Conformal higher spins and partition functions

Arkady Tseytlin

"Partition function of free conformal higher spin theory," with M. Beccaria and X. Bekaert, arXiv:1406.3542
"Partition Functions and Casimir Energies in Higher Spin $\mathrm{AdS}_{d+1} / \mathrm{CFT}_{d}$, " with S. Giombi and I. Klebanov, arXiv:1402.5396
"On partition function and Weyl anomaly of conformal higher spins," arXiv:1309.0785
"Weyl anomaly of conformal higher spins on six-sphere," arXiv:1310.1795

Why conformal higher spin theory?
$s=1$: Maxwell vector, $s=2$: Weyl graviton, etc.

- fundamental role of local conformal invariance?
very constraining at quantum level: anomalies and unitarity issues
- existence of consistent (UV finite, anomaly free) conformal higher spin theories?
- cancel anomalies: supersymmetry or summation over all spins?
- summation over spins may resolve unitarity issue?
- a limit of some string theory or alternative to string theory?
recent interest:
formal relations between "triple" of theories:
\star free scalar CFT in M^{d} (e.g. $R^{d}, S^{d}, S^{1} \times S^{d-1}, \ldots$)
\star conformal higher spins in M^{d}
\star massless higher spins in $A d S_{d+1}$ with boundary M^{d}

Tree-level: CHS as induced theory from $\int \Phi \partial^{2} \Phi+\phi_{s} \cdot J_{s}(\Phi)$; \log singular part of action of massless HS in AdS: $\left.\varphi_{s}\right|_{M^{d}}=\phi_{s}$

One-loop level: CHS partition function as ratio of CFT or massless AdS higher spin partition functions

$$
\left.Z_{s}\right|_{M^{d}}=\left.\frac{Z_{-s}}{Z_{+s}}\right|_{M^{d}}=\left.\frac{Z_{s}^{(-)}}{Z_{s}^{(+)}}\right|_{A d S_{d+1}}
$$

Conformal higher spin (CHS) theory

- maximal gauge invariance and irreducibility consistent with locality:
pure spin states off shell [Fradkin, AT 85]

$$
d=4: \quad L_{s}=\phi_{s} P_{s} \partial^{2 s} \phi_{s}, \quad s=1,2, \ldots
$$

$\phi_{s}=\left(\phi_{m_{1} \ldots m_{s}}\right)$ totally symmetric, $\Delta=2-s$
$\left(P_{s}\right)_{n_{1} \ldots n_{s}}^{m_{1} \ldots m_{s}}$ totally symmetric traceless transverse projector e.g. $\left(P_{1}\right)_{n}^{m}=\delta_{n}^{m}-\frac{\partial^{m} \partial_{n}}{\partial^{2}}$

- Gauge invariances: $\quad \delta \phi_{s}=\partial \xi_{s-1}+\eta_{2} \lambda_{s-2}$ differential (like reparam.) + algebraic (like Weyl)
- cf. two-derivative massless higher spin fields:
$L_{s}=\varphi_{s} \bar{P}_{s} \partial^{2} \varphi_{s}$ where \bar{P}_{s} chosen to have locality
$\bar{P}_{1}=P_{1}, \quad \bar{P}_{2}=P_{2}-2 P_{0}$ (Einstein)
mixture of spins off-shell

Free CHS action in flat $d=4$

$$
S_{s}=\int d^{4} x \phi_{s} P_{s} \partial^{2 s} \phi_{s}=\int d^{4} x(-1)^{s} C_{s} C_{s}
$$

$\phi_{s}=\left(\phi_{\mu_{1} \ldots \mu_{s}}\right) \equiv \phi_{\mu(s)}$ totally symmetric
$P_{s}=\left(P_{\nu_{1} \ldots \nu_{s}}^{\mu_{1} \ldots \mu_{s}}\right) \equiv P_{\nu(s)}^{\mu(s)}$ transverse traceless symm. in μ and ν
$C_{s} \equiv C_{\mu(s), \nu(s)}=\left(C_{\mu_{1} \ldots \mu_{s}, \nu_{1} \ldots \nu_{s}}\right)$ generalized Weyl tensor
$C_{\mu(s), \nu(s)}=\mathcal{P}_{\mu(s), \nu(s)}^{\lambda(s), \rho(s)} \partial_{\lambda(s)}^{s} \phi_{\rho(s)}$
\mathcal{P}_{s} makes $C_{\mu(s), \nu(s)}$ symmetric and traceless in $\mu(s)$ and $\nu(s)$ and antisymmetric between:
$C_{\mu(s), \nu(s)}$ in (s, s) representation of $S O(4)$

Alternative: $C_{\mu_{1} \nu_{1} \mu_{2} \nu_{2} \ldots \mu_{s} \nu_{s}}$ antisymm. in each μ_{i} and ν_{i} $C_{1}=\left(F_{\mu \nu}\right)$ Maxwell, $C_{2}=\left(C_{\mu_{1} \nu_{1} \mu_{2} \nu_{2}}\right)$ linearized Weyl tensor any even dimension d :

$$
S_{s}=\int d^{d} x \phi_{s} P_{s} \partial^{2 s+d-4} \phi_{s}=(-1)^{s} \int d^{d} x C_{s} \partial^{d-4} C_{s}
$$

ϕ_{s} and C_{s} have d-independent $S O(d, 2)$ scaling dimensions

$$
\Delta\left(\phi_{s}\right)=2-s, \quad \Delta\left(C_{s}\right)=2
$$

- Free (non-unitary) higher spin conformal theory in flat space
- Generalization to curved background?

Weyl-invariant quadratic action known for $s=1$ and $s=2$; kinetic operator $K=D^{2 s+d-4}+\ldots-$ complicated for $s \geqslant 3$ reparametrization and Weyl invariant and consistent with CHS gauge symm. for any $g_{\mu \nu}$ solving Bach eqs of Weyl gravity
K simplifies / factorizes on conformally-flat background:
found for S^{4} [AT 13; Metsaev 14; Nutma,Taronna 14]
and $S^{1} \times S^{3}$ [Bekaert, Beccaria, AT 14]

- full interacting theory? need to include all higher spins
- cf. standard 2-derivative massless HS theory: introducing consistent interactions difficult - no-go theorems; incompatibility between higher-spin gauge symmetries and minimal coupling with gravity around flat background; resolved on constant curvature (A)dS background;
[Fradkin, Vasiliev 87; Vasiliev 90]
led to eqs for tower of interacting massless higher spins
- CHS theory is different:
interactions consistent with coupling to gravity even around flat background and admits an action principle
non-linear CHS theory can be defined as induced theory
[AT 02; Segal 02; Bekaert, Joung, Mourad 10;
Giombi, Klebanov, Pufu, Safdi, Tarnopolsky 13]
- $\ln \varepsilon_{\mathrm{UV}}$ term in eff. action of free scalar CFT $+\phi_{s} \cdot J_{s}$ with source ("shadow") fields ϕ_{s} for all conserved symmetric higher spin currents J_{s} \rightarrow local functional of ϕ_{s} starting with CHS kinetic term
- Interactions: $\sum \partial^{n_{m}} \phi_{s_{1}} \ldots \phi_{s_{m}}, n_{m}=d+\sum_{i=1}^{m}\left(s_{i}-2\right)$
[Bekaert, Joung, Mourad 10]
Weyl graviton couples minimally to higher spins:
no increase of number of derivatives
- quantum consistency? anomalies?

Interactions with graviton - curved space: conformal \rightarrow Weyl symmetry: $g_{m n}^{\prime}=\lambda^{2}(x) g_{m n}$ conformal anomaly free HS quantum theories?

$$
T_{m}^{m}=-\mathrm{a} R^{*} R^{*}+\mathrm{c} C^{2}
$$

Weyl gravity $(s=2)$ is anomalous: $\quad \mathrm{a}_{2}=\frac{87}{20}, \quad \mathrm{c}_{2}=\frac{199}{30}$

- one possible resolution - supersymmetry
$\mathcal{N}=4$ conformal supergravity $+4 \mathcal{N}=4$ Maxwell multiplets is anomaly free: $\mathrm{a}=\mathrm{c}=0$ [Fradkin, AT 82]
- Another option: CHS theory with sum over all spins
$\star \sum_{s=0}^{\infty} \mathrm{a}_{s}=0$ in a regularization [Giombi, Klebanov et al 13; AT 13]
\star same for Casimir energy on S^{3} (a priori unrelated)
$\sum_{s=0}^{\infty} E_{s}=0$ [Bekaert, Beccaria, AT 14]
\star conjecture: $\quad \sum_{s=0}^{\infty} \mathrm{C}_{s}=0$

$$
S_{0}=\int d^{d} x \Phi_{r}^{*} \partial^{2} \Phi_{r}, \quad \Delta(\Phi)=\frac{1}{2}(d-2), \quad r=1, \ldots, N
$$

tower of conserved higher spin currents

$$
J_{\mu_{1} \ldots \mu_{s}}=\Phi_{r}^{*} \partial_{\mu_{1}} \ldots \partial_{\mu_{s}} \Phi_{r}+\ldots,\left.\quad \partial \cdot J_{s}\right|_{\text {on-shell }}=0
$$

