decomposition of elfbein (in triangular gauge)

$$
E_{M}{ }^{A}(x, y)=\left(\begin{array}{cc}
\Delta^{-1 / 2} e_{\mu}^{\prime \alpha} & B_{\mu}{ }^{m} e_{m}{ }^{a} \\
0 & e_{m}{ }^{a}
\end{array}\right), \quad \Delta \equiv \operatorname{det} e_{m}{ }^{a}
$$

Similar redefinitions of fermions \rightarrow chiral SU(8)

$$
\begin{gathered}
\varphi_{\mu}^{\prime}=\Delta^{-1 / 4}\left(i \gamma_{5}\right)^{-1 / 2} e_{\mu}^{\prime \alpha}\left(\Psi_{\alpha}-\frac{1}{2} \gamma_{5} \gamma_{\alpha} \Gamma^{a} \Psi_{a}\right), \quad \varphi_{\mu}{ }^{A} \text { or } \varphi_{\mu A} \equiv \frac{1}{2}\left(1 \pm \gamma_{5}\right) \varphi_{\mu A}^{\prime} \\
\chi_{A B C}^{\prime}=\frac{3}{4} \sqrt{2} i \Delta^{-1 / 4}\left(i \gamma_{5}\right)^{-1 / 2} \Psi_{a[A} \Gamma_{B C]}^{a}, \quad \chi^{A B C} \text { or } \chi_{A B C} \equiv\left(1 \pm \gamma_{5}\right) \chi_{A B C}^{\prime} \\
\Rightarrow \quad \delta B_{\mu}{ }^{m}=\frac{\sqrt{2}}{8} e_{A B}^{m}\left[2 \sqrt{2} \bar{\varepsilon}^{A} \varphi_{\mu}^{B}+\bar{\varepsilon}_{C} \gamma_{\mu}^{\prime} \chi^{A B C}\right]+\text { h.c. }
\end{gathered}
$$

with (incomplete) generalised vielbein $\equiv \mathrm{GV}$

$$
e_{A B}^{m}=i \Delta^{-1 / 2}\left(\Phi^{T} \Gamma^{m} \Phi\right)_{A B}, \quad \Phi(x, y) \in \operatorname{SU}(8)
$$

whence $e_{A B}^{m}$ becomes an $\mathrm{SU}(8)$ tensor!
Tangent space symmetry: $S O(1,10) \rightarrow S O(1,3) \times \mathrm{SU}(8)$

Generalization to remaining $21+21+7=49$ vectors:

$$
\begin{aligned}
\mathcal{B}_{\mu}{ }^{m}= & -\frac{1}{2} B_{\mu}{ }^{m}, \quad \mathcal{B}_{\mu m n}=-3 \sqrt{2}\left(A_{\mu m n}-B_{\mu}{ }^{p} A_{p m n}\right), \\
\mathcal{B}_{\mu}{ }^{m n}= & -3 \sqrt{2} \eta^{m n p_{1} \ldots p_{5}}\left(A_{\mu p_{1} \ldots p_{5}}-B_{\mu}{ }^{q} A_{q p_{1} \ldots p_{5}}-\frac{\sqrt{2}}{4}\left(A_{\mu p_{1} p_{2}}-B_{\mu}{ }^{q} A_{q p_{1} p_{2}}\right) A_{p_{3} p_{4} p_{5}}\right) \\
\mathcal{B}_{\mu m}= & -18 \eta^{n_{1} \ldots n_{7}}\left(A_{\mu n_{1} \ldots n_{7}, m}+(3 \tilde{c}-1)\left(A_{\mu n_{1} \ldots n_{5}}-B_{\mu}{ }^{p} A_{p n_{1} \ldots n_{5}}\right) A_{n_{6} n_{7} m}\right. \\
& \left.+\tilde{c} A_{n_{1} \ldots n_{6}}\left(A_{\mu n_{7} m}-B_{\mu}{ }^{p} A_{p n_{7} m}\right)+\frac{\sqrt{2}}{12}\left(A_{\mu n_{1} n_{2}}-B_{\mu}{ }^{p} A_{p n_{1} n_{2}}\right) A_{n_{3} n_{4} n_{5}} A_{n_{6} n_{7} m}\right)
\end{aligned}
$$

\rightarrow completes multiplet to $56: \mathcal{B}_{\mu}^{\mathcal{M}} \equiv\left(\mathcal{B}_{\mu}^{m}, \mathcal{B}_{\mu m n}, \mathcal{B}_{\mu}^{m n}, \mathcal{B}_{\mu m}\right)$. Requiring

$$
\delta B_{\mu m n}=\frac{\sqrt{2}}{8} e_{m n A B}\left[2 \sqrt{2} \bar{\varepsilon}^{A} \varphi_{\mu}^{B}+\bar{\varepsilon}_{C} \gamma_{\mu}^{\prime} \chi^{A B C}\right]+\text { h.c. }
$$

leads to more generalised vielbein components \Rightarrow extend $e_{A B}^{m}$ to full 56-plet $\left(e_{A B}^{m}, e_{m n A B}, e_{A B}^{m n}, e_{m A B}\right) \equiv 56$-bein in eleven dimensions!

