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Why conformal higher spin theory?

s = 1: Maxwell vector, s = 2: Weyl graviton, etc.

• fundamental role of local conformal invariance?
very constraining at quantum level: anomalies and unitarity issues
• existence of consistent (UV finite, anomaly free)

conformal higher spin theories?
• cancel anomalies: supersymmetry or summation over all spins?
• summation over spins may resolve unitarity issue?
• a limit of some string theory or alternative to string theory ?



recent interest:
formal relations between “triple” of theories:
? free scalar CFT in Md (e.g. Rd, Sd, S1 × Sd−1, ...)
? conformal higher spins in Md

? massless higher spins in AdSd+1 with boundary Md

Tree-level: CHS as induced theory from
∫

Φ∂2Φ + φs · Js(Φ);
log singular part of action of massless HS in AdS: ϕs

∣∣
Md = φs

One-loop level: CHS partition function as ratio of CFT
or massless AdS higher spin partition functions
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Conformal higher spin (CHS) theory
• maximal gauge invariance and irreducibility
consistent with locality:
pure spin states off shell [Fradkin, AT 85]

d = 4 : Ls = φs Ps ∂
2sφs , s = 1, 2, ...

φs = (φm1...ms) totally symmetric, ∆ = 2− s
(Ps)

m1..ms
n1...ns

totally symmetric traceless transverse projector
e.g. (P1)mn = δmn − ∂m∂n

∂2

• Gauge invariances: δφs = ∂ξs−1 + η2λs−2

differential (like reparam.) + algebraic (like Weyl)
• cf. two-derivative massless higher spin fields:
Ls = ϕsP̄s∂

2ϕs where P̄s chosen to have locality
P̄1 = P1, P̄2 = P2 − 2P0 (Einstein)
mixture of spins off-shell



Free CHS action in flat d = 4

Ss =

∫
d4x φsPs ∂

2s φs =

∫
d4x (−1)sCsCs

φs = (φµ1...µs) ≡ φµ(s) totally symmetric

Ps = (P µ1...µs
ν1...νs

) ≡ P
µ(s)
ν(s) transverse traceless symm. in µ and ν

Cs ≡ Cµ(s),ν(s) = (Cµ1...µs, ν1...νs) generalized Weyl tensor

Cµ(s),ν(s) = Pλ(s),ρ(s)
µ(s),ν(s)∂

s
λ(s)φρ(s)

Ps makes Cµ(s),ν(s) symmetric and traceless in µ(s) and ν(s)

and antisymmetric between:
Cµ(s),ν(s) in (s, s) representation of SO(4)

· · ·
· · ·︸ ︷︷ ︸
s



Alternative: Cµ1ν1 µ2ν2 ...µsνs antisymm. in each µi and νi
C1 = (Fµν) Maxwell, C2 = (Cµ1ν1µ2ν2) linearized Weyl tensor
any even dimension d:

Ss =

∫
ddx φsPs ∂

2s+d−4 φs = (−1)s
∫
ddx Cs ∂

d−4Cs

φs and Cs have d-independent SO(d, 2) scaling dimensions

∆(φs) = 2− s , ∆(Cs) = 2

• Free (non-unitary) higher spin conformal theory in flat space
• Generalization to curved background?
Weyl-invariant quadratic action known for s = 1 and s = 2;
kinetic operator K = D2s+d−4 + ... – complicated for s> 3

reparametrization and Weyl invariant and consistent with
CHS gauge symm. for any gµν solving Bach eqs of Weyl gravity



K simplifies / factorizes on conformally-flat background:
found for S4 [AT 13; Metsaev 14; Nutma,Taronna 14]

and S1 × S3 [Bekaert, Beccaria, AT 14]

• full interacting theory? need to include all higher spins
• cf. standard 2-derivative massless HS theory:
introducing consistent interactions difficult – no-go theorems;
incompatibility between higher-spin gauge symmetries
and minimal coupling with gravity around flat background;
resolved on constant curvature (A)dS background;
[Fradkin, Vasiliev 87; Vasiliev 90]

led to eqs for tower of interacting massless higher spins
• CHS theory is different:
interactions consistent with coupling to gravity even around
flat background and admits an action principle



non-linear CHS theory can be defined as induced theory
[AT 02; Segal 02; Bekaert, Joung, Mourad 10;

Giombi, Klebanov, Pufu, Safdi, Tarnopolsky 13]

• ln εUV term in eff. action of free scalar CFT + φs · Js
with source (“shadow”) fields φs
for all conserved symmetric higher spin currents Js
→ local functional of φs starting with CHS kinetic term

• Interactions:
∑
∂nmφs1 ...φsm , nm = d+

∑m
i=1 (si − 2)

[Bekaert, Joung, Mourad 10]

Weyl graviton couples minimally to higher spins:
no increase of number of derivatives



• quantum consistency? anomalies?
Interactions with graviton – curved space:
conformal→Weyl symmetry: g′mn = λ2(x)gmn
conformal anomaly free HS quantum theories?