"single-trace" CFT primaries: "singlet sector"

- introduce sources ϕ_{s}

$$
\begin{aligned}
\int d^{d} x J_{s}(x) \phi_{s}(x), & J_{s}
\end{aligned} \sim \Phi_{r}^{*} \partial^{s} \Phi_{r} . ~\left(\phi_{s}\right)=d-\Delta_{+} \equiv \Delta_{-}=2-s
$$

$\star \phi_{s}$: same representation as spin s "shadow" conformal field $\star \phi_{s}$: same gauge symmetries and dimension as CHS field $\star \phi_{s}=\left.\varphi_{s}\right|_{M^{d}}$ - bndry value of massless higher spin s in AdS_{d+1}

- Induced action or generating functional for CFT correlators:

$$
\begin{gathered}
\Gamma=-\ln Z\left(\phi_{s}\right)=\frac{1}{2} N \ln \operatorname{det}\left(\partial^{2}+\phi_{s} P_{s} \partial^{s}\right) \\
=\frac{1}{2} N \int d^{d} x d^{d} x^{\prime} \phi_{s}(x) \mathrm{K}\left(x, x^{\prime}\right) \phi_{s}\left(x^{\prime}\right)+O\left(\phi_{s}^{3}\right) \\
\mathrm{K}=\left\langle J_{s}(x) J_{s}\left(x^{\prime}\right)\right\rangle=\frac{P_{s}\left(x-x^{\prime}\right)}{\left(\left|x-x^{\prime}\right|^{2}+\varepsilon_{\mathrm{UV}}^{2}\right)^{s+d-2}} \rightarrow \quad P_{s}(p) p^{2 s+d-4} \ln \frac{p^{2}}{\varepsilon_{\mathrm{UV}}^{2}} \\
\Gamma= \\
\end{gathered}
$$

- AdS_{d+1} dual: massless higher spin (MHS) theory

$$
\begin{aligned}
& S_{\mathrm{MHS}}=N \int d^{d+1} x \sqrt{g} \phi_{s}\left(-\nabla^{2}+\mathrm{m}_{s}^{2}\right) \phi_{s}+\ldots \\
& \quad \mathrm{m}_{s}^{2}=s^{2}+(d-5) s-2 d+4 \\
& \quad S_{\mathrm{MHS}}\left(\left.\varphi_{s}\right|_{M^{d}} \sim \phi_{s}\right)=N \ln \varepsilon_{\mathrm{IR}} S_{\mathrm{CHS}}\left(\phi_{s}\right)+\ldots
\end{aligned}
$$

"tree-level" relation between CHS in M^{d} and MHS in AdS_{d+1}

- Original example of $\mathcal{N}=4$ SYM: background field sources for superconformal currents $-\mathcal{N}=4$ conformal SG multiplet integrate out SYM fields:

$$
Z_{\mathrm{SYM}}(h, \ldots)=\int[d A \ldots] \exp -S_{\mathrm{SYM}}(A, . . ; h, \ldots)
$$

$\log \mathrm{UV}$ term in $\ln Z_{\mathrm{SYM}}$ is 1-loop exact (related to trace anomaly) given by $\mathcal{N}=4$ conformal supergravity action [Liu, AT 98]

$$
\ln Z_{\mathrm{SYM}}=\mathrm{c} \ln \varepsilon_{\mathrm{UV}} S_{\mathrm{CSG}}+\mathrm{fin}, \quad S_{\mathrm{CSG}}=\int d^{4} x \sqrt{g} C^{2}+\ldots
$$

- Trace anomaly (2-, 3-functions of s-c currents) protected get same on AdS_{5} side: $\mathcal{N}=8, d=5$ supergravity action on Dirichlet problem solution: \log IR term is $\mathcal{N}=4$ CSG action:

$$
\int d^{5} x \sqrt{g} R \rightarrow \ln \varepsilon_{\mathrm{IR}} \int d^{4} x \sqrt{g} C^{2}+\text { fin }
$$

Simplest CFT data: spectrum of conformal operators "one-particle" partition function $\quad \mathcal{Z}=\sum_{n} \mathrm{~d}_{n} q^{\Delta_{n}}$
radial quantization: operators in $R^{d} \rightarrow$ states in $R \times S^{d-1}$ spectrum of dimensions / energies $\omega_{n}=\Delta_{n}$ encoded in in partition function in $S_{\beta}^{1} \times S^{d-1}: \quad-\ln Z=\frac{1}{2} \ln \operatorname{det}\left(-\nabla^{2}+\ldots\right)$ "one-particle" or canonical partition function

$$
\mathcal{Z}=\operatorname{tr} e^{-\beta H}=\sum_{n} \mathrm{~d}_{n} e^{-\beta \omega_{n}}=\sum_{n} \mathrm{~d}_{n} q^{\Delta_{n}}, \quad q \equiv e^{-\beta}
$$

"multi-particle" or grand canonical partition function

$$
\ln Z=-\sum_{n} d_{n} \ln \left(1-e^{-\beta \omega_{n}}\right)=\sum_{m=1}^{\infty} \frac{1}{m} \mathcal{Z}\left(q^{m}\right)
$$

Two methods to compute $\mathcal{Z}(q)=\sum_{n} \mathrm{~d}_{n} q^{\Delta_{n}}$:
I. Operator counting in flat R^{d} : [Cardy 91; Kutasov, Larsen 00] enumerate all conformal primaries and their descendants modulo eqs. of motion and identities
II. Partition function on $S_{\beta}^{1} \times S^{d-1}$: define CFT on time \times spatial sphere and compute determinants

Counting method:

conformal scalar: $\quad S_{\text {c.s. }}=\int d^{d} x(\partial \Phi)^{2}, \quad \Delta(\Phi)=\frac{1}{2}(d-2)$

- lowest dim conformal operator Φ contributes $q^{\frac{1}{2}(d-2)}$
- its conformal descendants $\partial_{\mu_{1}} \ldots \partial_{\mu_{k}} \Phi$: each power of derivative in given direction enters only once get factor $\sum_{k=0}^{\infty} q^{k}=(1-q)^{-1}$ from each of d directions
- but some operators vanish due to e.o.m. $\partial^{2} \Phi=0$
$\Delta\left(\partial^{2} \Phi\right)=\frac{1}{2}(d-2)+2-$ need subtract $q^{\frac{1}{2}(d-2)+2}$ dressed again by derivative factor $(1-q)^{-d}$

Total partition function of conformal scalar

$$
\mathcal{Z}_{\text {c.s. }}(q)=\frac{q^{\frac{d-2}{2}}\left(1-q^{2}\right)}{(1-q)^{d}}
$$

$d=4$ Maxwell vector: $\quad S_{1}=-\frac{1}{4} \int d^{4} x F_{\mu \nu} F^{\mu \nu}$

- lowest dimension gauge-invariant operator: $F_{\mu \nu}$:
$\Delta=2, \mathrm{~d}=6$ components $\rightarrow 6 q^{2}$
- its derivatives give $(1-q)^{-4}$ factor
- this overcounts ignoring e.o.m. $\partial^{\mu} F_{\mu \nu}=0$ and gauge identities $\partial^{\mu} F_{\mu \nu}^{*}=0$ (and their derivatives) implying subtraction of $-(4+4) q^{3}$ times $(1-q)^{-4}$
- but also overcounts as identities descending from $\partial_{\mu} \partial_{\nu} F^{\mu \nu}=0$ and $\partial^{\mu} \partial^{\nu} F_{\mu \nu}^{*}=0$ of $\Delta=4$ are trivial requires adding back $2 q^{4}(1-q)^{-4}$
Total $d=4$ vector partition function

$$
\mathcal{Z}_{1}(q)=\frac{6 q^{2}-(4+4) q^{3}+(1+1) q^{4}}{(1-q)^{4}}=\frac{2 q^{2}(3-q)}{(1-q)^{3}}
$$

[generalization: conformal $s=1$ in even $d: \quad \int d^{d} x F_{\mu \nu} \partial^{d-4} F_{\mu \nu}$]