56-bein in eleven dimensions

$$
\begin{aligned}
& \mathcal{V}^{m}{ }_{A B}= \frac{\sqrt{2} i}{8} e_{A B}^{m}=-\frac{\sqrt{2}}{8} \Delta^{-1 / 2} \Gamma_{A B}^{m} \equiv \mathcal{V}^{m 8}{ }_{A B} \equiv-\mathcal{V}^{8 m}{ }_{A B} \\
& \begin{aligned}
\mathcal{V}_{m n A B}= & -\frac{\sqrt{2}}{8} \Delta^{-1 / 2}\left(\Gamma_{m n A B}+6 \sqrt{2} A_{m n p} \Gamma_{A B}^{p}\right)
\end{aligned} \\
& \begin{aligned}
\mathcal{V}^{m n}{ }_{A B}=- & \frac{\sqrt{2}}{8} \cdot \frac{1}{5!} \eta^{m n p_{1} \cdots p_{5}} \Delta^{-1 / 2}\left[\Gamma_{p_{1} \cdots p_{5} A B}+60 \sqrt{2} A_{p_{1} p_{2} p_{3}} \Gamma_{p_{4} p_{5} A B}\right. \\
& \left.-6!\sqrt{2}\left(A_{q p_{1} \cdots p_{5}}-\frac{\sqrt{2}}{4} A_{q p_{1} p_{2}} A_{p_{3} p_{4} p_{5}}\right) \Gamma_{A B}^{q}\right]
\end{aligned} \\
& \begin{aligned}
\mathcal{V}_{m A B}=-\frac{\sqrt{2}}{8} \cdot \frac{1}{7!} \eta^{p_{1} \cdots p_{7}} \Delta^{-1 / 2}\left[\left(\Gamma_{p_{1} \cdots p_{7}} \Gamma_{m}\right)_{A B}+126 \sqrt{2} A_{m p_{1} p_{2}} \Gamma_{p_{3} \cdots p_{7} A B}\right.
\end{aligned} \\
&+3 \sqrt{2} \times 7!\left(A_{m p_{1} \cdots p_{5}}+\frac{\sqrt{2}}{4} A_{m p_{1} p_{2}} A_{\left.p_{3} p_{4} p_{5}\right)}\right) \Gamma_{p_{6} p_{7} A B} \\
&\left.+\frac{9!}{2}\left(A_{m p_{1} \cdots p_{5}}+\frac{\sqrt{2}}{12} A_{m p_{1} p_{2}} A_{p_{3} p_{4} p_{5}}\right) A_{p_{6} p_{7} q} \Gamma_{A B}^{q}\right]
\end{aligned}
$$

$\mathcal{V}\left(e, A^{(3)}, A^{(6)}\right)$ has all the requisite properties of an $\mathrm{E}_{7(7)}$ matrix:

$$
\mathcal{V}_{\text {MN }}{ }^{A B} \equiv\left(\mathcal{V}_{\text {MN } A B}\right)^{*}, \quad \mathcal{V}^{\text {MNAB }} \equiv\left(\mathcal{V}^{\text {MN }}{ }_{A B}\right)^{*}
$$

where we have combined the GL(7) indices into $\mathrm{SL}(8)$ indices

$$
\mathcal{V}_{\mathrm{MN}} \equiv\left(\mathcal{V}_{m n}, \mathcal{V}_{m 8}\right), \quad \mathcal{V}^{\mathrm{MN}} \equiv\left(\mathcal{V}^{m n}, \mathcal{V}^{m 8}\right)
$$