Tmm = −aR∗R∗ + cC2

Weyl gravity (s = 2) is anomalous: a2 = 87
20
, c2 = 199

30

• one possible resolution – supersymmetry
N = 4 conformal supergravity + 4 N = 4 Maxwell multiplets
is anomaly free: a = c = 0 [Fradkin, AT 82]

• Another option: CHS theory with sum over all spins
?
∑∞

s=0 as = 0 in a regularization [Giombi, Klebanov et al 13; AT 13]

? same for Casimir energy on S3 (a priori unrelated)∑∞
s=0Es = 0 [Bekaert, Beccaria, AT 14]

? conjecture:
∑∞

s=0 cs = 0



Free complex scalar CFTd

S0 =
∫
ddx Φ∗r∂

2Φr, ∆(Φ) = 1
2
(d− 2), r = 1, ..., N

tower of conserved higher spin currents

Jµ1...µs = Φ∗r∂µ1 ...∂µsΦr + ... , ∂ · Js
∣∣∣
on−shell

= 0

“single-trace” CFT primaries: “singlet sector”
• introduce sources φs∫

ddx Js(x)φs(x) , Js ∼ Φ∗r∂
sΦr

∆(Js) = ∆+ ≡ s+ d− 2 , ∆(φs) = d−∆+ ≡ ∆− = 2− s

? φs: same representation as spin s “shadow” conformal field
? φs: same gauge symmetries and dimension as CHS field
? φs = ϕs

∣∣
Md – bndry value of massless higher spin s in AdSd+1



• Induced action or generating functional for CFT correlators:

Γ = − lnZ(φs) = 1
2
N ln det(∂2 + φsPs∂

s)

= 1
2
N
∫
ddx ddx′ φs(x) K(x, x′) φs(x

′) + O(φ3
s)

K = 〈Js(x)Js(x
′)〉 = Ps(x−x′)

(|x−x′|2+ε2
UV

)s+d−2 → Ps(p) p
2s+d−4 ln p2

ε2
UV

Γ = N ln ε
UV
SCHS + ... , SCHS =

∫
ddx φsPs∂

2s+d−4φs + ...

• AdSd+1 dual: massless higher spin (MHS) theory
SMHS = N

∫
dd+1x

√
g φs(−∇2 + m2

s) φs + ...

m2
s = s2 + (d− 5)s− 2d+ 4

SMHS(ϕs
∣∣
Md
∼ φs) = N ln ε

IR
SCHS(φs) + ...

“tree-level” relation between CHS in Md and MHS in AdSd+1



• Original example of N = 4 SYM: background field sources
for superconformal currents – N = 4 conformal SG multiplet
integrate out SYM fields:

ZSYM(h, ...) =
∫

[dA...] exp− SSYM(A, ..;h, ...)

log UV term in lnZSYM is 1-loop exact (related to trace anomaly)
given by N = 4 conformal supergravity action [Liu, AT 98]

lnZSYM = c ln ε
UV
SCSG + fin , SCSG =

∫
d4x
√
g C2 + ...

• Trace anomaly (2-, 3-functions of s-c currents) protected –
get same on AdS5 side: N = 8, d = 5 supergravity action
on Dirichlet problem solution:
log IR term is N = 4 CSG action:∫

d5x
√
gR→ ln ε

IR

∫
d4x
√
g C2 + fin



Simplest CFT data: spectrum of conformal operators
“one-particle” partition function Z =

∑
n dn q

∆n

radial quantization: operators in Rd→ states in R× Sd−1

spectrum of dimensions / energies ωn = ∆n encoded in
in partition function in S1

β × Sd−1: − lnZ = 1
2

ln det(−∇2 + ...)

“one-particle” or canonical partition function

Z = tr e−βH =
∑
n

dn e
−βωn =

∑
n

dn q
∆n , q ≡ e−β

“multi-particle” or grand canonical partition function

lnZ = −
∑
n

dn ln(1− e−βωn) =
∞∑
m=1

1
m
Z(qm)



Two methods to compute Z(q) =
∑

n dn q
∆n :

I. Operator counting in flat Rd: [Cardy 91; Kutasov, Larsen 00]

enumerate all conformal primaries and their descendants
modulo eqs. of motion and identities

II. Partition function on S1
β × Sd−1:

define CFT on time × spatial sphere
and compute determinants



Counting method:

conformal scalar: Sc.s. =
∫
ddx (∂Φ)2, ∆(Φ) = 1

2
(d− 2)

• lowest dim conformal operator Φ contributes q
1
2

(d−2)

• its conformal descendants ∂µ1 ...∂µkΦ:
each power of derivative in given direction enters only once
get factor

∑∞
k=0 q

k = (1− q)−1 from each of d directions
• but some operators vanish due to e.o.m. ∂2Φ = 0

∆(∂2Φ) = 1
2
(d− 2) + 2 – need subtract q

1
2

(d−2)+2

dressed again by derivative factor (1− q)−d

Total partition function of conformal scalar

Zc.s.(q) =
q

d−2
2 (1− q2)

(1− q)d



d = 4 Maxwell vector: S1 = −1
4

∫
d4xFµνF

µν

• lowest dimension gauge-invariant operator: Fµν :
∆ = 2, d = 6 components → 6q2

• its derivatives give (1− q)−4 factor
• this overcounts ignoring e.o.m. ∂µFµν = 0 and
gauge identities ∂µF ∗µν = 0 (and their derivatives)
implying subtraction of −(4 + 4)q3 times (1− q)−4

