$\begin{array}{c} \text{Introduction} \\ \text{Black holes in } \mathbb{R}^{1,3} \times SS^1 \times CY_3 \\ \text{Conclusions} \end{array}$

Entropy of asymptotically flat black holes in gauged supergravity

Stefan Vandoren, ITF, Utrecht University

with Nava Gaddam, Alessandra Gnecchi (Utrecht), Oscar Varela (Harvard) - work in progress.

BPS Black Holes

BPS Black holes in flat space (ala extremal Reissner-Nordström (RN)) satisfy a bound,

$$M = |Q|$$

- They preserve $\frac{1}{2}$ -susy in e.g. N = 2, D = 4 sugra and have zero temperature.
- They have finite entropy which (for large charges) can be computed using the (0, 4) CFT of Maldacena, Strominger and Witten (1997). [Or, in D = 5, Strominger-Vafa (1996)]

イロト イポト イヨト イヨト 二日

Near-extremal black holes

Near-extremal RN black holes have also been embedded in string theory [Callan-Maldacena, Horowitz-Strominger, Klebanov-Tseytlin '96,..., Balasubramanian and Larsen '98,...]

- They have finite but small temperature due to Hawking radiation.
- The entropy can be computed by mapping to BTZ and using the Cardy formula [Strominger '97,...].

These is ok for large black holes in sugra and in the absence of light charged matter: ungauged supergravity. What changes in gauged sugra ?

イロト イポト イヨト イヨト

 $\begin{array}{c} \text{Introduction} \\ \text{Black holes in } \mathbb{R}^{1,3} \times SS^1 \times CY_3 \\ \text{Conclusions} \end{array}$

Gauged supergravity

Questions:

- How to construct asymptotically flat black hole solutions in gauged sugra ?
- What is the influence of light charged particles on the black hole ?
- Microstate counting ?

Note:

- \bullet Gauged sugra can have AdS4 vacua. But black holes in AdS4 is a different story.
- Gauged sugra can have Minkowski vacua, but typically with spontaneously broken supersymmetry. This will be our story.

イロト イポト イヨト イヨト

 $\mathbb{R}^{1,3} imes SS^1 imes CY_3$ supergravity

$\mathbb{R}^{1,3} imes S^1 imes CY_3$ supergravity

Compactification of D=11 sugra on CY_3 yields N = 2 D = 5 sugra with [Cadavid, Ceresole, D'Auria, Ferrara '95]

- Poincare multiplet
- $h^{1,1} 1$ vector multiplets
- $h^{2,1} + 1$ hypermultiplets

Further compactification on S_R^1 gives at low energies N = 2 D = 4 sugra with

- Poincare multiplet
- $h^{1,1}$ vector multiplets
- $h^{2,1} + 1$ hypermultiplets (massless and neutral)

Consistency requires $R^6 >> Vol(CY_3)$.

Black holes in $\mathbb{R}^{1,3} \times \begin{array}{c} SS^1 \times CY_3 \\ Conclusions \end{array}$

 $\mathbb{R}^{1,3} imes \overline{SS^1 imes CY_3}$ supergravity

BPS Black Holes and MSW

The M5 brane can be wrapped over a four-cycle to give a BPS string in D = 5, with near horizon geometry

$$AdS_3 imes S^2 imes CY_3$$

Upon reducing over S^1 to D = 4 it gives a BPS black hole with near horizon geometry

$$AdS_2 \times_f S^1 \times S^2 \times CY_3$$

The entropy of this black hole was computed by Maldacena, Strominger Witten ('97) using AdS_3/CFT_2 and the Cardy formula for the (0,4) dual CFT.

 $\mathbb{R}^{1,3} \times \textit{SS}^1 \times \textit{CY}_3$ supergravity

Non-extremal black holes and BTZ - I

Consider the $STU = T^3$ model ($F = \frac{X_1^3}{X_0}$; $h_{1,1} = 1$). Non-extremal black hole solutions [..., Galli, Ortin, Perz and Shahbazi (2011)]:

$$ds^2 = -e^{2U(r)}dt^2 + e^{-2U(r)}dr^2 + e^{-2U(r)}f(r)d\Omega_{(2)}^2,$$

with $f(r) = (r - r_+)(r - r_-)$. Warp factor

$$e^{-2U(r)}f(r) = \left[r - r_* + \sqrt{r_0^2 + \frac{2q_0^2}{R_\infty^3}}\right]^{\frac{1}{2}} \left[r - r_* + \sqrt{r_0^2 + 2p_1^2R_\infty}\right]^{\frac{3}{2}}$$

Inner and outer horizon are $r_{\pm} = r_* \pm r_0$ with r_0 the nonextremality parameter and $r_*^2 = 2\sqrt{q_0 p_1^3}$ is the horizon radius of the extremal solution. For $R_{\infty} = \sqrt{\frac{q_0}{p_1}}$ the dilaton is constant and the solution becomes Reissner-Nordström.