With proper $\mathrm{E}_{7(7)}$ indices $\mathcal{M}, \mathcal{N}, \ldots$ in 56 representation

$$
\mathcal{V}_{\mathcal{M}} \equiv\left(\mathcal{V}_{\mathrm{MN}}, \mathcal{V}^{\mathrm{MN}}\right), \quad \mathcal{V}^{\mathcal{M}}=\Omega^{\mathcal{M} \mathcal{N}} \mathcal{V}_{\mathcal{N}} \equiv\left(\mathcal{V}^{\mathrm{MN}},-\mathcal{V}_{\mathrm{MN}}\right)
$$

and symplectic form $\Omega^{\mathcal{M N}}$

$$
\begin{aligned}
\mathcal{V}_{\mathcal{M}}{ }^{A B} \mathcal{V}_{\mathcal{N} A B}-\mathcal{V}_{\mathcal{M} A B} \mathcal{V}_{\mathcal{N}}{ }^{A B} & =i \Omega_{\mathcal{M N}}, \\
\Omega^{\mathcal{M} \mathcal{N}} \mathcal{V}_{\mathcal{M}}{ }^{A B} \mathcal{V}_{\mathcal{N} C D} & =i \delta_{C D}^{A B}, \\
\Omega^{\mathcal{M} \mathcal{N}} \mathcal{V}_{\mathcal{M}}{ }^{A B} \mathcal{V}_{\mathcal{N}}{ }^{C D} & =0 \Rightarrow \quad \operatorname{Sp}(56, \mathbb{R})
\end{aligned}
$$

(for $\mathrm{E}_{7(7)}$ have to work a little harder...)
$\Rightarrow \mathbf{E}_{7(7)}$ covariant form of vector transformation in $D=11$:

$$
\delta \mathcal{B}_{\mu}^{\mathcal{M}}=i \mathcal{V}^{\mathcal{M}}{ }_{A B}\left(\bar{\varepsilon}_{C} \gamma_{\mu} \chi^{A B C}+2 \sqrt{2} \bar{\varepsilon}^{A} \psi_{\mu}^{B}\right)+\text { h.c. }
$$

Extending general covariance

Standard behaviour under internal diffeomorphisms $\xi^{m}=\xi^{m}(x, y)$:

$$
\begin{aligned}
& \delta \mathcal{V}^{m}{ }_{A B}=\xi^{p} \partial_{p} \mathcal{V}^{m}{ }_{A B}-\partial_{p} \xi^{m} \mathcal{V}^{p}{ }_{A B}-\frac{1}{2} \partial_{p} \xi^{p} \mathcal{V}^{m}{ }_{A B} \\
& \delta \mathcal{V}_{m n}{ }_{A B}=\xi^{p} \partial_{p} \mathcal{V}_{m n}{ }_{A B}-2 \partial_{[m} \xi^{p} \mathcal{V}_{n] p A B}-\frac{1}{2} \partial_{p} \xi^{p} \mathcal{V}_{m n}{ }_{A B} \\
& \delta \mathcal{V}^{m n}{ }_{A B}=\xi^{p} \partial_{p} \mathcal{V}^{m n}{ }_{A B}+2 \partial_{p} \xi^{[m} \mathcal{V}^{n] p}{ }_{A B}+\frac{1}{2} \partial_{p} \xi^{p} \mathcal{V}^{m n}{ }_{A B} \\
& \delta \mathcal{V}_{m A B}=\xi^{p} \partial_{p} \mathcal{V}_{m A B}+\partial_{m} \xi^{p} \mathcal{V}_{p A B}+\frac{1}{2} \partial_{p} \xi^{p} \mathcal{V}_{m A B}
\end{aligned}
$$

Due to its explicit dependence on $A^{(3)}$ and $A^{(6)} \mathcal{V}$ also transforms under 2-form gauge transformations with parameter $\xi_{m n}(x, y)$:

$$
\begin{gathered}
\delta A_{m n p}=3!\partial_{[m} \xi_{n p]}, \quad \delta A_{m n p q r s}=3 \sqrt{2} \partial_{[m} \xi_{n p} A_{q r s]} \Rightarrow \\
\delta \mathcal{V}^{m}{ }_{A B}=0, \quad \delta \mathcal{V}_{m n} A B=36 \sqrt{2} \partial_{[m} \xi_{n p]} \mathcal{V}^{p}{ }_{A B}, \\
\delta \mathcal{V}^{m n}{ }_{A B}=3 \sqrt{2} \eta^{m n p q r s t} \partial_{p} \xi_{q r} \mathcal{V}_{s t}, \quad \delta \mathcal{V}_{m A B}, \quad 18 \sqrt{2} \partial_{[m} \xi_{n p]} \mathcal{V}^{n p}{ }_{A B}
\end{gathered}
$$