• but also overcounts as identities descending from
∂µ∂νF

µν = 0 and ∂µ∂νF ∗µν = 0 of ∆ = 4 are trivial
requires adding back 2q4(1− q)−4

Total d = 4 vector partition function

Z1(q) =
6q2 − (4 + 4)q3 + (1 + 1)q4

(1− q)4
=

2q2(3− q)
(1− q)3

[generalization: conformal s = 1 in even d:
∫
ddx Fµν ∂

d−4Fµν]



Similar count for operators of singlet sector of U(N) scalar theory:
J0 = Φ∗rΦr and conserved Js ∼ Φ∗r∂

sΦr and their descendants
∆(Js) = ∆+ = s+ d− 2

analog of e.o.m.: ∂µ1Jµ1...µs = 0 is rank s− 1 with ∆ = ∆+ + 1

Z+ 0 =
qd−2

(1− q)d
, Z+ s =

ns q
∆+ − ns−1 q

∆++1

(1− q)d

ns = (2s+ d− 2) (s+d−3)!
(d−2)! s!

ns = components of symmetric traceless rank s tensor in d dim

d = 4 : Z+ s =
(s+ 1)2 qs+2 − s2 qs+3

(1− q)4

Z+ s has interpretation of character χ(∆+,s,0,...,0)(q, 1, ..., 1) of
short rep. of SO(d, 2) with dim ∆+ and spin s [Dolan 05]



Full singlet sector partition function:

Z+ =
∞∑
s=0

Z+ s =
qd−2(1 + q)2

(1− q)2d−2
=
[
Zc.s.(q)

]2
• N0 term in singlet-sector lnZ of U(N) scalar on S1 × Sd−1

[Shenker, Yin 11; Giombi, Klebanov, AT 14]

• relation between characters of SO(2, d) (cf. [Flato, Fronsdal])

AdSd+1/CFTd interpretation:
Js↔ ϕs – massless higher spin gauge field in AdSd+1

Z+ s(q) = Z(+)
s (q) – massless spin s partition function

in thermal AdSd+1 with S1 × Sd−1 boundary
[Gopakumar, Gupta, Lal 11, 12; Giombi, Klebanov, AT 14]



Massless higher spin partition function in AdSd+1

quadratic action of massless symmetric HS fields in AdSd+1

gauge fixing / ghosts→ 1-loop massless HS partition function:

Zs(AdSd+1) =
[det

(
−∇2 + m′2s−1

)
s−1⊥

det
(
−∇2 + m2

s

)
s⊥

]1/2

m2
s = (s− 2)(s+ d− 2)− s , m′2s−1 = (s− 1)(s+ d− 2)

d = 2: [Gaberdiel, Gopakumar, Saha 10]; d> 3: [Gupta, Lal 12]

• mass m spin s field in AdSd+1: (−∇2 + m2
s +m2)ϕs = 0 ,

solutions near z → 0 bndry of ds2 = z−2(dz2 + dxndxn)

ϕs ∼ z∆±−s , ∆± = 1
2
d±

√
(s+ 1

2
d− 2)2 +m2

• standard choice of b.c.: ∆ = ∆+

ϕs and ghost terms (m2 = 0): m2
s = ∆+(∆+ − d)− s



∆+ = s+ d− 2 , ∆′+ = ∆+ + 1

same as dimensions of Js and ∂ · Js

massless HS partition function in thermal AdSd+1

lnZ(+)
s =

∞∑
m=1

1
m
Z(+)
s (qm)

Z(+)
s (q) =

ns q
s+d−2 − ns−1 q

s+d−1

(1− q)d

Z(+)
s (q) = Z+ s(q)

massless HS contribution ↔ current contribution
ghost contribution ↔ current conservation contribution



Back to CHS: Zs(q) for s > 1 (d = 4)
counting method straightforward (modulo group theory)

s = 2: Weyl graviton

S2 =
∫
d4x
√
g CµνλρC

µνλρ

linearized theory in R4:

Z2 =
∑
n

dn q
∆n =

10q2 − 18q4 + 8q5

(1− q)4

count gauge-invariant conformal operators built out of
linearized Weyl tensor C ∼ ∂∂h modulo identities and e.o.m.
derivatives→ universal denominator (1− q)4; find numerator
• off-shell components of Cµ1ν1µ2ν2 :
∆(C) = 2, 10 independent components→ 10q2



• non-trivial gauge identities on C ∼ ∂∂h

Bµ1µ2 ≡ εµ1ν1γ1δ1 εµ2ν2γ2δ2 ∂ν1∂ν2 Cγ1δ1γ2δ2 = 0

∆(Bµν) = 4, 9 components, subtracting 9q4

• subtracting all derivatives of Bµν overcounts:
∂µBµλ = 0 with dimension 5 and 4 components: add back 4q5

? off-shell count thus gives

Zoff−sh.
2 =

10 q2 − 9 q4 + 4 q5

(1− q)4

• next subtract descendant operators ∂...∂C
that vanish due to e.o.m. for dynamical field φ2 = (hµν)

Bµ1µ2 ≡ ∂ν1∂ν2Cµ1ν1µ2ν2 = 0

count of symmetric traceless Bµ1µ2 same as for Bµ1µ2:



subtract 9q4, add back 4q5 to account for identity ∂µBµλ = 0

? contribution of equations of motion to be subtracted

Ze.o.m.
2 =

9 q4 − 4 q5

(1− q)4

total:

Z2 = Zoff−sh.
2 −Ze.o.m.