Entropy of asymptotically flat black holes in gauged supergravi

 $\mathbb{R}^{1,3} \times \textit{SS}^1 \times \textit{CY}_3$ supergravity

Non-extremal black holes and BTZ - II

In fact, in the near-horizon limit of all near-extremal black holes, they all become of the RN type,

$$ds^2_{(4)} = -\left(1 - rac{2M}{ ilde{r}} + rac{r^2_*}{ ilde{r}^2}
ight) dt^2 + rac{d ilde{r}^2}{\left(1 - rac{2M}{ ilde{r}} + rac{r^2_*}{ ilde{r}^2}
ight)} + ilde{r}^2 d\Omega^2_{(2)} \; ,$$

with $\tilde{r} = r - r_* + M$ and the mass given by

$$M = \sqrt{r_0^2 + r_*^2} = \sqrt{\frac{1}{2}(r_+^2 + r_-^2)}$$

Near-horizon, near-extremal limit $\epsilon << 1$

$$\tilde{r} = r_* + \epsilon \rho$$
, $r_0 = \epsilon \rho_0$, $M = r_* + \epsilon^2 \frac{\rho_0^2}{2r_*}$, $t = \frac{1}{\epsilon} r_*^2 \tau$,

- 4 同 ト 4 日 ト 4 日 ト

 $\mathbb{R}^{1,3} imes SS^1 imes CY_3$ supergravity

Non-extremal black holes and BTZ - III

We can uplift to D = 5 and take the near-horizon, near-extremal limit [..., Balasubramanian and Larsen '98,...]. Then we get a geometry $(BTZ \times S^2)_{\ell}$ with $\ell = 2p$ and

$$M^2 = rac{\ell^2}{2} M_{BTZ} \; , \qquad r_*^2 = rac{\ell}{4} \left(J_{BTZ} + \ell M_{BTZ}
ight) \; ,$$

2D CFT identification, $\ell M_{BTZ} = L_0 + \bar{L}_0$; $J_{BTZ} = L_0 - \bar{L}_0$, so

$$n_L = \frac{1}{2} \left(\ell M_{BTZ} + J_{BTZ} \right) ,$$

$$n_R = \frac{1}{2} \left(\ell M_{BTZ} - J_{BTZ} \right) .$$

BTZ entropy can now be rewritten as Cardy formula [Strominger '97; Brown-Henneaux: $c = \frac{3\ell}{2G_3}$]

$$S = 2\pi \left(\sqrt{\frac{c_L}{6} n_L} + \sqrt{\frac{c_R}{6} n_R} \right) .$$

Entropy of asymptotically flat black holes in gauged supergravi

A new twist: Scherk-Schwarz and gauged supergravity

This is all fine and well understood for over 15 years. So let us add an new interesting twist...

- Scherk-Schwarz twist along the S^1 when going from D = 5 to D = 4.
- It yields gauged N = 2 supergravity with $V \ge 0$ (tree level) and a Minkowski vacuum with broken supersymmetry (super-Higgs).
- some of the particles become massive and charged. (At tree level, m = q.)
- The susy-breaking scale can be taken very small, so *m* is small as well.