Idem for 5-form gauge transformations

$$
\begin{gathered}
\quad \delta A_{m n p}=0, \quad \delta A_{m n p q r s}=6!\partial_{[m} \xi_{n p q r s]} \quad \Rightarrow \\
\delta \mathcal{V}^{m}{ }_{A B}=\delta \mathcal{V}_{m n A B}=0, \quad \delta \mathcal{V}^{m n}{ }_{A B}=6 \cdot 6!\sqrt{2} \eta^{m n p_{1} \cdots p_{5}} \partial_{[q} \xi_{\left.p_{1} \cdots p_{5}\right]} \mathcal{V}^{q}{ }_{A B}, \\
\delta \mathcal{V}_{m A B}=3 \cdot 6!\sqrt{2} \eta^{n_{1} \cdots n_{7}} \partial_{[m} \xi_{\left.n_{1} \cdots n_{5}\right]} \mathcal{V}_{n_{6} n_{7} A B}
\end{gathered}
$$

These formulas can be neatly summarised as

$$
\delta_{\Lambda} \mathcal{V}_{\mathcal{M} A B}=\hat{\mathcal{L}}_{\Lambda} \mathcal{V}_{\mathcal{M} A B}
$$

with $\Lambda^{\mathcal{M}} \equiv\left(\xi^{m}, \xi_{m n}, \xi^{m n}, \xi_{m}\right)$ and generalised Lie derivative:

$$
\hat{\mathcal{L}}_{\Lambda} X_{\mathcal{M}}=\frac{1}{2} \Lambda^{\mathcal{N}} \partial_{\mathcal{N}} X_{\mathcal{M}}+6\left(t^{\alpha}\right)_{\mathcal{M}}{ }^{\mathcal{N}}\left(t_{\alpha}\right)_{\mathcal{P}}{ }^{\mathcal{Q}} \partial_{\mathcal{Q}} \Lambda^{\mathcal{P}} X_{\mathcal{N}}+\frac{1}{2} w \partial_{\mathcal{N}} \Lambda^{\mathcal{N}} X^{\mathcal{M}}
$$

\Rightarrow unifies internal diffeomorphisms and tensor gauge transformations and suggests extra coordinates: $4+56$ instead of $4+7$?
But only consistent with Section Constraint:
$t_{\alpha}^{\mathcal{M} \mathcal{N}} \partial_{\mathcal{M}} \otimes \partial_{\mathcal{N}}=\Omega^{\mathcal{M} \mathcal{N}} \partial_{\mathcal{M}} \otimes \partial_{\mathcal{N}}=0 \Leftrightarrow \partial_{\mathcal{M}}=0$ for $\mathcal{M} \neq m$
[Coimbra,Strickland-Constable, Waldram(2012) ; Berman, Cederwall, Kleinschmidt, Thompson(2013)]
Back to seven (or six) internal coordinates!

Generalised Vielbein Postulate $=$ GVP

56 -bein obeys a generalisation of the usual GVP, both for external and internal dimensions. For external dimensions, we have

$$
\partial_{\mu} \mathcal{V}_{\mathcal{M} A B}+2 \hat{\mathcal{L}}_{\mathcal{B}_{\mu}} \mathcal{V}_{\mathcal{M} A B}+\mathcal{Q}_{\mu[A}^{C} \mathcal{V}_{\mathcal{M} B] C}=\mathcal{P}_{\mu A B C D} \mathcal{V}_{\mathcal{M}}{ }^{C D}
$$

where $\hat{\mathcal{L}}_{\Lambda}$ was defined above. To be compared with $D=4$ relation

$$
\partial_{\mu} \mathcal{V}_{\mathcal{M} i j}-g \mathcal{B}_{\mu}{ }^{\mathcal{P}} X_{\mathcal{P} \mathcal{M}}{ }^{\mathcal{N}}+\mathcal{Q}_{\mu[i}^{k} \mathcal{V}_{\mathcal{M} j] k} \mathcal{V}_{\mathcal{N} i j}=\mathcal{P}_{\mu i j k l} \mathcal{V}_{\mathcal{M}}{ }^{k l}
$$

where $X_{\mathcal{M}}$ generate the gauge algebra \Rightarrow furnishes higher dimensional origin of embedding tensor $\Theta_{\mathcal{M}}{ }^{\alpha}$ via

$$
X_{\mathcal{M N}}{ }^{\mathcal{P}} \equiv \Theta_{\mathcal{M}}{ }^{\alpha}\left(t_{\alpha}\right)_{\mathcal{N}}{ }^{\mathcal{P}}
$$

This correspondence has been checked for S^{7} compactification (where gauging is purely electric) [GGN: 1309.0266] and Scherk-Schwarz compactifications [GGN:1312.1061] (where gauge fields are usually both electric and magnetic).
\rightarrow may thus explain new $\mathrm{SO}(8)$ gaugings [Dal1’Agata, Inverso, Trigiante, PRL109(2012) 201301] via $\mathrm{U}(1)$ duality rotation in $D=11$!