Similar count for operators of singlet sector of $U(N)$ scalar theory:
$J_{0}=\Phi_{r}^{*} \Phi_{r}$ and conserved $J_{s} \sim \Phi_{r}^{*} \partial^{s} \Phi_{r}$ and their descendants
$\Delta\left(J_{s}\right)=\Delta_{+}=s+d-2$
analog of e.o.m.: $\partial^{\mu_{1}} J_{\mu_{1} \ldots \mu_{s}}=0$ is rank $s-1$ with $\Delta=\Delta_{+}+1$

$$
\begin{aligned}
& \mathcal{Z}_{+0}=\frac{q^{d-2}}{(1-q)^{d}}, \quad \mathcal{Z}_{+s}=\frac{\mathrm{n}_{s} q^{\Delta_{+}}-\mathrm{n}_{s-1} q^{\Delta_{+}+1}}{(1-q)^{d}} \\
& \mathrm{n}_{s}=(2 s+d-2) \frac{(s+d-3)!}{(d-2)!s!}
\end{aligned}
$$

$\mathrm{n}_{s}=$ components of symmetric traceless rank s tensor in d dim

$$
d=4: \quad \mathcal{Z}_{+s}=\frac{(s+1)^{2} q^{s+2}-s^{2} q^{s+3}}{(1-q)^{4}}
$$

\mathcal{Z}_{+s} has interpretation of character $\chi_{\left(\Delta_{+}, s, 0, \ldots, 0\right)}(q, 1, \ldots, 1)$ of short rep. of $S O(d, 2)$ with $\operatorname{dim} \Delta_{+}$and spin s [Dolan 05]

Full singlet sector partition function:

$$
\mathcal{Z}_{+}=\sum_{s=0}^{\infty} \mathcal{Z}_{+s}=\frac{q^{d-2}(1+q)^{2}}{(1-q)^{2 d-2}}=\left[\mathcal{Z}_{\text {c.s. }}(q)\right]^{2}
$$

- N^{0} term in singlet-sector $\ln Z$ of $U(N)$ scalar on $S^{1} \times S^{d-1}$
[Shenker, Yin 11; Giombi, Klebanov, AT 14]
- relation between characters of $S O(2, d)$ (cf. [Flato, Fronsdal])
$\mathrm{AdS}_{d+1} / \mathrm{CFT}_{d}$ interpretation:
$J_{s} \leftrightarrow \varphi_{s}$ - massless higher spin gauge field in AdS_{d+1}
$\mathcal{Z}_{+s}(q)=\mathcal{Z}_{s}^{(+)}(q)-$ massless spin s partition function in thermal AdS_{d+1} with $S^{1} \times S^{d-1}$ boundary
[Gopakumar, Gupta, Lal 11, 12; Giombi, Klebanov, AT 14]

Massless higher spin partition function in AdS_{d+1}

 quadratic action of massless symmetric HS fields in $A d S_{d+1}$ gauge fixing / ghosts \rightarrow 1-loop massless HS partition function:$$
\begin{aligned}
& Z_{s}\left(\mathrm{AdS}_{\mathrm{d}+1}\right)=\left[\frac{\operatorname{det}\left(-\nabla^{2}+\mathrm{m}_{s-1}^{\prime 2}\right)_{s-1 \perp}}{\operatorname{det}\left(-\nabla^{2}+\mathrm{m}_{s}^{2}\right)_{s \perp}}\right]^{1 / 2} \\
& \mathrm{~m}_{s}^{2}=(s-2)(s+d-2)-s, \quad \mathrm{~m}_{s-1}^{\prime 2}=(s-1)(s+d-2)
\end{aligned}
$$

$d=2$: [Gaberdiel, Gopakumar, Saha 10]; $d \geqslant 3$: [Gupta, Lal 12]

- mass m spin s field in $\operatorname{AdS}_{d+1}:\left(-\nabla^{2}+\mathrm{m}_{s}^{2}+m^{2}\right) \varphi_{s}=0$, solutions near $z \rightarrow 0$ bndry of $d s^{2}=z^{-2}\left(d z^{2}+d x_{n} d x_{n}\right)$

$$
\varphi_{s} \sim z^{\Delta_{ \pm}-s}, \quad \Delta_{ \pm}=\frac{1}{2} d \pm \sqrt{\left(s+\frac{1}{2} d-2\right)^{2}+m^{2}}
$$

- standard choice of b.c.: $\Delta=\Delta_{+}$
φ_{s} and ghost terms $\left(m^{2}=0\right): \mathrm{m}_{s}^{2}=\Delta_{+}\left(\Delta_{+}-d\right)-s$

$$
\Delta_{+}=s+d-2, \quad \Delta_{+}^{\prime}=\Delta_{+}+1
$$

same as dimensions of J_{s} and $\partial \cdot J_{s}$
massless HS partition function in thermal AdS_{d+1}

$$
\begin{aligned}
& \ln Z_{s}^{(+)}=\sum_{m=1}^{\infty} \frac{1}{m} \mathcal{Z}_{s}^{(+)}\left(q^{m}\right) \\
& \mathcal{Z}_{s}^{(+)}(q)=\frac{\mathrm{n}_{s} q^{s+d-2}-\mathrm{n}_{s-1} q^{s+d-1}}{(1-q)^{d}} \\
& \mathcal{Z}_{s}^{(+)}(q)=Z_{+s}(q)
\end{aligned}
$$

massless HS contribution \leftrightarrow current contribution ghost contribution \leftrightarrow current conservation contribution

Back to CHS: $\quad \mathcal{Z}_{s}(q)$ for $s>1 \quad(d=4)$
counting method straightforward (modulo group theory)
$s=2$: Weyl graviton

$$
S_{2}=\int d^{4} x \sqrt{g} C_{\mu \nu \lambda \rho} C^{\mu \nu \lambda \rho}
$$

linearized theory in R^{4} :

$$
\mathcal{Z}_{2}=\sum_{n} \mathrm{~d}_{n} q^{\Delta_{n}}=\frac{10 q^{2}-18 q^{4}+8 q^{5}}{(1-q)^{4}}
$$

count gauge-invariant conformal operators built out of linearized Weyl tensor $C \sim \partial \partial h$ modulo identities and e.o.m. derivatives \rightarrow universal denominator $(1-q)^{4}$; find numerator

- off-shell components of $C_{\mu_{1} \nu_{1} \mu_{2} \nu_{2}}$:
$\Delta(C)=2,10$ independent components $\rightarrow 10 q^{2}$
- non-trivial gauge identities on $C \sim \partial \partial h$

$$
\mathcal{B}^{\mu_{1} \mu_{2}} \equiv \varepsilon^{\mu_{1} \nu_{1} \gamma_{1} \delta_{1}} \varepsilon^{\mu_{2} \nu_{2} \gamma_{2} \delta_{2}} \partial_{\nu_{1}} \partial_{\nu_{2}} C_{\gamma_{1} \delta_{1} \gamma_{2} \delta_{2}}=0
$$

$\Delta\left(\mathcal{B}^{\mu \nu}\right)=4, \quad 9$ components, subtracting $9 q^{4}$

- subtracting all derivatives of $\mathcal{B}^{\mu \nu}$ overcounts:
$\partial_{\mu} \mathcal{B}^{\mu \lambda}=0$ with dimension 5 and 4 components: add back $4 q^{5}$ \star off-shell count thus gives

$$
\mathcal{Z}_{2}^{\text {off-sh. }}=\frac{10 q^{2}-9 q^{4}+4 q^{5}}{(1-q)^{4}}
$$

- next subtract descendant operators $\partial \ldots \partial C$ that vanish due to e.o.m. for dynamical field $\phi_{2}=\left(h_{\mu \nu}\right)$

$$
B_{\mu_{1} \mu_{2}} \equiv \partial^{\nu_{1}} \partial^{\nu_{2}} C_{\mu_{1} \nu_{1} \mu_{2} \nu_{2}}=0
$$

count of symmetric traceless $B_{\mu_{1} \mu_{2}}$ same as for $\mathcal{B}^{\mu_{1} \mu_{2}}$:
subtract $9 q^{4}$, add back $4 q^{5}$ to account for identity $\partial^{\mu} B_{\mu \lambda}=0$ \star contribution of equations of motion to be subtracted

$$
\mathcal{Z}_{2}^{\text {e.o.m. }}=\frac{9 q^{4}-4 q^{5}}{(1-q)^{4}}
$$

total:

$$
\mathcal{Z}_{2}=\mathcal{Z}_{2}^{\text {off-sh. }}-\mathcal{Z}_{2}^{\text {e.o.m. }}=\frac{10 q^{2}-2\left(9 q^{4}-4 q^{5}\right)}{(1-q)^{4}}
$$

common features of $s=1,2$ cases, generalize to $s>2$ in $d=4$:
\star contributions of e.o.m. and identities are same - double
\star count of e.o.m. is identical to count of conserved traceless
rank s current operator of dimension $\Delta_{+}=s+d-2$
$s>2: \quad S_{s} \sim \int d^{4} x C_{s} C_{s}, \quad d=4$

$$
\mathcal{Z}_{s}=\frac{2(2 s+1) q^{2}-2(s+1)^{2} q^{s+2}+2 s^{2} q^{s+3}}{(1-q)^{4}}
$$