イロト イポト イヨト イヨト 二日

 $\mathbb{R}^{1,3} imes SS^1 imes CY_3$ supergravity

Scherk-Schwarz Baby version

Consider a massless complex scalar field with U(1) symmetry on $\mathbb{R}^{1,3} imes S^1$ coupled to gravity

$$\begin{split} L &= -\partial_{\hat{\mu}}\phi\partial^{\hat{\mu}}\bar{\phi} \\ &= -\left(\partial_{\mu}\phi\partial^{\mu}\bar{\phi} + g^{\mu\,z}\partial_{\mu}\phi\partial_{z}\bar{\phi} + g^{z\mu}\partial_{z}\phi\partial_{\mu}\bar{\phi} + g^{zz}\partial_{z}\phi\partial_{z}\bar{\phi}\right) \end{split}$$

Give twisted boundary condition (Scherk-Schwarz)

$$\phi(x,z+2\pi R)=e^{2\pi i\alpha}\phi(x,z) \Leftarrow \partial_z\phi=i\frac{\alpha}{R}\phi.$$

Resulting Lagrangian has KK-charged field and positive definite potential

$$L = -|D_{\mu}\phi|^2 - V(\phi, \bar{\phi}) , \qquad V = rac{lpha^2}{R^2} |\phi|^2 .$$

Mass and charge

$$m = e = \frac{\alpha}{R}$$

Stefan Vandoren, ITF, Utrecht University Entropy of asymptotically flat black holes in gauged supergravi

Black holes in $\mathbb{R}^{1,3} \times \stackrel{\text{Introduction}}{SS^1 \times CY_3}_{\text{Conclusions}}$

Scherk-Schwarz I

The Scherk-Schwarz twist yields no-scale supergravity in D = 4 with $V \ge 0$ [..., Hull, ..., Ferrara et al.; Looyestijn, Plauschinn, SV]. We twist the $U(1) \subset SU(2)_R$ symmetry.

Gravitini and hypers become massive. Vector multiplet scalars and vectors remain massless. We take $h_{1,1} = 1$ and the t^3 model (e.g. quintic CY_3)

$$F(X) = \frac{(X^1)^3}{X^0}$$

The gaugino gets eaten by the gravitino. Freezing the hypers to their VEVs, the resulting bosonic Lagrangian looks like ungauged supergravity for which there are non-extremal black holes known. They are the RN black holes discussed before !!

イロト イポト イヨト イヨト

 $\begin{array}{c} \text{Introduction} \\ \text{Black holes in } \mathbb{R}^{1,3} \times \begin{array}{c} SS^1 \times CY_3 \\ \text{Conclusions} \end{array}$

 $\mathbb{R}^{1,3} \times SS^1 \times CY_3$ supergravity

Scherk-Schwarz potential

The potential is given by a sum of positive terms,

$$\begin{split} \frac{V}{\alpha^2} &= \frac{1}{R^3} \mathcal{N}^r \bar{\mathcal{N}}^s \ G_{r\bar{s}} + \frac{1}{4R^3 \mathcal{V}^2} \left[\xi^T N^T \xi \right]^2 \\ & \frac{1}{2R^3 \mathcal{V}} \xi^T \ N^T \ \mathcal{M} \ (\mathrm{Im} \ \mathcal{M})^{-1} \ \mathcal{M}^T \ N\xi \\ & \frac{1}{4R^6} \ \left(M^A{}_C \phi^C \right) \ \left(M^B{}_D \phi^D \right) \ \mathcal{K}_{\mathcal{AB}} \ . \end{split}$$

Finding Minkowski vacua is solving a geometric problem: Finding fixed points of isometries on quaternionic manifolds. Moment map at the fixed point must be non-zero to get non-zero masses. Radius R and Calabi-Yau volume \mathcal{V} are flat directions.

(本間) (本語) (本語)

Black holes in $\mathbb{R}^{1,3} \times \begin{array}{c} \text{Introduction} \\ SS^1 \times CY_3 \\ \text{Conclusions} \end{array}$

 $\mathbb{R}^{1,3} imes SS^1 imes CY_3$ supergravity

Scherk-Schwarz II

Expanding around the vacuum, we get massive and charged hypermultiplets and gravitini, with m = q and

$$q = n q_{1/2} , \quad n \in \mathbb{Z} , \qquad q_{1/2} = \frac{\alpha}{R} , \qquad lpha << 1 .$$

Actually, $n \in \{1, 3, 4, 8, 12\}$ for the model at hand with $h_{1,2} = 1$ and hypers span $G_2/SO(4)$.

The set-up we have now is a RN black hole with the same entropy (classically), but with a different quantization condition on the BH charge (due to absorption or emission of light charged particles),

$$q_{BH} = q_0 + n \, q_{1/2} = \frac{m + \alpha \, n}{R} \; ,$$

where q_0 was the Kaluza-Klein charge, $q_0 = \frac{m}{R}$ with $m \in \mathbb{Z}$. The magnetic charge of the BH stays fixed at p_1 .