Internal GVP from eleven dimensions

$$
\partial_{m} \mathcal{V}_{\mathcal{M} A B}-\Gamma_{m \mathcal{M}}{ }^{\mathcal{N}} \mathcal{V}_{\mathcal{N} A B}+Q_{m[A}^{C} \mathcal{V}_{\mathcal{M} B] C}=P_{m A B C D} \mathcal{V}_{\mathcal{M}}{ }^{C D}
$$

with $\mathrm{SU}(8)$ connection

$$
Q_{m A}^{B}=-\frac{1}{2} \omega_{m a b} \Gamma_{A B}^{a b}+\frac{\sqrt{2}}{48} F_{m a b c} \Gamma_{A B}^{a b c}+\frac{\sqrt{2}}{14 \cdot 6!} F_{\text {mabcdef }} \Gamma_{A B}^{a b c d e f},
$$

and 'non-metricity'

$$
P_{m A B C D}=\frac{\sqrt{2}}{32} F_{\text {mabc }} \Gamma_{[A B}^{a} \Gamma_{C D]}^{b c}-\frac{\sqrt{2}}{56 \cdot 5!} F_{\text {mabcdef }} \Gamma_{[A B}^{a} \Gamma_{C D]}^{b c d e f}
$$

$\mathrm{E}_{7(7)}$-valued generalised 'affine' connection $\Gamma_{m \mathcal{M}}{ }^{\mathcal{N}}=\Gamma_{m}{ }^{\alpha}\left(t_{\alpha}\right)_{\mathcal{M}}{ }^{\mathcal{N}}$:

$$
\begin{gathered}
\left(\boldsymbol{\Gamma}_{m}\right)_{n}^{p} \equiv-\Gamma_{m n}^{p}+\frac{1}{4} \delta_{n}^{p} \Gamma_{m q}^{q}, \quad\left(\boldsymbol{\Gamma}_{m}\right)_{8}{ }^{8}=-\frac{3}{4} \Gamma_{m n}^{n}, \\
\left(\boldsymbol{\Gamma}_{m}\right)_{8}^{n}=\sqrt{2} \eta^{n p_{1} \cdots p_{6}} \Xi_{m \mid p_{1} \cdots p_{6}}, \quad\left(\boldsymbol{\Gamma}_{m}\right)^{n_{1} \cdots n_{4}}=\frac{1}{\sqrt{2}} \eta^{n_{1} \cdots n_{4} p_{1} p_{2} p_{3}} \Xi_{m \mid p_{1} p_{2} p_{3}}
\end{gathered}
$$

where

$$
\begin{aligned}
\Xi_{p \mid m n q} & \equiv D_{p} A_{m n q}-\frac{1}{4!} F_{p m n q} & & \Rightarrow \quad \Xi_{[m \mid n p q]}=0 \\
\Xi_{p \mid m_{1} \cdots m_{6}} \equiv D_{p} A_{m_{1} \cdots m_{6}}-\frac{1}{7!} F_{p m_{1} \cdots m_{6}}+\ldots & & \Rightarrow & \Xi_{\left[p \mid m_{1} \cdots m_{6}\right]}=0
\end{aligned}
$$

- These connections (as determined from $D=11$ supergravity) satisfy all covariance properties!
- but have non-vanishing components only along seven dimensions, vanish along all other directions.
So what about connection coefficients for $\mathcal{M} \neq m$
$\Rightarrow \partial_{\mathcal{M}} \mathcal{V}_{\mathcal{N} A B}-\Gamma_{\mathcal{M} \mathcal{N}}{ }^{\mathcal{P}} \mathcal{V}_{\mathcal{P} A B}+Q_{\mathcal{M}[A}^{C} \mathcal{V}_{\mathcal{N} B] C}=P_{\mathcal{M} A B C D} \mathcal{V}_{\mathcal{N}}^{C D} ? ?$
Possible (and even required, see below), but:
- Connections become highly ambiguous, and are not fixed by requiring absence of (generalised) torsion.
- Full (generalised) covariance incompatible with expressibility in terms of \mathcal{V} and $\partial \mathcal{V}$ only.
- Remarkably, supersymmetric theory is insensitive to these ambiguities and other difficulties!