2 =
10q2 − 2(9q4 − 4q5)

(1− q)4

common features of s = 1, 2 cases, generalize to s > 2 in d = 4:
? contributions of e.o.m. and identities are same – double
? count of e.o.m. is identical to count of conserved traceless
rank s current operator of dimension ∆+ = s+ d− 2



s > 2: Ss ∼
∫
d4x CsCs, d = 4

Zs =
2(2s+ 1)q2 − 2(s+ 1)2qs+2 + 2s2qs+3

(1− q)4

Weyl tensor Cµ1ν1....µsνs ∼ ∂sφs: (s, s, 0, .., 0) representation of SO(d)

· · ·
· · ·︸ ︷︷ ︸
s

dim(s, s) = n(s,s) = (2s+d−4)(2s+d−3)(2s+d−2)(s+d−5)!(s+d−4)!
s! (s+1)! (d−2)!(d−4)!

n(s,s)

∣∣
d=4

= 2 (2 s+ 1)

• off shell count: ∆(Cs) = 2 → 2(2 s+ 1)q2

• gauge identities: Bµ1···µs = 0 , ∂µ1Bµ1···µs = 0

Bµ1···µs ≡ εµ1ν1γ1δ1 · · · εµsνsγsδs ∂ν1 · · · ∂νs Cγ1δ1···γsδs



Bµ1···µs: ∆ = s+ 2, symmetric traceless in (s, 0, ..., 0) of SO(d)

ns = (2s+ d− 2) (s+d−3)!
(d−2)! s!

, ns
∣∣
d=4

= (s+ 1)2

• subtract (s+ 1)2qs+2; add back s2qs+3 (“conservation” identity)

Zoff−sh.
s =

2(2s+ 1)q2 − (s+ 1)2 qs+2 + s2 qs+3

(1− q)4

• e.o.m. for conformal spin s: generalized linearized Bach eqs

Bµ1...µs ≡ ∂ν1 ...∂νsCµ1ν1...µsνs = 0 , ∂µ1Bµ1...µs = 0

Bµ1...µs – same count as for Bµ1···µs

Ze.o.m.
s =

(s+ 1)2 qs+2 − s2 qs+3

(1− q)4

Zs = Zoff−sh.
s −Ze.o.m.

s =
2(2s+ 1)q2 − 2(s+ 1)2qs+2 + 2s2qs+3

(1− q)4



Generalization to arbitrary even d
CFTd interpretation / analogy:

Zs = Zoff−sh.
s −Ze.o.m.

s = Z− s −Z+ s

Ze.o.m.
s = Z+ s = counts conformal spin s current operators Js

∆(Js) = ∆+ = s+ d− 2 (analog of Bs ∼ ∂sCs)
Zoff−sh.
s = Z− s = counts spin s shadow operators J̃s (analogs of φs)

∆(J̃s) = ∆− = d−∆+ = 2− s

Z+ s =
ns q

∆+ − ns−1 q
∆++1

(1− q)d
, ∆+ = s+ d− 2

guess for Z− s: replace ∆+ by ∆− = d−∆+ = 2− s
but there is “correction” σs = character of conformal Killing tensor rep.

Z− s =
ns q

2−s − ns−1 q
1−s

(1− q)d
+ σs(q)



σs(q) = χ(s−1,s−1,0,...,0)(q, 1, ..., 1)

total Z− s contains only positive powers of q

Z− s = Ẑs(q)−Z+ s(q) , Ẑs ≡
1

(1− q)d
d−2∑
m=2

(−1)m cs,m q
m

cs,m dim of so(d) reps with 2 rows of s boxes and m− 2 of 1 box:

cs,m = dim(s, s, 1m−2)

= (2s+d−2)!(s+d−3)!(s+d−4)!(s+d−3−m)!(s+m−3)!
(2s+d−5)!(s+m−1)!(s+d−1−m)!s!(s−1)!(d−2)!(d−2−m)!(m−2)!

d = 6: ns = 1
12

(s+ 1)(s+ 2)2(s+ 3)

cs,2 = cs,4 = 1
12

(s+ 1)2(s+ 2)2(2s+ 3)

cs,3 = 1
6
s(s+ 1)(s+ 2)(s+ 3)(2s+ 3)



CHS partition function in even d> 4

Zs = Z− s(q)−Z+ s(q) = Ẑs(q)− 2Z+ s(q)

=
1

(1− q)d
[ d−2∑
m=2

(−1)m cs,m q
m − 2ns q

s+d−2 + 2ns−1 q
s+d−1

]
• Zs can be expressed in terms of characters of so(d, 2) Verma modules
• group-theoretic perspective: Z+ s and Z− s
associated with conformal current Js and shadow field J̃s
• Js generates unitary irrep of so(d, 2)