Weyl tensor $C_{\mu_{1} \nu_{1} \ldots . \mu_{s} \nu_{s}} \sim \partial^{s} \phi_{s}:(s, s, 0, . ., 0)$ representation of $S O(d)$

$$
\begin{aligned}
& \operatorname{dim}(s, s)=\mathrm{n}_{(s, s)}=\frac{(2 s+d-4)(2 s+d-3)(2 s+d-2)(s+d-5)!(s+d-4)!}{s!(s+1)!(d-2)!(d-4)!} \\
& \left.\quad \mathrm{n}_{(s, s)}\right|_{d=4}=2(2 s+1)
\end{aligned}
$$

- off shell count: $\Delta\left(C_{s}\right)=2 \rightarrow 2(2 s+1) q^{2}$
- gauge identities: $\mathcal{B}^{\mu_{1} \cdots \mu_{s}}=0, \quad \partial_{\mu_{1}} \mathcal{B}^{\mu_{1} \cdots \mu_{s}}=0$

$$
\mathcal{B}^{\mu_{1} \cdots \mu_{s}} \equiv \varepsilon^{\mu_{1} \nu_{1} \gamma_{1} \delta_{1}} \cdots \varepsilon^{\mu_{s} \nu_{s} \gamma_{s} \delta_{s}} \partial_{\nu_{1}} \cdots \partial_{\nu_{s}} C_{\gamma_{1} \delta_{1} \cdots \gamma_{s} \delta_{s}}
$$

$\mathcal{B}^{\mu_{1} \cdots \mu_{s}}: \Delta=s+2$, symmetric traceless in $(s, 0, \ldots, 0)$ of $S O(d)$

$$
\mathrm{n}_{s}=(2 s+d-2) \frac{(s+d-3)!}{(d-2)!s!},\left.\quad \mathrm{n}_{s}\right|_{d=4}=(s+1)^{2}
$$

- subtract $(s+1)^{2} q^{s+2}$; add back $s^{2} q^{s+3}$ ("conservation" identity)

$$
\mathcal{Z}_{s}^{\text {off }- \text { sh. }}=\frac{2(2 s+1) q^{2}-(s+1)^{2} q^{s+2}+s^{2} q^{s+3}}{(1-q)^{4}}
$$

- e.o.m. for conformal spin s : generalized linearized Bach eqs

$$
B_{\mu_{1} \ldots \mu_{s}} \equiv \partial^{\nu_{1}} \ldots \partial^{\nu_{s}} C_{\mu_{1} \nu_{1} \ldots \mu_{s} \nu_{s}}=0, \quad \partial^{\mu_{1}} B_{\mu_{1} \ldots \mu_{s}}=0
$$

$B_{\mu_{1} \ldots \mu_{s}}$ - same count as for $\mathcal{B}^{\mu_{1} \cdots \mu_{s}}$

$$
\begin{aligned}
& \mathcal{Z}_{s}^{\text {e.o.m. }}=\frac{(s+1)^{2} q^{s+2}-s^{2} q^{s+3}}{(1-q)^{4}} \\
& \mathcal{Z}_{s}=\mathcal{Z}_{s}^{\text {off }- \text { sh. }}-\mathcal{Z}_{s}^{\text {e.o.m. }}=\frac{2(2 s+1) q^{2}-2(s+1)^{2} q^{s+2}+2 s^{2} q^{s+3}}{(1-q)^{4}}
\end{aligned}
$$

Generalization to arbitrary even d
CFT_{d} interpretation / analogy:

$$
\mathcal{Z}_{s}=\mathcal{Z}_{s}^{\text {off-sh. }}-\mathcal{Z}_{s}^{\text {e.o.m. }}=\mathcal{Z}_{-s}-\mathcal{Z}_{+s}
$$

$\mathcal{Z}_{s}^{\text {e.o.m. }}=\mathcal{Z}_{+s}=$ counts conformal spin s current operators J_{s}
$\Delta\left(J_{s}\right)=\Delta_{+}=s+d-2\left(\right.$ analog of $\left.B_{s} \sim \partial^{s} C_{s}\right)$
$\mathcal{Z}_{s}^{\text {off }- \text { sh. }}=\mathcal{Z}_{-s}=$ counts spin s shadow operators $\widetilde{J}_{s}\left(\right.$ analogs of $\left.\phi_{s}\right)$
$\Delta\left(\widetilde{J}_{s}\right)=\Delta_{-}=d-\Delta_{+}=2-s$

$$
\mathcal{Z}_{+s}=\frac{\mathrm{n}_{s} q^{\Delta_{+}}-\mathrm{n}_{s-1} q^{\Delta_{+}+1}}{(1-q)^{d}}, \quad \Delta_{+}=s+d-2
$$

guess for \mathcal{Z}_{-s} : replace Δ_{+}by $\Delta_{-}=d-\Delta_{+}=2-s$
but there is "correction" $\sigma_{s}=$ character of conformal Killing tensor rep.

$$
\mathcal{Z}_{-s}=\frac{\mathrm{n}_{s} q^{2-s}-\mathrm{n}_{s-1} q^{1-s}}{(1-q)^{d}}+\sigma_{s}(q)
$$

$$
\sigma_{s}(q)=\chi_{(s-1, s-1,0, \ldots, 0)}(q, 1, \ldots, 1)
$$

total \mathcal{Z}_{-s} contains only positive powers of q

$$
\mathcal{Z}_{-s}=\widehat{\mathcal{Z}}_{s}(q)-\mathcal{Z}_{+s}(q), \quad \widehat{\mathcal{Z}}_{s} \equiv \frac{1}{(1-q)^{d}} \sum_{m=2}^{d-2}(-1)^{m} \mathrm{c}_{s, m} q^{m}
$$

$c_{s, m} \operatorname{dim}$ of $\mathfrak{s o}(d)$ reps with 2 rows of s boxes and $m-2$ of 1 box:

$$
\begin{aligned}
\mathrm{c}_{s, m} & =\operatorname{dim}\left(s, s, 1^{m-2}\right) \\
& =\frac{(2 s+d-2)!(s+d-3)!(s+d-4)!(s+d-3-m)!(s+m-3)!}{(2 s+d-5)!(s+m-1)!(s+d-1-m)!s!(s-1)!(d-2)!(d-2-m)!(m-2)!}
\end{aligned}
$$

$d=6:$

$$
\begin{aligned}
\mathrm{n}_{s} & =\frac{1}{12}(s+1)(s+2)^{2}(s+3) \\
\mathrm{c}_{s, 2} & =\mathrm{c}_{s, 4}=\frac{1}{12}(s+1)^{2}(s+2)^{2}(2 s+3) \\
\mathrm{c}_{s, 3} & =\frac{1}{6} s(s+1)(s+2)(s+3)(2 s+3)
\end{aligned}
$$

CHS partition function in even $d \geqslant 4$

$$
\begin{aligned}
& \mathcal{Z}_{s}=\mathcal{Z}_{-s}(q)-\mathcal{Z}_{+s}(q)=\widehat{\mathcal{Z}}_{s}(q)-2 \mathcal{Z}_{+s}(q) \\
& =\frac{1}{(1-q)^{d}}\left[\sum_{m=2}^{d-2}(-1)^{m} \mathrm{c}_{s, m} q^{m}-2 \mathrm{n}_{s} q^{s+d-2}+2 \mathrm{n}_{s-1} q^{s+d-1}\right]
\end{aligned}
$$

- \mathcal{Z}_{s} can be expressed in terms of characters of $\mathfrak{s o}(d, 2)$ Verma modules
- group-theoretic perspective: \mathcal{Z}_{+s} and \mathcal{Z}_{-s}
associated with conformal current J_{s} and shadow field \widetilde{J}_{s}
- J_{s} generates unitary irrep of $\mathfrak{s o}(d, 2)$
\widetilde{J}_{s} generates reducible indecomposable $\mathfrak{s o}(d, 2)$ rep. non-unitarizable: $\Delta_{-}=2-s$ is below unitarity bound
- "Weyl-tensor" $\partial^{s} \widetilde{J}_{s} \leftrightarrow C_{s} \sim \partial^{s} \phi_{s}$ with $\Delta=2$ is conf. primary
- analysis of relevant $\mathfrak{s o}(d, 2)$ modules [Shaynkman, Tipunin, Vasiliev 04]