 $\begin{array}{c} \text{Introduction} \\ \text{Black holes in } \mathbb{R}^{1,3} \times \begin{array}{c} SS^1 \times CY_3 \\ \text{Conclusions} \end{array}$

Black holes and Scherk-Schwarz - Micro

- Wrapping the M5 brane over a four-cycle still gives a BPS black string in D = 5, where susy is unbroken. Hence there is a still a dual CFT, the (0,4) MSW.
- Wrap the string around the circle with twisted boundary conditions still gives a black hole, but susy is broken by the boundary conditions.
- Compute the thermal partition function of the MSW CFT with twisted boundary conditions. We twist with respect to $U(1) \subset SU(2)_R$ inside right moving N = 4 sector. Worldsheet fermions are *R*-charged.

イロト イポト イヨト イヨト 二日

Black holes in $\mathbb{R}^{1,3} \times \begin{array}{c} SS^1 \times CY_3 \\ Conclusions \end{array}$

 $\mathbb{R}^{1,3} imes \overline{SS^1 imes CY_3}$ supergravity

MSW and Scherk-Schwarz

Microscopically, we must compute the thermal partition function of MSW on the torus with twisted boundary condition on the right moving fermions (R-charged),

$$\begin{split} \psi(\sigma^0, \sigma^1 + 2\pi\tau_1) &= e^{+2\pi i\alpha}\psi(\sigma^0, \sigma^1) \quad \text{and} \\ \psi(\sigma^0 + 2\pi\tau_2, \sigma^1) &= -\psi(\sigma^0, \sigma^1), \end{split}$$

 $\alpha = 1/2$ is antiperiodic, and $\alpha = 0$ is periodic. Shift in mode numbers explains shift in quantization condition. Sample calculation (free field approximation + preliminary !)

$$Z_{R}(\tau) = \left(\frac{1}{\sqrt{-i\tau}\eta(\tau)}\right)^{\frac{2c_{R}}{3}} \left(e^{-2\pi i(\alpha+\frac{1}{2})\alpha} \left(\frac{\vartheta \left[\begin{array}{c} \alpha+\frac{1}{2} \\ \alpha \end{array}\right]}{\eta(\tau)}\right)\right)^{\frac{2\kappa}{3}}$$

 <</td>

 </td

C -

 $\begin{array}{c} \text{Introduction} \\ \text{Black holes in } \mathbb{R}^{1,3} \times SS^1 \times CY_3 \\ \text{Conclusions} \end{array} \quad \mathbb{R}^{1,3} \times SS^1 \times CY_3 \text{ supergravity} \\ \end{array}$

There is only one polar term in the expansion of the partition function, that goes like $(\alpha < \frac{1}{2}!)$

$$q^{rac{c_Rlpha^2}{6}-rac{c_R}{24}}\;,\qquad q\equiv e^{2\pi i au}$$

From this one can compute the asymptotic growth of states and hence the entropy:

$$S_{CFT} = S_L + S_R$$

= $2\pi \left[\sqrt{\frac{c_L n_L}{6}} + \sqrt{\frac{c_R n_R}{6}} \left(1 - 4\alpha^2 \right)^{\frac{1}{2}} \right]$

For $\alpha = 0$, standard result. Additional correction in $\alpha < \frac{1}{2}$. Remember: twist parameter is equal to coupling constant in sutra. Prediction for a macroscopic correction to the entropy ?!

- 4 回 ト 4 ヨ ト 4 ヨ ト

Black holes in $\mathbb{R}^{1,3} \times SS^1 \times CY_3$

Conclusions

The main question is:

HOW RELIABLE IS ALL THIS ???

- Study stability of the vacuum. Susy breaking parameter is $m_{1/2} = \frac{\alpha}{R}$ and α is continuous and taken very small.
- Instabilities and Schwinger radiation. Threshold: BF-bound in *AdS*₂:

$$(m^2-q^2)Q^2+rac{1}{4}<0$$

- Possible emergency plan: Scherk-Schwarz twist that only partially breaks susy. This is possible $N = 4 \rightarrow N = 2$.
- Repeat story for Strominger-Vafa setup (D1-D5).
- Generalizations to AdS vacua/BH with no susy??