J̃s generates reducible indecomposable so(d, 2) rep.
non-unitarizable: ∆− = 2− s is below unitarity bound
• “Weyl-tensor” ∂sJ̃s↔ Cs ∼ ∂sφs with ∆ = 2 is conf. primary
• analysis of relevant so(d, 2) modules [Shaynkman, Tipunin, Vasiliev 04]



Method II: Partition function on S1 × Sd−1

conformal scalar:

lnZc.s. = −1
2

ln detO0 , O0 = −D2 + d−2
4 (d−1)

R

D2 = ∂2
0 +∇2 , ∇2 = ∇i∇i = D2

Sd−1

∂0 = ∂t, t ∈ (0, β); R = R(Sd−1) = (d− 1)(d− 2)

O0 = −∂2
0 −∇2 + 1

4
(d− 1)2

eigenvalues and multiplicities of Laplacian −∇2 on Sd−1

λn = n (n+ d− 2) , dn = (2n+ d− 2) (n+d−3)!
n! (d−2)!

eigenvalues of O0

λk,n = w2 + ω2
n, w = 2πk

β
, ωn = n+ 1

2
(d− 2)



− lnZc.s. = 1
2

ln detO0 = 1
2

∑
k,n dn lnλk,n = −

∑∞
m=1Zc.s.(mβ)

Zc.s.(β) =
∞∑
n=0

dn e
−β [n+ 1

2
(d−2)] =

q
d−2
2 (1− q2)

(1− q)d

same as in operator counting method

d = 4 Maxwell vector: S1 = −1
4

∫
d4x
√
g Fµν F

µν

Z(S1 × S3) in Lorentz gauge (R00 = 0, Rij = 2 gij)

Z1 =
det(−D2)

[det(−gµνD2 +Rµν)]
1/2

=
[ det(−D2)

det(−gijD2 +Rij)

]1/2

=
1[

det(−gijD2 +Rij)⊥
]1/2 =

1[
detO1⊥

]1/2
O1 ij = (−∂2

0 −∇2 + 2)ij

same found directly in A0 = 0 gauge



from spectrum of 3-vector Laplacian (−∇2)1⊥ on S3

get spectrum of O1⊥ (∆0 → iw, w = 2πk
β

)

λk,n = w2 + ω2
n , ωn = n+ 2 , dn = 2(n+ 1)(n+ 3)

− lnZ1 = 1
2

∑
k,n dn lnλk,n = −

∑∞
m=1Z1(mβ)

Z1(β) =
∞∑
n=0

dn e
−β(n+2) =

2q2(3− q)
(1− q)3

same as in operator counting method

s = 2: Weyl graviton

S2 = 1
2

∫
d4x
√
g CµνλρC

µνλρ =
∫
d4x
√
g
(
RµνRµν − 1

3
R2
)

expand Weyl action near curved background to 2nd order in φ2 = (hµν)



L(2) = 1
4
D2hµν D

2hµν −Rµ
ρhµν D

2hνρ + 1
2
Rµν hαβDµDν h

αβ

− 3
2
Rρσ R

σµhµν h
νρ + 1

2
RνρRσµhµνhρσ + 1

6
(hµν R

µν)2 + 1
4
RµνR

µνhαβh
αβ

+ 1
2
RR µ

ρ hµν h
νρ − 1

9
R2 hµν h

µν

4-order operator factorizes on conformally-flat background
S4: Rµν = 1

4
Rgµν , R = 12; on TT tensors hµν

L(2) = 1
4
hµν Õ2 hµν , Õ2 =

(
−D2 + 1

6
R
)(
−D2 + 1

3
R
)

S1 × S3: Rij = 1
3
Rgij, R = 6; gauge h0i = h00 = 0

L(2) = 1
4
hij O2 hij , O2 = (∂2

0 +∇2)2 − 2
3
R (2∂2

0 +∇2) + 1
9
R2

O2 =
[
(∂0 − 1)2 +∇2 − 3

] [
(∂0 + 1)2 +∇2 − 3

]
Z2 =

1[
detO2⊥ det′O1⊥

]1/2



O1⊥ = −∂2
0 −∇2 + 2 on V ⊥i from hij → h⊥ij +DiVj +DjVi

(−∇2)2⊥ : λn = (n+ 2)(n+ 4)− 2 , dn = 2(n+ 1)(n+ 5)

spectrum (∂0 → iw, w = 2πkβ−1)

O2⊥ : λk,n =
[
w2 + (n+ 2)2

] [
w2 + (n+ 4)2

]
factorization related to conformal invariance of spin 2 theory

detO2⊥ : Z2,0 =
∞∑
n=0

2 (n+ 1)(n+ 5) (qn+2 + qn+4)

det′O1⊥ : Z1,1 =
∞∑
n=1

2 (n+ 1)(n+ 3) qn+2

Z2 = Z2,0(q) + Z1,1(q) =
10q2 − 18q4 + 8q5

(1− q)4

same as in operator counting method



Conformal higher spin partition function on S1 × S3

Ss =

∫
d4x
√
g φs(D

2s + ...)φs

2s-order kinetic operator on TT 3d tensors φi1...is factorizes

s=even : Os =
s∏
r=1

[
(∂0 + 2r − s− 1)2 +∇2 − s− 1

]
s=odd : Os = −

1
2

(s−1)∏
r=− 1

2
(s−1)