Method II: Partition function on $S^{1} \times S^{d-1}$
conformal scalar:

$$
\begin{aligned}
& \ln Z_{\text {c.s. }}=-\frac{1}{2} \ln \operatorname{det} \mathcal{O}_{0}, \quad \mathcal{O}_{0}=-D^{2}+\frac{d-2}{4(d-1)} R \\
& D^{2}=\partial_{0}^{2}+\nabla^{2}, \quad \nabla^{2}=\nabla^{i} \nabla_{i}=D_{S^{d-1}}^{2}
\end{aligned}
$$

$\partial_{0}=\partial_{t}, \quad t \in(0, \beta) ; \quad R=R\left(S^{d-1}\right)=(d-1)(d-2)$

$$
\mathcal{O}_{0}=-\partial_{0}^{2}-\nabla^{2}+\frac{1}{4}(d-1)^{2}
$$

eigenvalues and multiplicities of Laplacian $-\nabla^{2}$ on S^{d-1}

$$
\lambda_{n}=n(n+d-2), \quad \mathrm{d}_{n}=(2 n+d-2) \frac{(n+d-3)!}{n!(d-2)!}
$$

eigenvalues of \mathcal{O}_{0}

$$
\lambda_{k, n}=w^{2}+\omega_{n}^{2}, \quad w=\frac{2 \pi k}{\beta}, \quad \omega_{n}=n+\frac{1}{2}(d-2)
$$

$-\ln Z_{\text {c.s. }}=\frac{1}{2} \ln \operatorname{det} \mathcal{O}_{0}=\frac{1}{2} \sum_{k, n} \mathrm{~d}_{n} \ln \lambda_{k, n}=-\sum_{m=1}^{\infty} \mathcal{Z}_{\text {c.s. }}(m \beta)$

$$
\mathcal{Z}_{\text {c.s. }}(\beta)=\sum_{n=0}^{\infty} d_{n} e^{-\beta\left[n+\frac{1}{2}(d-2)\right]}=\frac{q^{\frac{d-2}{2}}\left(1-q^{2}\right)}{(1-q)^{d}}
$$

same as in operator counting method
$d=4$ Maxwell vector: $S_{1}=-\frac{1}{4} \int d^{4} x \sqrt{g} F_{\mu \nu} F^{\mu \nu}$ $Z\left(S^{1} \times S^{3}\right)$ in Lorentz gauge ($R_{00}=0, R_{i j}=2 g_{i j}$)

$$
\begin{aligned}
& Z_{1}=\frac{\operatorname{det}\left(-D^{2}\right)}{\left[\operatorname{det}\left(-g_{\mu \nu} D^{2}+R_{\mu \nu}\right)\right]^{1 / 2}}=\left[\frac{\operatorname{det}\left(-D^{2}\right)}{\operatorname{det}\left(-g_{i j} D^{2}+R_{i j}\right)}\right]^{1 / 2} \\
& =\frac{1}{\left[\operatorname{det}\left(-g_{i j} D^{2}+R_{i j}\right)_{\perp}\right]^{1 / 2}}=\frac{1}{\left[\operatorname{det} \mathcal{O}_{1 \perp}\right]^{1 / 2}} \\
& \mathcal{O}_{1 i j}=\left(-\partial_{0}^{2}-\nabla^{2}+2\right)_{i j}
\end{aligned}
$$

same found directly in $A_{0}=0$ gauge
from spectrum of 3-vector Laplacian $\left(-\nabla^{2}\right)_{1 \perp}$ on S^{3} get spectrum of $\mathcal{O}_{1 \perp}\left(\Delta_{0} \rightarrow i w, w=\frac{2 \pi k}{\beta}\right)$

$$
\begin{gathered}
\lambda_{k, n}=w^{2}+\omega_{n}^{2}, \quad \omega_{n}=n+2, \quad \mathrm{~d}_{n}=2(n+1)(n+3) \\
-\ln Z_{1}=\frac{1}{2} \sum_{k, n} \mathrm{~d}_{n} \ln \lambda_{k, n}=-\sum_{m=1}^{\infty} \mathcal{Z}_{1}(m \beta) \\
\mathcal{Z}_{1}(\beta)=\sum_{n=0}^{\infty} \mathrm{d}_{n} e^{-\beta(n+2)}=\frac{2 q^{2}(3-q)}{(1-q)^{3}}
\end{gathered}
$$

same as in operator counting method
$s=2$: Weyl graviton

$$
S_{2}=\frac{1}{2} \int d^{4} x \sqrt{g} C_{\mu \nu \lambda \rho} C^{\mu \nu \lambda \rho}=\int d^{4} x \sqrt{g}\left(R_{\mu \nu} R_{\mu \nu}-\frac{1}{3} R^{2}\right)
$$

expand Weyl action near curved background to 2 nd order in $\phi_{2}=\left(h_{\mu \nu}\right)$
$L^{(2)}=\frac{1}{4} D^{2} h_{\mu \nu} D^{2} h^{\mu \nu}-R_{\rho}^{\mu} h_{\mu \nu} D^{2} h^{\nu \rho}+\frac{1}{2} R^{\mu \nu} h_{\alpha \beta} D_{\mu} D_{\nu} h^{\alpha \beta}$
$-\frac{3}{2} R_{\rho \sigma} R^{\sigma \mu} h_{\mu \nu} h^{\nu \rho}+\frac{1}{2} R^{\nu \rho} R^{\sigma \mu} h_{\mu \nu} h_{\rho \sigma}+\frac{1}{6}\left(h_{\mu \nu} R^{\mu \nu}\right)^{2}+\frac{1}{4} R_{\mu \nu} R^{\mu \nu} h_{\alpha \beta} h^{\alpha \beta}$
$+\frac{1}{2} R R_{\rho}^{\mu} h_{\mu \nu} h^{\nu \rho}-\frac{1}{9} R^{2} h_{\mu \nu} h^{\mu \nu}$
4-order operator factorizes on conformally-flat background $S^{4}: \quad R_{\mu \nu}=\frac{1}{4} R g_{\mu \nu}, R=12$; on TT tensors $h_{\mu \nu}$

$$
L^{(2)}=\frac{1}{4} h^{\mu \nu} \widetilde{\mathcal{O}}_{2} h_{\mu \nu}, \quad \widetilde{\mathcal{O}}_{2}=\left(-D^{2}+\frac{1}{6} R\right)\left(-D^{2}+\frac{1}{3} R\right)
$$

$S^{1} \times S^{3}: \quad R_{i j}=\frac{1}{3} R g_{i j}, \quad R=6 ; \quad$ gauge $h_{0 i}=h_{00}=0$

$$
\begin{aligned}
& L^{(2)}=\frac{1}{4} h^{i j} \mathcal{O}_{2} h_{i j}, \quad \mathcal{O}_{2}=\left(\partial_{0}^{2}+\nabla^{2}\right)^{2}-\frac{2}{3} R\left(2 \partial_{0}^{2}+\nabla^{2}\right)+\frac{1}{9} R^{2} \\
& \mathcal{O}_{2}=\left[\left(\partial_{0}-1\right)^{2}+\nabla^{2}-3\right]\left[\left(\partial_{0}+1\right)^{2}+\nabla^{2}-3\right]
\end{aligned}
$$

$$
Z_{2}=\frac{1}{\left[\operatorname{det} \mathcal{O}_{2 \perp} \operatorname{det}^{\prime} \mathcal{O}_{1 \perp}\right]^{1 / 2}}
$$

$\mathcal{O}_{1 \perp}=-\partial_{0}^{2}-\nabla^{2}+2$ on V_{i}^{\perp} from $h_{i j} \rightarrow h_{i j}^{\perp}+D_{i} V_{j}+D_{j} V_{i}$
$\left(-\nabla^{2}\right)_{2 \perp}: \quad \lambda_{n}=(n+2)(n+4)-2, \quad \mathrm{~d}_{n}=2(n+1)(n+5)$
$\operatorname{spectrum}\left(\partial_{0} \rightarrow i w, \quad w=2 \pi k \beta^{-1}\right)$

$$
\mathcal{O}_{2 \perp}: \quad \lambda_{k, n}=\left[w^{2}+(n+2)^{2}\right]\left[w^{2}+(n+4)^{2}\right]
$$

factorization related to conformal invariance of spin 2 theory

$$
\begin{aligned}
& \operatorname{det} \mathcal{O}_{2 \perp}: \quad \mathcal{Z}_{2,0}=\sum_{n=0}^{\infty} 2(n+1)(n+5)\left(q^{n+2}+q^{n+4}\right) \\
& \operatorname{det}^{\prime} \mathcal{O}_{1 \perp}: \quad \mathcal{Z}_{1,1}=\sum_{n=1}^{\infty} 2(n+1)(n+3) q^{n+2} \\
& \mathcal{Z}_{2}=\mathcal{Z}_{2,0}(q)+\mathcal{Z}_{1,1}(q)=\frac{10 q^{2}-18 q^{4}+8 q^{5}}{(1-q)^{4}}
\end{aligned}
$$