Torsion

Definition from generalised geometry [CSW (2014); Cederwall, Ed1und, Kar1sson (2013)]

$$
\mathcal{T}_{N K}{ }^{M}=\boldsymbol{\Gamma}_{N K}{ }^{M}-12 \mathbb{P}^{M}{ }_{K}{ }^{P}{ }_{Q} \boldsymbol{\Gamma}_{P N}{ }^{Q}+4 \mathbb{P}^{M}{ }_{K}{ }^{P}{ }_{N} \boldsymbol{\Gamma}_{Q P}{ }^{Q}
$$

This is the 912 representation in $56 \times 133 \rightarrow 56 \oplus 912 \oplus 6480$. A simple component-wise calculation using the components of Γ shows that the generalised torsion does indeed vanish, e.g.

$$
\begin{aligned}
\mathcal{T}_{m 8 n 8}{ }^{p 8} & =\boldsymbol{\Gamma}_{m 8 n 8}{ }^{p 8}-48 \mathbb{P}^{p 8}{ }_{n 8}{ }^{q 8}{ }_{r 8} \boldsymbol{\Gamma}_{q 8 m 8}{ }^{r 8}+16 \mathbb{P}^{p 8}{ }_{n 8}{ }^{q 8}{ }_{m 8} \boldsymbol{\Gamma}_{r 8 q 8^{r 8}} \\
& =\boldsymbol{\Gamma}_{[m n]}{ }^{r}-\frac{2}{3} \boldsymbol{\Gamma}_{r[m}{ }^{r} \delta_{n]}^{p}=0
\end{aligned}
$$

if ordinary torsion $\Gamma_{[m n]}{ }^{p}=0$. Similarly (using $\mathbb{P}^{p q}{ }_{n 8^{r 8}}{ }_{s t}=-\frac{1}{12} \delta_{n[s}^{p q} \delta_{t]}^{r}$)

$$
\begin{aligned}
\mathcal{T}_{m 8 n 8}{ }^{p q} & =\boldsymbol{\Gamma}_{m 8 n 8}{ }^{p q}+2 \boldsymbol{\Gamma}_{r 8 m 8} r\left[\delta_{n}^{q]}\right. \\
& =3 \sqrt{2} \eta^{p q t_{1} \ldots t_{5}}\left(\Xi_{m \mid n t_{1} \ldots t_{5}}-\Xi_{n \mid m t_{1} \ldots t_{5}}+5 \Xi_{t_{1} \mid m n t_{2} \ldots t_{5}}\right) \\
& =21 \sqrt{2} \eta^{p q t_{1} \ldots t_{5}} \Xi_{\left[m \mid n t_{1} \ldots t_{5}\right]}=0 \quad \text { etc. }
\end{aligned}
$$

\Rightarrow irreducibility properties of $\Gamma_{\mathcal{M N}}{ }^{\mathcal{P}}$ are crucial for $\mathcal{T}_{\mathcal{M N}}{ }^{\mathcal{P}}=0$!

Absorbing non-metricity

[see e.g. Hehl,VonDerHeyde,Kerlick, Nester, Rev.Mod.Phys.48(1978)393]
Cf. GVP of ordinary differential geometry

$$
\partial_{m} e_{n}{ }^{a}+\omega_{m}{ }^{a}{ }_{b} e_{n}{ }^{b}-\Gamma_{m n}^{p} e_{p}{ }^{a}=0
$$

But there is a more general expression

$$
\partial_{m} e_{n}{ }^{a}+\omega_{m}{ }^{a}{ }_{b} e_{n}{ }^{b}-\Gamma_{m n}^{p} e_{p}{ }^{a}=T_{m n}{ }^{p} e_{p}{ }^{a}+P_{m}{ }^{a}{ }_{b} e_{n}{ }^{b}
$$

with torsion $T_{m n}{ }^{p}$ and non-metricity $P_{m n p} \equiv \frac{1}{2} D_{m} g_{n p}$, which can be absorbed by redefinitions

$$
\begin{aligned}
& \Gamma_{m n}^{p} \longrightarrow \Gamma_{m n}^{p}-\left.P_{(m}{ }^{c}{ }_{|c|}\right|_{e}{ }^{d}{ }^{d} e^{p}{ }_{c}, \\
& T_{m n}{ }^{p} \longrightarrow T_{m n}{ }^{p}-P_{[m}{ }^{c}{ }^{|d|} \mid \\
& e_{n]}{ }^{d} e^{p}{ }_{c}
\end{aligned}
$$

Idem for exceptional geometry:
$\Gamma_{\mathcal{M N}}{ }^{\mathcal{P}} \longrightarrow \tilde{\Gamma}_{\mathcal{M N}}{ }^{\mathcal{P}}=\Gamma_{\mathcal{M N}}{ }^{\mathcal{P}}-i\left(\mathcal{V}_{\mathcal{N}}{ }^{A B} P_{\mathcal{M} A B C D} \mathcal{V}^{\mathcal{P} C D}-\mathcal{V}_{\mathcal{N} A B} P_{\mathcal{M}^{A B C D}} \mathcal{V}^{\mathcal{P}}{ }_{C D}\right)$
so that the internal GVP becomes

$$
\partial_{\mathcal{M}} \mathcal{V}_{\mathcal{N} A B}-\tilde{\Gamma}_{\mathcal{M} \mathcal{N}^{P}} \mathcal{V}_{\mathcal{P} A B}+Q_{\mathcal{M}[A}^{C} \mathcal{V}_{\mathcal{N} B] C}=0
$$