[
(∂0 + 2r)2 +∇2 − s− 1

]
e.g. O3 =

(
∂2

0 +∇2 − 4
)[

(∂0 + 2)2 +∇2 − 4
][

(∂0 − 2)2 +∇2 − 4
]

Zs =
1[∏s

r=1 det′Or⊥
]1/2



det′: first s− r modes are to be omitted
spectrum of spin s Laplacian −∇2 on S3

(−∇2)s⊥ : λn = (n+ s)(n+ s+ 2)− s , dn = 2(n+ 1)(n+ 2s+ 1)

for Or⊥ (w = 2πkβ−1)

λk,n =
s∏
r=1

(
w2 + ω2

n,r

)
, ωn,r = n+ 2r

det′Or⊥ : Zr,s−r =
∑∞

n=s−r 2 (n+ 1)(n+ 2r + 1)
∑r

p=1 q
n+2p

Zs =
s∑
r=1

Zr,s−r =
2 q2

(1− q)4

[
(s+ 1)2 (1− qs)− s2 (1− qs+1)

]
=

2(2s+ 1)q2 − 2(s+ 1)2qs+2 + 2s2qs+3

(1− q)4

same as in operator counting method



Conformal higher spin partition function on S4

•Weyl-invariant operator on curved background
∂2s → D2s +RD2s−2 + ...+Rs not known explicitly for s > 2

consistent on any Weyl gravity solution (conformally-flat, Einstein, ...)
• can be found in factorized form on S4 (or dS4 or AdS4) [AAT 13]

also derived in [Metsaev 14; Nutma, Taronna 14]

• examples: Maxwell theory on S4 (R = 12, r = 1)

Z1 =
[ det∆̂0(0)

det∆̂1⊥(3)

]1/2

, ∆̂s(M
2) ≡ −∇2

s +M2

•Weyl graviton: C2 → 1
2
h ∆̂2⊥(2) ∆̂2⊥(4)h

cf. Einstein graviton: −∇2hmn − 2Rmknlh
kl → ∆̂2(2)hmn

Z2 = Z2,1Z2,0 =
[det∆̂1⊥(−3)

det∆̂2⊥(2)

]1/2 [det∆̂0(−4)

det∆̂2⊥(4)

]1/2



Einstein graviton Z2,1 and “partially-massless” Z2,0 factors
• General CHS: factorization into all “partially-massless” operators

D2s + ... =
s−1∏
k=0

∆̂s⊥(M2
s,k) , M2

s,k = 2 + s− k − k2

• add ghost factors→ remarkably simple generalization of flat-space Z

Zs =
s−1∏
k=0

Zs,k , Zs,k =
[det∆̂k⊥(M2

k,s)

det∆̂s⊥(M2
s,k)

]1/2

Zs,k =
(det[−∇2 + (2 + k − s− s2) ]k⊥

det[−∇2 + (2 + s− k − k2) ]s⊥

)1/2

• k = s− 1 term: massless spin s partition function in (A)dS4

Zs,s−1 =
( det[−∇2 + (1− s2)ε ]s−1⊥

det[−∇2 + (2 + 2s− s2)ε ]s⊥

)1/2

, ε = ±1



partition function on S4: extract conformal anomaly coefficient as

lnZ = −B4 ln ε
UV

+ finite

B4 = 1
(4π)2

∫
d4x
√
g b4

∣∣∣
S4

= −as , b4 = 1
4
(−aR∗R∗ + cC2)

Maxwell : a1 = 31
45
, c1 = 2

5
, Weyl : a2 = 87

5
, c2 = 398

15

• apply standard b4-algorithm to each 2-nd order operator [AT 13]

as =
s−1∑
k=0

(
a[∆̂s⊥(2 + s− k − k2)]− a[∆̂k⊥(2 + k − s− s2)]

)
as = 1

180
ν2(14ν + 3) , ν = s(s+ 1)

• same coefficient found via massless HS AdS5 relation
[Giombi, Klebanov et al 13]

lnZ
(−)
s − lnZ

(+)
s = as ln ε

IR
+ finite, VolAdS5 ∼ ln ε

IR



relation between 1-loop partition functions:
• conformal spin s in conformally-flat Md (e.g. Sd)
• spin s part of singlet sector CFTd: current Js and shadow J̃s in Md

• massless spin s field with ± b.c. in AdSd+1 with bndry Md

Zs

∣∣∣
Md

=
Z− s
Z+ s

∣∣∣
Md

=
Z

(−)
s

Z
(+)
s

∣∣∣
AdSd+1

second equality implied by vectorial AdSd+1/CFTd
• an argument for via “double-trace” deformation of CFTd

[Giombi, Klebanov, Pufu, Safdi, Tarnapolsky 13]

• check by direct computation on Zs for CHS on Sd, d = 4, 6 [AT 13,14]

• direct proof in case of Md = S1 × Sd−1 [Beccaria, Bekaert, AT 14]



