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BPS Black Holes

BPS Black holes in flat space (ala extremal Reissner-Nordström
(RN)) satisfy a bound,

M = |Q|

They preserve 1
2 -susy in e.g. N = 2,D = 4 sugra and have

zero temperature.

They have finite entropy which (for large charges) can be
computed using the (0, 4) CFT of Maldacena, Strominger and
Witten (1997). [Or, in D = 5, Strominger-Vafa (1996)]
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Near-extremal black holes

Near-extremal RN black holes have also been embedded in string
theory [Callan-Maldacena, Horowitz-Strominger, Klebanov-Tseytlin
’96,..., Balasubramanian and Larsen ’98,...]

They have finite but small temperature due to Hawking
radiation.

The entropy can be computed by mapping to BTZ and using
the Cardy formula [Strominger ’97,...].

These is ok for large black holes in sugra and in the absence of
light charged matter: ungauged supergravity. What changes in
gauged sugra ?
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Gauged supergravity

Questions:

How to construct asymptotically flat black hole solutions in
gauged sugra ?

What is the influence of light charged particles on the black
hole ?

Microstate counting ?

Note:

Gauged sugra can have AdS4 vacua. But black holes in AdS4

is a different story.

Gauged sugra can have Minkowski vacua, but typically with
spontaneously broken supersymmetry. This will be our story.
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R1,3 × S1 × CY3 supergravity

Compactification of D=11 sugra on CY3 yields N = 2 D = 5 sugra
with [Cadavid, Ceresole, D’Auria, Ferrara ’95]

Poincare multiplet

h1,1 − 1 vector multiplets

h2,1 + 1 hypermultiplets

Further compactification on S1
R gives at low energies N = 2 D = 4

sugra with

Poincare multiplet

h1,1 vector multiplets

h2,1 + 1 hypermultiplets (massless and neutral)

Consistency requires R6 >> Vol(CY3).
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BPS Black Holes and MSW

The M5 brane can be wrapped over a four-cycle to give a BPS
string in D = 5, with near horizon geometry

AdS3 × S2 × CY3

Upon reducing over S1 to D = 4 it gives a BPS black hole with
near horizon geometry

AdS2 ×f S1 × S2 × CY3

The entropy of this black hole was computed by Maldacena,
Strominger Witten (’97) using AdS3/CFT2 and the Cardy formula
for the (0, 4) dual CFT.
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Non-extremal black holes and BTZ - I

Consider the STU = T 3 model (F =
X 3

1
X0

; h1,1 = 1). Non-extremal
black hole solutions [..., Galli, Ortin, Perz and Shahbazi (2011)]:

ds2 = −e2U(r)dt2 + e−2U(r)dr2 + e−2U(r)f (r)dΩ2
(2) ,

with f (r) = (r − r+)(r − r−). Warp factor

e−2U(r)f (r) =

r − r∗ +

√
r2
0 +

2q2
0

R3
∞

 1
2 [

r − r∗ +
√

r2
0 + 2p2

1R∞

] 3
2

.

Inner and outer horizon are r± = r∗ ± r0 with r0 the nonextremality

parameter and r2
∗ = 2

√
q0p3

1 is the horizon radius of the extremal

solution. For R∞ =
√

q0
p1

the dilaton is constant and the solution

becomes Reissner-Nordström.
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Non-extremal black holes and BTZ - II

In fact, in the near-horizon limit of all near-extremal black holes,
they all become of the RN type,

ds2
(4) = −

(
1− 2M

r̃
+

r2
∗

r̃2

)
dt2 +

dr̃2(
1− 2M

r̃ + r2
∗

r̃2

) + r̃2dΩ2
(2) ,

with r̃ = r − r∗ + M and the mass given by

M =
√

r2
0 + r2

∗ =

√
1

2
(r2

+ + r2
−) .

Near-horizon, near-extremal limit ε << 1

r̃ = r∗ + ερ , r0 = ερ0 , M = r∗ + ε2 ρ
2
0

2r∗
, t =

1

ε
r2
∗ τ ,
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Non-extremal black holes and BTZ - III

We can uplift to D = 5 and take the near-horizon, near-extremal
limit [..., Balasubramanian and Larsen ’98,... ]. Then we get a
geometry (BTZ × S2)` with ` = 2p and

M2 =
`2

2
MBTZ , r2

∗ =
`

4
(JBTZ + `MBTZ ) ,

2D CFT identification, `MBTZ = L0 + L̄0; JBTZ = L0 − L̄0, so

nL =
1

2
(`MBTZ + JBTZ ) ,

nR =
1

2
(`MBTZ − JBTZ ) .

BTZ entropy can now be rewritten as Cardy formula [Strominger
’97; Brown-Henneaux: c = 3`

2G3
]

S = 2π

(√
cL

6
nL +

√
cR

6
nR

)
.
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A new twist: Scherk-Schwarz and gauged supergravity

This is all fine and well understood for over 15 years. So let us add
an new interesting twist...

Scherk-Schwarz twist along the S1 when going from D = 5 to
D = 4.

It yields gauged N = 2 supergravity with V ≥ 0 (tree level)
and a Minkowski vacuum with broken supersymmetry
(super-Higgs).

some of the particles become massive and charged. (At tree
level, m = q.)