same as in operator counting method

Conformal higher spin partition function on $S^{1} \times S^{3}$

$$
S_{s}=\int d^{4} x \sqrt{g} \phi_{s}\left(D^{2 s}+\ldots\right) \phi_{s}
$$

$2 s$-order kinetic operator on TT 3d tensors $\phi_{i_{1} \ldots i_{s}}$ factorizes

$$
\begin{gathered}
\quad s=\text { even : } \quad \mathcal{O}_{s}=\prod_{r=1}^{s}\left[\left(\partial_{0}+2 r-s-1\right)^{2}+\nabla^{2}-s-1\right] \\
s=\text { odd : } \quad \mathcal{O}_{s}=-\prod_{r=-\frac{1}{2}(s-1)}^{\frac{1}{2}(s-1)}\left[\left(\partial_{0}+2 r\right)^{2}+\nabla^{2}-s-1\right] \\
\text { e.g. } \mathcal{O}_{3}=\left(\partial_{0}^{2}+\nabla^{2}-4\right)\left[\left(\partial_{0}+2\right)^{2}+\nabla^{2}-4\right]\left[\left(\partial_{0}-2\right)^{2}+\nabla^{2}-4\right] \\
Z_{s}=\frac{1}{\left[\prod_{r=1}^{s} \operatorname{det}^{\prime} \mathcal{O}_{r \perp}\right]^{1 / 2}}
\end{gathered}
$$

$\operatorname{det}^{\prime}:$ first $s-r$ modes are to be omitted spectrum of spin s Laplacian $-\nabla^{2}$ on S^{3}
$\left(-\nabla^{2}\right)_{s \perp}: \quad \lambda_{n}=(n+s)(n+s+2)-s, \mathrm{~d}_{n}=2(n+1)(n+2 s+1)$ for $\mathcal{O}_{r \perp}\left(w=2 \pi k \beta^{-1}\right)$

$$
\begin{aligned}
& \lambda_{k, n}=\prod_{r=1}^{s}\left(w^{2}+\omega_{n, r}^{2}\right), \quad \omega_{n, r}=n+2 r \\
& \operatorname{det}^{\prime} \mathcal{O}_{r \perp}: \quad \mathcal{Z}_{r, s-r}=\sum_{n=s-r}^{\infty} 2(n+1)(n+2 r+1) \sum_{p=1}^{r} q^{n+2 p} \\
& \mathcal{Z}_{s}=\sum_{r=1}^{s} \mathcal{Z}_{r, s-r}=\frac{2 q^{2}}{(1-q)^{4}}\left[(s+1)^{2}\left(1-q^{s}\right)-s^{2}\left(1-q^{s+1}\right)\right] \\
& \quad=\frac{2(2 s+1) q^{2}-2(s+1)^{2} q^{s+2}+2 s^{2} q^{s+3}}{(1-q)^{4}}
\end{aligned}
$$

same as in operator counting method

Conformal higher spin partition function on S^{4}

- Weyl-invariant operator on curved background $\partial^{2 s} \rightarrow D^{2 s}+R D^{2 s-2}+\ldots+R^{s}$ not known explicitly for $s>2$ consistent on any Weyl gravity solution (conformally-flat, Einstein, ...)
- can be found in factorized form on S^{4} (or dS_{4} or AdS_{4}) [AAT 13] also derived in [Metsaev 14; Nutma, Taronna 14]
- examples: Maxwell theory on $S^{4} \quad(R=12, r=1)$

$$
Z_{1}=\left[\frac{\operatorname{det} \widehat{\Delta}_{0}(0)}{\operatorname{det} \widehat{\Delta}_{1 \perp}(3)}\right]^{1 / 2}, \quad \widehat{\Delta}_{s}\left(M^{2}\right) \equiv-\nabla_{s}^{2}+M^{2}
$$

- Weyl graviton: $\quad C^{2} \rightarrow \frac{1}{2} h \widehat{\Delta}_{2 \perp}(2) \widehat{\Delta}_{2 \perp}(4) h$ cf. Einstein graviton: $-\nabla^{2} h_{m n}-2 R_{m k n l} h^{k l} \rightarrow \widehat{\Delta}_{2}(2) h_{m n}$

$$
Z_{2}=Z_{2,1} Z_{2,0}=\left[\frac{\operatorname{det} \widehat{\Delta}_{1 \perp}(-3)}{\operatorname{det} \widehat{\Delta}_{2 \perp}(2)}\right]^{1 / 2}\left[\frac{\operatorname{det} \widehat{\Delta}_{0}(-4)}{\operatorname{det} \widehat{\Delta}_{2 \perp}(4)}\right]^{1 / 2}
$$

Einstein graviton $Z_{2,1}$ and "partially-massless" $Z_{2,0}$ factors

- General CHS: factorization into all "partially-massless" operators

$$
D^{2 s}+\ldots=\prod_{k=0}^{s-1} \widehat{\Delta}_{s \perp}\left(M_{s, k}^{2}\right), \quad M_{s, k}^{2}=2+s-k-k^{2}
$$

- add ghost factors \rightarrow remarkably simple generalization of flat-space Z

$$
\begin{aligned}
& Z_{s}=\prod_{k=0}^{s-1} Z_{s, k}, \quad Z_{s, k}=\left[\frac{\operatorname{det} \widehat{\Delta}_{k \perp}\left(M_{k, s}^{2}\right)}{\operatorname{det} \widehat{\Delta}_{s \perp}\left(M_{s, k}^{2}\right)}\right]^{1 / 2} \\
& Z_{s, k}=\left(\frac{\operatorname{det}\left[-\nabla^{2}+\left(2+k-s-s^{2}\right)\right]_{k \perp}}{\operatorname{det}\left[-\nabla^{2}+\left(2+s-k-k^{2}\right)\right]_{s \perp}}\right)^{1 / 2}
\end{aligned}
$$

- $k=s-1$ term: massless spin s partition function in (A) dS_{4}

$$
Z_{s, s-1}=\left(\frac{\operatorname{det}\left[-\nabla^{2}+\left(1-s^{2}\right) \epsilon\right]_{s-1 \perp}}{\operatorname{det}\left[-\nabla^{2}+\left(2+2 s-s^{2}\right) \epsilon\right]_{s \perp}}\right)^{1 / 2}, \quad \epsilon= \pm 1
$$

partition function on S^{4} : extract conformal anomaly coefficient a_{s}
$\ln Z=-B_{4} \ln \varepsilon_{\mathrm{UV}}+$ finite
$B_{4}=\left.\frac{1}{(4 \pi)^{2}} \int d^{4} x \sqrt{g} b_{4}\right|_{S^{4}}=-\mathrm{a}_{s}, \quad b_{4}=\frac{1}{4}\left(-\mathrm{a} R^{*} R^{*}+\mathrm{c} C^{2}\right)$
Maxwell: $a_{1}=\frac{31}{45}, \quad c_{1}=\frac{2}{5}, \quad$ Weyl: $a_{2}=\frac{87}{5}, \quad c_{2}=\frac{398}{15}$

- apply standard b_{4}-algorithm to each 2-nd order operator [AT 13]

$$
\begin{aligned}
& \mathrm{a}_{s}=\sum_{k=0}^{s-1}\left(\mathrm{a}\left[\widehat{\Delta}_{s \perp}\left(2+s-k-k^{2}\right)\right]-\mathrm{a}\left[\widehat{\Delta}_{k \perp}\left(2+k-s-s^{2}\right)\right]\right) \\
& \mathrm{a}_{s}=\frac{1}{180} \nu^{2}(14 \nu+3), \quad \nu=s(s+1)
\end{aligned}
$$

- same coefficient found via massless HS $\operatorname{AdS} S_{5}$ relation
[Giombi, Klebanov et al 13]

$$
\ln Z_{s}^{(-)}-\ln Z_{s}^{(+)}=\mathrm{a}_{s} \ln \varepsilon_{\mathrm{IR}}+\text { finite }, \quad \operatorname{Vol}_{\mathrm{AdS}_{5}} \sim \ln \varepsilon_{\mathrm{IR}}
$$

relation between 1-loop partition functions:

- conformal spin s in conformally-flat M^{d} (e.g. S^{d})
- spin s part of singlet sector CFT_{d} : current J_{s} and shadow \widetilde{J}_{s} in M^{d}
- massless spin s field with \pm b.c. in AdS_{d+1} with bndry M^{d}

$$
\left.Z_{s}\right|_{M^{d}}=\left.\frac{Z_{-s}}{Z_{+s}}\right|_{M^{d}}=\left.\frac{Z_{s}^{(-)}}{Z_{s}^{(+)}}\right|_{A d S_{d+1}}
$$

second equality implied by vectorial $\mathrm{AdS}_{d+1} / \mathrm{CFT}_{d}$

- an argument for via "double-trace" deformation of CFT_{d}
[Giombi, Klebanov, Pufu, Safdi, Tarnapolsky 13]
- check by direct computation on Z_{s} for CHS on $S^{d}, d=4,6$ [AT 13,14]
- direct proof in case of $M^{d}=S^{1} \times S^{d-1}$ [Beccaria, Bekaert, AT 14]