Summing over spins
total CHS partion function: sum over all spins s = 0, 1, 2, ...,∞

Z =
∞∑
s=0

(Z− s −Z+ s) = Z− −Z+

Z+ is finite

Z+ =
∞∑
s=0

Z+ s =
qd−2(1− q2)2

(1− q)2d

• Z+ = partition function of massless HS Vasiliev theory in AdSd+1

= partition function of singlet sector of U(N) scalar CFTd on S1×Sd−1

(counts spin s conserved current operators and their descendants)
• Z− =

∑
sZ− s =

∑
sZoff−sh.

s formally divergent:
cs,m are polynomials in s not suppressed by s-independent powers of q



Natural regularization of sum over spins
• Physical meaning – preservation of symmetries of theory
(cf. string theory: sums of fields of growing spins and masses in
2d description that should be consistent with target space symmetries)
[Brink, Nielsen 73; Brink, Fairlie, 74; Nahm 77]

• special regularization of infinite sums over spins necessary in AdS/CFT:
1-loop log∞ in massless HS theory in AdS4 then vanishes
as required by O(N0) check of AdS4/CFT3 [Giombi, Klebanov 13]

∞∑
s=1

e−εs as = 1
180

∞∑
s=1

e−εss2(s+ 1)2(14s2 + 14s+ 3)

= 14
ε7

+ 7
ε6

+ 3
2ε5

+ 1
6ε4

+ 0 + ε
7560

+O(ε2)

finite part =0: ζ(−2n) = 0 and 1
3
ζ(−3) + 7

10
ζ(−5) = 0

• conformal higher spin theory has vanishing a-anomaly coefficient
in proper regularization [Giombi, Klebanov et al 13,14; AT 13,14]



• generalized ζ-function or cutoff regularization in any even d

∞∑
s=0

e−(s+ d−3
2

) ε as

∣∣∣
ε→0, fin

= 0

d = 4 : as = 1
180
ν2(14ν + 3) , ν = s(s+ 1)

d = 6 : as = 1
151200

ν2(22ν3 − 55ν2 − 2ν + 2) , ν = (s+ 1)(s+ 2) ...

• regularization consistent with underlying symmetries of CHS
– use it also to define partition function

Z =
∞∑
s=0

e−(s+ d−3
2

) εZs
∣∣∣
ε→0, fin

= Ẑ(q)− 2Z+(q)

Ẑ(q) =
1

(1− q)d
d−2∑
m=2

(−1)m ĉm q
m , ĉm ≡

∞∑
s=0

e−(s+ d−3
2

) ε cs,m

∣∣∣
ε→0, fin



explicitly:

d = 4 : Z = − q2(11+26q+11q2)
6(1−q)6

d = 6 : Z = q2(407−5298q−466311q2−992956q3−466311q4−5298q5+407q6)
241920(1−q)10

summed over spins Z+ and Z have β → −β symmetry:

Z(q) = Z(1/q) , q = e−β

implies vanishing of associated Casimir (vacuum) energy on R× Sd−1:

Z(β) = tr e−βH =
∑
n

dn e
−βωn

Ec = 1
2

∑
n

dn ωn = 1
2
ζE(−1)

ζE(z) =
∑
n

dn ω
−z
n =

1

Γ(z)

∫ ∞
0

dβ βz−1Z(β)



Ec = 0: suggests CHS theory is special – vac energy vanishes also in
• N > 4 gauged SG in AdS4 [Allen, Davis 83; Gibbons, Nicolai 84]

• massless HS in AdSd+1 (Z+ = Z(+)) [Giombi, Klebanov, AT 14]

• N = 4 conformal SG + four N = 4 SYM multiplets [Beccaria, AT]

conformal spin s Casimir energies:

d = 4 : Ec,s = 1
720
ν(18ν2 − 14ν − 11) , ν = s(s+ 1)

d = 6 : Ec,s = 1
241920

ν2 (12ν3 − 58ν2 − 6ν + 117), ν = (s+ 1)(s+ 2)
∞∑
s=0

e− (s+ d−3
2

) εEc,s

∣∣∣
ε→0, fin

= 0

? Ec,s of CHS on R× Sd−1 is - 2 of Casimir energy from Z+ s = Z
(+)
s

or -2 vac. energy of massless spin s in AdSd+1

? Ec,s similar but different from as
(T00 in general depends on derivative terms in Tmm [Herzog, Huang 13])



CHS theory in d = 2

d = 2 CHS action is trivial for s > 1: Cs = 0 (no Weyl tensor in d = 2)
S1 × S1 partition function from gauge fixing and ghosts in path integral

Zs = Z− s −Z+ s = −2Z+ s = − 4 qs

1− q
, Z− s = −Z+ s , s > 1

s = 1:
∫
d2xF µν∂−2Fµν ; s = 0:

∫
d2xφ ∂−2φ, ∆(F ) = ∆(φ) = 2

Z1 = − 2q

1− q
, Z0 = −1 + q

1− q

Z = Z0 + Z1 +
∞∑
s=2

Zs = −(1 + q)2

(1− q)2
, Z(q) = Z(1/q)