The susy-breaking scale can be taken very small, so m is small
as well.
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Scherk-Schwarz Baby version

Consider a massless complex scalar field with U(1) symmetry on
R1,3 × S1 coupled to gravity

L = −∂µ̂φ∂µ̂φ̄

= −
(
∂µφ∂

µφ̄+ gµ z∂µφ∂z φ̄+ g zµ∂zφ∂µφ̄+ g zz∂zφ∂z φ̄
)

Give twisted boundary condition (Scherk-Schwarz)

φ(x , z + 2πR) = e2πiαφ(x , z)⇐ ∂zφ = i
α

R
φ .

Resulting Lagrangian has KK-charged field and positive definite
potential

L = −|Dµφ|2 − V (φ, φ̄) , V =
α2

R2
|φ|2 .

Mass and charge

m = e =
α

R
.
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Scherk-Schwarz I

The Scherk-Schwarz twist yields no-scale supergravity in D = 4
with V ≥ 0 [..., Hull, ..., Ferrara et al.; Looyestijn, Plauschinn, SV].
We twist the U(1) ⊂ SU(2)R symmetry.
Gravitini and hypers become massive. Vector multiplet scalars and
vectors remain massless. We take h1,1 = 1 and the t3 model (e.g.
quintic CY3)

F (X ) =
(X 1)3

X 0

The gaugino gets eaten by the gravitino. Freezing the hypers to
their VEVs, the resulting bosonic Lagrangian looks like ungauged
supergravity for which there are non-extremal black holes known.
They are the RN black holes discussed before !!
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Scherk-Schwarz potential

The potential is given by a sum of positive terms,

V

α2
=

1

R3
N r N̄ s Gr s̄ +

1

4R3V2

[
ξTNT ξ

]2

1

2R3V
ξT NT M (ImM)−1MT Nξ

1

4R6

(
MA

Cφ
C
) (

MB
Dφ

D
)
KAB .

Finding Minkowski vacua is solving a geometric problem: Finding
fixed points of isometries on quaternionic manifolds. Moment map
at the fixed point must be non-zero to get non-zero masses.
Radius R and Calabi-Yau volume V are flat directions.
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Scherk-Schwarz II

Expanding around the vacuum, we get massive and charged
hypermultiplets and gravitini, with m = q and

q = n q1/2 , n ∈ Z , q1/2 =
α

R
, α << 1 .

Actually, n ∈ {1, 3, 4, 8, 12} for the model at hand with h1,2 = 1
and hypers span G2/SO(4).
The set-up we have now is a RN black hole with the same entropy
(classically), but with a different quantization condition on the BH
charge (due to absorption or emission of light charged particles),

qBH = q0 + n q1/2 =
m + α n

R
,

where q0 was the Kaluza-Klein charge, q0 = m
R with m ∈ Z. The

magnetic charge of the BH stays fixed at p1.
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Black holes and Scherk-Schwarz - Micro

Wrapping the M5 brane over a four-cycle still gives a BPS
black string in D = 5, where susy is unbroken. Hence there is
a still a dual CFT, the (0,4) MSW.

Wrap the string around the circle with twisted boundary
conditions still gives a black hole, but susy is broken by the
boundary conditions.

Compute the thermal partition function of the MSW CFT
with twisted boundary conditions. We twist with respect to
U(1) ⊂ SU(2)R inside right moving N = 4 sector. Worldsheet
fermions are R-charged.
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MSW and Scherk-Schwarz

Microscopically, we must compute the thermal partition function of
MSW on the torus with twisted boundary condition on the right
moving fermions (R-charged),

ψ(σ0, σ1 + 2πτ1) = e+2πiαψ(σ0, σ1) and

ψ(σ0 + 2πτ2, σ
1) = −ψ(σ0, σ1),

α = 1/2 is antiperiodic, and α = 0 is periodic. Shift in mode
numbers explains shift in quantization condition.
Sample calculation (free field approximation + preliminary !)

ZR(τ) =

(
1√

−iτη(τ)

) 2cR
3

e−2πi(α+ 1
2

)α

ϑ
[
α + 1

2
α

]
η(τ)




cR
3

.
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There is only one polar term in the expansion of the partition
function, that goes like (α < 1

2 !)

q
cRα2

6
− cR

24 , q ≡ e2πiτ

From this one can compute the asymptotic growth of states and
hence the entropy:

SCFT = SL + SR

= 2π

[√
cLnL

6
+

√
cRnR

6

(
1− 4α2

) 1
2

]
For α = 0, standard result. Additional correction in α < 1

2 .
Remember: twist parameter is equal to coupling constant in sutra.
Prediction for a macroscopic correction to the entropy ?!
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Conclusions

The main question is:

HOW RELIABLE IS ALL THIS ???

Study stability of the vacuum. Susy breaking parameter is
m1/2 = α

R and α is continuous and taken very small.

Instabilities and Schwinger radiation. Threshold: BF-bound in
AdS2:

(m2 − q2)Q2 +
1

4
< 0

Possible emergency plan: Scherk-Schwarz twist that only
partially breaks susy. This is possible N = 4→ N = 2.

Repeat story for Strominger-Vafa setup (D1-D5).

Generalizations to AdS vacua/BH with no susy??
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