Summing over spins total CHS partion function: sum over all spins $s=0,1,2, \ldots, \infty$

$$
\mathcal{Z}=\sum_{s=0}^{\infty}\left(\mathcal{Z}_{-s}-\mathcal{Z}_{+s}\right)=\mathcal{Z}_{-}-\mathcal{Z}_{+}
$$

\mathcal{Z}_{+}is finite

$$
\mathcal{Z}_{+}=\sum_{s=0}^{\infty} \mathcal{Z}_{+s}=\frac{q^{d-2}\left(1-q^{2}\right)^{2}}{(1-q)^{2 d}}
$$

- $\mathcal{Z}_{+}=$partition function of massless HS Vasiliev theory in $A d S_{d+1}$ = partition function of singlet sector of $U(N)$ scalar CFT_{d} on $S^{1} \times S^{d-1}$ (counts spin s conserved current operators and their descendants)
- $\mathcal{Z}_{-}=\sum_{s} \mathcal{Z}_{-s}=\sum_{s} \mathcal{Z}_{s}^{\text {off-sh. }} \quad$ formally divergent:
$\mathrm{c}_{s, m}$ are polynomials in s not suppressed by s-independent powers of q

Natural regularization of sum over spins

- Physical meaning - preservation of symmetries of theory (cf. string theory: sums of fields of growing spins and masses in 2d description that should be consistent with target space symmetries)
[Brink, Nielsen 73; Brink, Fairlie, 74; Nahm 77]
- special regularization of infinite sums over spins necessary in AdS/CFT: 1-loop $\log \infty$ in massless HS theory in AdS_{4} then vanishes as required by $O\left(N^{0}\right)$ check of $\mathrm{AdS}_{4} / \mathrm{CFT}_{3}$ [Giombi, Klebanov 13]

$$
\begin{aligned}
\sum_{s=1}^{\infty} e^{-\epsilon s} \mathrm{a}_{s}= & \frac{1}{180} \sum_{s=1}^{\infty} e^{-\epsilon s} s^{2}(s+1)^{2}\left(14 s^{2}+14 s+3\right) \\
& =\frac{14}{\epsilon^{7}}+\frac{7}{\epsilon^{6}}+\frac{3}{2 \epsilon^{5}}+\frac{1}{6 \epsilon^{4}}+0+\frac{\epsilon}{7560}+O\left(\epsilon^{2}\right)
\end{aligned}
$$

finite part $=0: \quad \zeta(-2 n)=0$ and $\frac{1}{3} \zeta(-3)+\frac{7}{10} \zeta(-5)=0$

- conformal higher spin theory has vanishing a-anomaly coefficient in proper regularization [Giombi, Klebanov et al 13,14; AT 13,14]
- generalized ζ-function or cutoff regularization in any even d

$$
\begin{gathered}
\left.\sum_{s=0}^{\infty} e^{-\left(s+\frac{d-3}{2}\right) \epsilon} \mathrm{a}_{s}\right|_{\epsilon \rightarrow 0, \mathrm{fin}}=0 \\
d=4: \quad \mathrm{a}_{s}=\frac{1}{180} \nu^{2}(14 \nu+3), \quad \nu=s(s+1) \\
d=6: \quad \mathrm{a}_{s}=\frac{1}{151200} \nu^{2}\left(22 \nu^{3}-55 \nu^{2}-2 \nu+2\right), \quad \nu=(s+1)(s+2)
\end{gathered}
$$

- regularization consistent with underlying symmetries of CHS
- use it also to define partition function

$$
\begin{aligned}
& \mathcal{Z}=\left.\sum_{s=0}^{\infty} e^{-\left(s+\frac{d-3}{2}\right) \epsilon} \mathcal{Z}_{s}\right|_{\epsilon \rightarrow 0, \text { fin }}=\widehat{\mathcal{Z}}(q)-2 \mathcal{Z}_{+}(q) \\
& \widehat{\mathcal{Z}}(q)=\frac{1}{(1-q)^{d}} \sum_{m=2}^{d-2}(-1)^{m} \widehat{\mathrm{c}}_{m} q^{m},\left.\quad \widehat{\mathrm{c}}_{m} \equiv \sum_{s=0}^{\infty} e^{-\left(s+\frac{d-3}{2}\right) \epsilon} \mathrm{c}_{s, m}\right|_{\epsilon \rightarrow 0, \text { fin }}
\end{aligned}
$$

explicitly:

$$
\begin{array}{ll}
d=4: & \mathcal{Z}=-\frac{q^{2}\left(11+26 q+11 q^{2}\right)}{6(1-q)^{6}} \\
d=6: & \mathcal{Z}=\frac{q^{2}\left(407-5298 q-466311 q^{2}-992956 q^{3}-466311 q^{4}-5298 q^{5}+407 q^{6}\right)}{241920(1-q)^{10}}
\end{array}
$$

summed over spins \mathcal{Z}_{+}and \mathcal{Z} have $\beta \rightarrow-\beta$ symmetry:

$$
\mathcal{Z}(q)=\mathcal{Z}(1 / q), \quad q=e^{-\beta}
$$

implies vanishing of associated Casimir (vacuum) energy on $R \times S^{d-1}$:

$$
\begin{aligned}
& \mathcal{Z}(\beta)=\operatorname{tr} e^{-\beta H}=\sum_{n} \mathrm{~d}_{n} e^{-\beta \omega_{n}} \\
& E_{c}=\frac{1}{2} \sum_{n} \mathrm{~d}_{n} \omega_{n}=\frac{1}{2} \zeta_{E}(-1) \\
& \zeta_{E}(z)=\sum_{n} \mathrm{~d}_{n} \omega_{n}^{-z}=\frac{1}{\Gamma(z)} \int_{0}^{\infty} d \beta \beta^{z-1} \mathcal{Z}(\beta)
\end{aligned}
$$

$E_{c}=0$: suggests CHS theory is special - vac energy vanishes also in

- $\mathcal{N}>4$ gauged SG in AdS_{4} [Allen, Davis 83; Gibbons, Nicolai 84]
- massless HS in $\operatorname{AdS}_{d+1}\left(Z_{+}=Z^{(+)}\right)$[Giombi, Klebanov, AT 14]
- $\mathcal{N}=4$ conformal $\mathrm{SG}+$ four $\mathcal{N}=4$ SYM multiplets [Beccaria, AT] conformal spin s Casimir energies:

$$
\begin{aligned}
d=4: & E_{c, s}=\frac{1}{720} \nu\left(18 \nu^{2}-14 \nu-11\right), \quad \nu=s(s+1) \\
d=6: & E_{c, s}=\frac{1}{241920} \nu^{2}\left(12 \nu^{3}-58 \nu^{2}-6 \nu+117\right), \quad \nu=(s+1)(s+2) \\
& \left.\sum_{s=0}^{\infty} e^{-\left(s+\frac{d-3}{2}\right) \epsilon} E_{c, s}\right|_{\epsilon \rightarrow 0, \text { fin }}=0
\end{aligned}
$$

$\star E_{c, s}$ of CHS on $R \times S^{d-1}$ is -2 of Casimir energy from $Z_{+s}=Z_{s}^{(+)}$
or -2 vac. energy of massless spin s in AdS_{d+1}
$\star E_{c, s}$ similar but different from a ${ }_{s}$
(T_{00} in general depends on derivative terms in T_{m}^{m} [Herzog, Huang 13])

CHS theory in $d=2$
$d=2$ CHS action is trivial for $s>1: C_{s}=0$ (no Weyl tensor in $d=2$) $S^{1} \times S^{1}$ partition function from gauge fixing and ghosts in path integral

$$
\begin{aligned}
& \mathcal{Z}_{s}=\mathcal{Z}_{-s}-\mathcal{Z}_{+s}=-2 \mathcal{Z}_{+s}=-\frac{4 q^{s}}{1-q}, \quad \mathcal{Z}_{-s}=-\mathcal{Z}_{+s}, \quad s>1 \\
& s=1: \int d^{2} x F^{\mu \nu} \partial^{-2} F_{\mu \nu} ; \quad s=0: \int d^{2} x \phi \partial^{-2} \phi, \quad \Delta(F)=\Delta(\phi)=2
\end{aligned}
$$

$$
\mathcal{Z}_{1}=-\frac{2 q}{1-q}, \quad \mathcal{Z}_{0}=-\frac{1+q}{1-q}
$$

$$
\mathcal{Z}=\mathcal{Z}_{0}+\mathcal{Z}_{1}+\sum_{s=2}^{\infty} \mathcal{Z}_{s}=-\frac{(1+q)^{2}}{(1-q)^{2}}, \quad \mathcal{Z}(q)=\mathcal{Z}(1 / q)
$$

$$
E_{c, 0}=E_{c, 1}=\frac{1}{12}, \quad E_{c, s}=\frac{1}{6}[1+6 s(s-1)], \quad s>1
$$

$$
E_{c, 0}+E_{c, 1}+\left.\sum_{s=2}^{\infty} e^{-\left(s-\frac{1}{2}\right) \epsilon} E_{c, s}\right|_{\epsilon \rightarrow 0, \mathrm{fin}}=0
$$