Ec,0 = Ec,1 = 1
12
, Ec,s = 1

6

[
1 + 6 s (s− 1)

]
, s > 1

Ec,0 + Ec,1 +
∞∑
s=2

e− (s− 1
2

) εEc,s

∣∣∣
ε→0, fin

= 0



d = 2: Casimir energy on S1 related to conformal anomaly c ≡ a

Ec,s = − 1

12
cs

CHS partition function on S2 ( ∆̂k(M
2) ≡ −∇2 +M2 )

Zs(S
2) =

∏s−1
k=0

[
det∆̂k⊥(k − s(s− 1))

]1/2

∏s−1
k′=1

[
det∆̂s⊥(s− k′(k′ − 1))

]1/2

lnZ = −B2 ln ε
UV

+finite
B2[∆̂k(M

2)] = Nk(
1
6
R−M2), R = 2, r = 1

B
(s)
2 =

s−1∑
k′=1

B2[∆̂s⊥(s− k′(k′ − 1))]−
s−1∑
k=0

B2[∆̂k⊥(k − s(s− 1))]

= −2
3

[
1 + 6s(s− 1)

]



B2 = c
24π

∫
d2x
√
gR = 1

3
c

s > 1: B
(s)
2 = 1

3
cs = −2

3
[1 + 6 s (s− 1)]

s = 0, 1: B2 = 1
3
c = −1

3

computation of cs via massless spin s in AdS3 [Giombi, Klebanov et al 13]

Total central charge thus also vanishes:

c0 + c1 +
∞∑
s=2

e− (s− 1
2

) ε cs

∣∣∣
ε→0, fin

= 0

• d = 2 CHS theory closely related to spin s W-gravity model [Hull 91]

same linearized symmetries – generalized diffs and Weyl transfs
same anomaly: W-gravity anomaly given by bc ghost contribution
cgh = −2(1 + 6s2 − 6s) [Hull; Yamagishi; Pope et al 91]

• d = 2 case, while degenerate still limit of d-dimensional CHS theory
which itself may be viewed as d > 2 generalization of W-gravity



Summary
relations between partition functions

Z− s
Z+ s

∣∣∣
Md

= Zs

∣∣∣
Md

Zs – 1-loop CHS partition function on conformally flat Md

Z+ s – free CFT partition function in spin s singlet sector (Z =
∏

s Z+ s)
Z− s is spin s shadow operator counterpart
AdS/CFT: Z± s

∣∣
Md = Z

(±)
s

∣∣
AdSd+1

partition function massless spin s field ϕs in AdSd+1 with bndry Md

computed with standard ϕs ∼ z∆+−s or alternative ϕs ∼ z∆−−s b.c.

Z
(−)
s

Z
(+)
s

∣∣∣
AdSd+1

= Zs

∣∣∣
Md

verified explicitly for Md = Sd (matching of as coefficients)



Same relations derived for Zs on Md = S1 × Sd−1

lnZs =
∞∑
m=1

1
m
Zs(qm)

Zs(q) = Z− s(q)−Z+ s(q) , Z± s(q) = Z(±)
s (q)

• Z+ s counts components of traceless symmetric current operator Js
of dim ∆+ and its conformal descendants modulo ∂ · Js = 0

• Z− s counts shadow spin s operators (modulo gauge degeneracy)
is given by Z+ s with ∆+ → ∆− = d−∆+

plus character of conformal Killing tensor rep. of SO(d, 2)

• in d = 4:

Z− s = Ẑs −Z+ s, Zs = Ẑs − 2Z+ s

Ẑs =
2(2 s+ 1) q2

(1− q)4
, Z+ s =

(s+ 1)2 qs+2 − s2 qs+3

(1− q)4



• interpretation: Ẑs counts components of CHS field strength Cs

Z− s = Zoff−sh.
s , Z+ s = Ze.o.m.

s , Zs = Zoff−sh.
s −Ze.o.m.

s

off-shell CHS fields have same symmetries and dimensions
as shadow operators: Z− s counts off-shell shadow fields
Zs counts physical CHS operators or “on-shell” shadow fields



Z+ s,Z− s

�
�
���

∂sCs, Cs

@
@

@@I

current Js, shadow J̃s

?

ln det(+), ln det(−)

free scalar CFT4 conformal higher spin s CFT4

massless higher spin s in AdS5



Summing over all spins:
• CHS partition function on conformally-flat Md is UV finite:

∞∑
s=0

as
∣∣
reg.

= 0

• CHS partition function on S1 × Sd−1 satisfies Z(q) = Z(1/q), e.g.,

d = 4 : Z(q) =
∞∑
s=0

Zs(q)
∣∣
reg.

= −q
2 (11 + 26q + 11q2)

6(1− q)6

• implies vanishing of associated Casimir or vacuum energy on Sd−1

∞∑
s=0

Ec,s
∣∣
reg.

= 0

as in case of massless higher spin partition function in AdSd+1



• conjecture:
all anomaly coefficients vanish in same regularization, e.g. in d = 4

∞∑
s=0

cs
∣∣
reg.

= 0

requires understanding CHS partition function in Ricci-flat background

• may summation over spins help also with unitarity issue?
need to study CHS interactions and S-matrix