Supersymmetric theory

Supersymmetry variations of bosonic fields

$$
\begin{aligned}
\delta e_{\mu}^{\alpha} & =\bar{\varepsilon}^{A} \gamma^{\alpha} \psi_{\mu A}+\bar{\varepsilon}_{A} \gamma^{\alpha} \psi_{\mu}^{a} \\
\delta \mathcal{B}_{\mu}^{\mathcal{M}} & =i \mathcal{V}^{\mathcal{M}}{ }_{A B}\left(\bar{\varepsilon}_{C} \gamma_{\mu} \chi^{A B C}+2 \sqrt{2} \bar{\varepsilon}^{A} \psi_{\mu}^{B}\right)+\text { h.c. } \\
\delta \mathcal{V}^{\mathcal{M}}{ }_{A B} & =2 \sqrt{2} \mathcal{V}^{\mathcal{M} C D}\left(\bar{\varepsilon}_{[A} \chi_{B C D]}+\frac{1}{24} \epsilon_{A B C D E F G H} \bar{\varepsilon}^{E} \chi^{F G H}\right)
\end{aligned}
$$

\rightarrow bosonic variations from 'ground up' approach [Ggn: 1307.8295] agree with those of $\mathrm{E}_{7(7)}$ EFT [hs:1312.4542;Ggnhs:1406.3235].
To establish agreement for the supersymmetry variations of fermions is more tricky! Recall [dww(1986)]

$$
\begin{gathered}
\delta \psi_{\mu}^{A} \propto \cdots+e^{m A B} \partial_{m}\left(\gamma_{\mu} \varepsilon_{B}\right)+\frac{1}{2} e^{m A B} Q_{m B}^{C} \gamma_{\mu} \varepsilon_{C}-\frac{1}{2} e_{C D}^{m} P_{m}^{A B C D} \gamma_{\mu} \varepsilon_{D} \\
\delta \chi^{A B C} \propto \cdots+e^{m[A B} \partial_{m} \varepsilon^{C]}-\frac{1}{2} e^{m[A B} Q_{m D}^{C]} \varepsilon^{D}- \\
-\frac{1}{2} e_{D E}^{m} P_{m}^{D E[A B} \varepsilon^{C]}-\frac{2}{3} e_{D E}^{m} P_{m}^{A B C D} \varepsilon^{E}
\end{gathered}
$$

To absorb non-metricity $P_{m}^{A B C D}$ in these variations, must redefine $\mathrm{SU}(8)$ connection [GGNHS: 1406.3235]

$$
Q_{m A}{ }^{B} \rightarrow \mathcal{Q}_{\mathcal{M A}}{ }^{B} \equiv Q_{\mathcal{M A}}{ }^{B}+\mathbb{Q}_{\mathcal{M} A}{ }^{B}
$$

where

$$
\mathbb{Q}_{\mathcal{M A}}{ }^{B}=R_{\mathcal{M} A}{ }^{B}+\mathcal{U}_{\mathcal{M A}}{ }^{B}
$$

with

$$
\begin{aligned}
R_{\mathcal{M} A}{ }^{B} \equiv & \frac{4 i}{3}\left(\mathcal{V}^{n B C} \mathcal{V}_{\mathcal{M}}{ }^{D E} P_{n A C D E}+\mathcal{V}^{n}{ }_{A C} \mathcal{V}_{\mathcal{M} D E} P_{n}{ }^{B C D E}\right) \\
& +\frac{20 i}{27}\left(\mathcal{V}^{n D E} \mathcal{V}_{\mathcal{M}}{ }^{B C} P_{n A C D E}+\mathcal{V}^{n}{ }_{D E} \mathcal{V}_{\mathcal{M A C}} P_{n}{ }^{B C D E}\right) \\
& -\frac{7 i}{27} \delta_{A}{ }^{B}\left(\mathcal{V}^{n C D} \mathcal{V}_{\mathcal{M}}{ }^{E F} P_{n C D E F}+\mathcal{V}^{n}{ }_{C D} \mathcal{V}_{\mathcal{M E F}} P_{n}{ }^{C D E F}\right) \\
\mathcal{U}_{\mathcal{M A}}{ }^{B}= & \mathcal{V}_{\mathcal{M C D}} u^{C D, B}{ }_{A}-\mathcal{V}_{\mathcal{M}}{ }^{C D} u_{C D, A}{ }^{B}
\end{aligned}
$$

where $u^{[C D, B]} A \equiv 0, u^{C A, B}{ }_{C} \equiv 0 \quad$ in 1280 of $\operatorname{SU}(8)$.
Redefinition requires $\mathrm{SU}(8)$ connection components along $\mathcal{M} \neq m$!