$d=2$: Casimir energy on S^{1} related to conformal anomaly $c \equiv \mathrm{a}$

$$
E_{c, s}=-\frac{1}{12} c_{s}
$$

CHS partition function on $S^{2} \quad\left(\widehat{\Delta}_{k}\left(M^{2}\right) \equiv-\nabla^{2}+M^{2}\right)$

$$
Z_{s}\left(S^{2}\right)=\frac{\prod_{k=0}^{s-1}\left[\operatorname{det} \widehat{\Delta}_{k \perp}(k-s(s-1))\right]^{1 / 2}}{\prod_{k^{\prime}=1}^{s-1}\left[\operatorname{det} \widehat{\Delta}_{s \perp}\left(s-k^{\prime}\left(k^{\prime}-1\right)\right)\right]^{1 / 2}}
$$

$\ln Z=-B_{2} \ln \varepsilon_{\mathrm{UV}}+$ finite
$B_{2}\left[\widehat{\Delta}_{k}\left(M^{2}\right)\right]=N_{k}\left(\frac{1}{6} R-M^{2}\right), \quad R=2, r=1$
$B_{2}^{(s)}=\sum_{k^{\prime}=1}^{s-1} B_{2}\left[\widehat{\Delta}_{s \perp}\left(s-k^{\prime}\left(k^{\prime}-1\right)\right)\right]-\sum_{k=0}^{s-1} B_{2}\left[\widehat{\Delta}_{k \perp}(k-s(s-1))\right]$
$=-\frac{2}{3}[1+6 s(s-1)]$

$$
\begin{aligned}
& B_{2}=\frac{c}{24 \pi} \int d^{2} x \sqrt{g} R=\frac{1}{3} c \\
& s>1: \quad B_{2}^{(s)}=\frac{1}{3} c_{s}=-\frac{2}{3}[1+6 s(s-1)] \\
& s=0,1: \quad B_{2}=\frac{1}{3} c=-\frac{1}{3}
\end{aligned}
$$

computation of c_{s} via massless spin s in AdS_{3} [Giombi, Klebanov et al 13]
Total central charge thus also vanishes:

$$
c_{0}+c_{1}+\left.\sum_{s=2}^{\infty} e^{-\left(s-\frac{1}{2}\right) \epsilon} c_{s}\right|_{\epsilon \rightarrow 0, \text { fin }}=0
$$

- $d=2$ CHS theory closely related to spin s W-gravity model [Hull 91] same linearized symmetries - generalized diffs and Weyl transfs same anomaly: W-gravity anomaly given by bc ghost contribution $c_{g h}=-2\left(1+6 s^{2}-6 s\right)$ [Hull; Yamagishi; Pope et al 91]
- $d=2$ case, while degenerate still limit of d-dimensional CHS theory which itself may be viewed as $d>2$ generalization of W -gravity

Summary

relations between partition functions

$$
\left.\frac{Z_{-s}}{Z_{+s}}\right|_{\mathrm{M}^{\mathrm{d}}}=\left.Z_{s}\right|_{\mathrm{M}^{\mathrm{d}}}
$$

Z_{s} - 1-loop CHS partition function on conformally flat M^{d}
Z_{+s} - free CFT partition function in spin s singlet sector $\left(Z=\prod_{s} Z_{+s}\right)$
Z_{-s} is spin s shadow operator counterpart
AdS/CFT: $\left.\quad Z_{ \pm s}\right|_{\mathrm{M}^{\mathrm{d}}}=\left.Z_{s}^{(\pm)}\right|_{\mathrm{AdS}_{\mathrm{d}+1}}$
partition function massless spin s field φ_{s} in AdS_{d+1} with bndry M^{d} computed with standard $\varphi_{s} \sim z^{\Delta_{+}-s}$ or alternative $\varphi_{s} \sim z^{\Delta_{--s}}$ b.c.

$$
\left.\frac{Z_{s}^{(-)}}{Z_{s}^{(+)}}\right|_{A d S_{d+1}}=\left.Z_{s}\right|_{M^{d}}
$$

verified explicitly for $M^{d}=S^{d}$ (matching of a_{s} coefficients)

Same relations derived for Z_{s} on $M^{d}=S^{1} \times S^{d-1}$

$$
\begin{aligned}
& \ln Z_{s}=\sum_{m=1}^{\infty} \frac{1}{m} \mathcal{Z}_{s}\left(q^{m}\right) \\
& \mathcal{Z}_{s}(q)=\mathcal{Z}_{-s}(q)-\mathcal{Z}_{+s}(q), \quad \mathcal{Z}_{ \pm s}(q)=\mathcal{Z}_{s}^{(\pm)}(q)
\end{aligned}
$$

- \mathcal{Z}_{+s} counts components of traceless symmetric current operator J_{s} of $\operatorname{dim} \Delta_{+}$and its conformal descendants modulo $\partial \cdot J_{s}=0$
- \mathcal{Z}_{-s} counts shadow spin s operators (modulo gauge degeneracy) is given by \mathcal{Z}_{+s} with $\Delta_{+} \rightarrow \Delta_{-}=d-\Delta_{+}$ plus character of conformal Killing tensor rep. of $S O(d, 2)$
- in $d=4$:

$$
\begin{aligned}
& \mathcal{Z}_{-s}=\widehat{\mathcal{Z}}_{s}-\mathcal{Z}_{+s}, \quad \mathcal{Z}_{s}=\widehat{\mathcal{Z}}_{s}-2 \mathcal{Z}_{+s} \\
& \widehat{\mathcal{Z}}_{s}=\frac{2(2 s+1) q^{2}}{(1-q)^{4}}, \quad \mathcal{Z}_{+s}=\frac{(s+1)^{2} q^{s+2}-s^{2} q^{s+3}}{(1-q)^{4}}
\end{aligned}
$$

- interpretation: $\widehat{\mathcal{Z}}_{s}$ counts components of CHS field strength C_{s}
$\mathcal{Z}_{-s}=\mathcal{Z}_{s}^{\text {off }- \text { sh. }}, \quad \mathcal{Z}_{+s}=\mathcal{Z}_{s}^{\text {e.o.m. }}, \quad \mathcal{Z}_{s}=\mathcal{Z}_{s}^{\text {off }- \text { sh. }}-\mathcal{Z}_{s}^{\text {e.o.m. }}$
off-shell CHS fields have same symmetries and dimensions as shadow operators: \mathcal{Z}_{-s} counts off-shell shadow fields \mathcal{Z}_{s} counts physical CHS operators or "on-shell" shadow fields

$$
\mathcal{Z}_{+s}, \mathcal{Z}_{-s}
$$

massless higher spin s in AdS_{5}
$\ln \operatorname{det}_{(+)}, \ln \operatorname{det}_{(-)}$

Summing over all spins:

- CHS partition function on conformally-flat M^{d} is UV finite:

$$
\left.\sum_{s=0}^{\infty} \mathrm{a}_{s}\right|_{\mathrm{reg} .}=0
$$

- CHS partition function on $S^{1} \times S^{d-1}$ satisfies $\mathcal{Z}(q)=\mathcal{Z}(1 / q)$, e.g.,

$$
d=4: \quad \mathcal{Z}(q)=\left.\sum_{s=0}^{\infty} \mathcal{Z}_{s}(q)\right|_{\text {reg. }}=-\frac{q^{2}\left(11+26 q+11 q^{2}\right)}{6(1-q)^{6}}
$$

- implies vanishing of associated Casimir or vacuum energy on S^{d-1}

$$
\left.\sum_{s=0}^{\infty} E_{c, s}\right|_{\mathrm{reg}}=0
$$

as in case of massless higher spin partition function in AdS_{d+1}

- conjecture:
all anomaly coefficients vanish in same regularization, e.g. in $d=4$

$$
\left.\sum_{s=0}^{\infty} \mathrm{c}_{s}\right|_{\text {reg. }}=0
$$

requires understanding CHS partition function in Ricci-flat background

- may summation over spins help also with unitarity issue? need to study CHS interactions and S-matrix