Leads to very compact expressions:

$$
\begin{aligned}
\delta \psi_{\mu}^{A} & \propto \cdots+\mathcal{V}^{\mathcal{M} A B} \mathcal{D}_{\mathcal{M}}(\mathcal{Q})_{B}^{C}\left(\gamma_{\mu} \varepsilon_{C}\right) \\
\delta \chi^{A B C} & \propto \cdots+\mathcal{V}^{\mathcal{M}[A B} \mathcal{D}_{\mathcal{M}}(\mathcal{Q}) \varepsilon^{C]}
\end{aligned}
$$

Also: requires extra components $\mathcal{Q}_{\mathcal{M}}$ for $\mathcal{M} \neq m$ and

$$
\Gamma_{\mathcal{M} \mathcal{N}}{ }^{\mathcal{P}} \rightarrow \widehat{\Gamma}_{\mathcal{M} \mathcal{N}}{ }^{\mathcal{P}} \equiv \tilde{\Gamma}_{\mathcal{M} \mathcal{N}}{ }^{\mathcal{P}}+i\left(\mathcal{V}^{\mathcal{P}}{ }_{A B} \mathbb{Q}_{\mathcal{M}}{ }^{A}{ }_{C} \mathcal{V}_{\mathcal{N}}{ }^{B C}-\mathcal{V}^{\mathcal{P} A B} \mathbb{Q}_{\mathcal{M} A}{ }^{C} \mathcal{V}_{\mathcal{N} B C}\right)
$$

After all these operations we are left with fully covariant and torsion-free connections and a standard GVP

$$
\partial_{\mathcal{M}} \mathcal{V}_{\mathcal{N} A B}-\widehat{\Gamma}_{\mathcal{M} \mathcal{N}}{ }^{\mathcal{P}} \mathcal{V}_{\mathcal{P} A B}+\mathcal{Q}_{\mathcal{M}[A}^{C} \mathcal{V}_{\mathcal{N} B] C}=0
$$

NB: absence of torsion does not fix affine connection uniquely, irremovable ambiguity is in 1280 of $\mathrm{SU}(8)$.
[Coimbra,Strickland-Constable, Waldram(2012) ; Cederwall, Edlund, Karlsson(2013) ; GGNHS (2014)]

Ashtekar-like variables for M Theory?

In [S.Melosch, HN : Phys.Lett.B416(1998)91] it was noticed that the quantity

$$
\mathcal{V}^{m}{ }_{A B}=\frac{\sqrt{2} i}{8} e_{A B}^{m}=-\frac{\sqrt{2}}{8} \Delta^{-1 / 2} \Gamma_{A B}^{m}
$$

bears some resemblance to (one half of) Ashtekar's variables (the 'inverse densitized dreibein'), but a complete canonical analysis could not be performed because the remaining parts of 56 -bein were not known. A full canonical treatment and quantization would require a canonical pair

$$
\left\{\mathcal{V}^{\mathcal{M}}{ }_{A B}, \Pi^{C D}{ }_{\mathcal{N}}\right\}=\delta_{\mathcal{N}}^{\mathcal{M}} \delta_{A B}^{C D}, \quad\left\{\mathcal{V}^{\mathcal{M} A B}, \Pi_{\mathcal{N} C D}\right\}=\delta_{\mathcal{N}}^{\mathcal{M}} \delta_{C D}^{A B}
$$

with an associated $\mathrm{E}_{7(7)}$-valued canonical momentum $\left(\Pi_{\mathcal{M}}{ }^{A B}, \Pi_{\mathcal{M} A B}\right)$.
To be explored....

Conclusions

- There exist generalised $\operatorname{SU}(8)$ and affine connections that satisfy all required covariance properties.
- These cannot be written in terms of just \mathcal{V} and $\partial \mathcal{V}$, at least not without 'breaking up' 56-bein.
- SUSY theory smartly picks just the right combinations which are insensitive to ambiguities/difficulties encountered in generalised geometry constructions \rightarrow new geometry 'knows about' supersymmetry.
- Only in this supersymmetric context 'old' results agree with more recent EFT constructions.
- Full geometry remains to be worked out
- New theories: ω-deformations, other,...?

