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New input from QIT (Brassard-Fuchs, Hardy, D’Ariano,
Joyal,...)
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Teleportation isn’t so generic!
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For purposes of this talk, an abstract state space is a pair
(A,ua) where

Ais a (finite-dimensional!) ordered real vector space with

(closed, generating) positive cone A, of un-normalized
states.

Uy is a strictly positive linear functional, called the order
unit, picking out a set of normalized states

Qa:=u,'(1).



Remarks:

Q4 is compact

Any (f.d.) compact convex set has the form Q4 for a
canonical (A, u): take A = Aff(Q)*, where Aff(Q) is the
space of real affine functionals on 2, and set us = 1.

The convex hull of QU —2 is the unit ball for a norm, called
the base norm, such that ||a| = u(a) for a € A,..



Examples

Classical: A=RX, X a finite set with u(f) = ¥xcx f(X); here Qa4
is the set of probability weights on X. Note that A has this form
iff Qa is a simplex.

Quantum: A = %,(H) = self-adjoint operators on complex (f.d.)
Hilbert space H with u(A) = Tr(A); here Q4 is the set of density
operators.

Neither: A = nx n matrices with column sums = constant, with
u(a) = column sum; here Q4 is the set of stochastic matrices.
(In 2 x 2 case, a square.)

Note: Any abstract state space can be represented concrete
state space A(X,2) where (X,2l) is a test space.



An effect on an abstract state space A is a positive functional
ac A* with a(a) < 1 for all @ € Q4. Write [0, uy] for the set of
effects.

Interpretation: a represents an event — e.g., measurement
outcome — with probability a(«) in state normalized state w.
Thus:

An (discrete) observable on A is a sequence (ay,...,an) of
effects with ¥; a; = ugx.

In classical examples, observables are (discrete) fuzzy random
variables; in quantum examples, discrete POVMs.



Given an inner product on an abstract state space (A, u), we
can define an internal dual cone by

AT ={bec Avac A, (ba) >0}.

If {, ) can be chosen so that A* = A, one says that A (or A,)
is self-dual. Finite-dimensional classical, and all quantum,
state spaces are self-dual in this sense.

Let A be an irreducible, finite-dimensional, self-dual state
space. Suppose the group of affine automorphisms of A, acts
transitively on the interior of A;.. Then Q4 is affinely isomorphic
to one of the following: (1) The set of density operators on an
n-dimensional Hilbert space (i.e., A is quantum); (2) an n-ball;
(3) the set of 3 x 3 trace-one matrices over the octonions.



A weaker condition is that there exist an order-isomorphism (a
positive linear mapping with positive inverse)

n:A" ~A
If this is the case, we shall say that A is weakly self-dual.

Example: Let A= Aff(2) where Q is a square. There are just
four minimal extremal effects, corresponding to the four faces of
Q; using these, one can easily construct the desired
isomorphism, so this cone is weakly self-dual. It's not self-dual,
however: V* is V. rotated by 7 /4.



Suppose we want to model a composite system A comprising
several sub-systems A, ...,A,. We shall assume that a state o
of A is defined by a joint probability assignment

o :[0,uq] x---x[0,up] — R.
Such a state is non-signaling iff, for all observables E on A;,

£(a, .. =) o(aa,...an)
ackE

is independent of E, and similarly for the other components.

o Is non-signaling iff it extends to an n-linear form on
Aj x - X Ap.



Identify ®; A; with the space of n-linear forms on Aj x --- x Ay,
Thus, if a; € A; for i =1, ..., n, the pure tensor ®;q; is the form

(®,-a,-)(a1 Ry an) = I'I,-oc,-(a,-).

Call a form w € Q; A; positive iff
ai,...,an>0 = o(ay,...,an) >0

for all a; € A7. Example: ®;o; with a4, ..., 00 > 0.

A composite of Aq¢,..., A, is a state space consisting of n-linear
forms on A} x --- x A}, ordered by a cone of positive forms
containing all pure tensors, and with order unit u = ®;u;.

(Thus, if we ignore the ordered structure, a composite A of
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Examples

e The maximal tensor product, A®max B, uses the cone of
all positive forms;

» The minimal tensor product, A®i, B, uses the cone
generated by the pure tensors.

« If A, B are quantum state spaces, the usual cone of
bipartite quantum states is properly between the maximal
and minimal cones in A® B.
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States of A®max B not in A®mi, B are entangled.
Dually, entangled effects are those in (A®min B)* not in

(A®max B)*.

A®max B = A®npin B for all B iff A is classical.

Thus, entanglement is a feature of any theory involving more
than one non-classical state space — unless artificially ruled out
by stubborn insistence on using ®@min-



Any state @ in a composite AB has marginal or reduced states
Wy € A, o € B, given by

wa(a) == w(a,ug) and wg(b) = ®(upa,b).

If wa(a) # 0, the conditional state of B given effect ac A* is
given by
wp|a(b) := w(a,b)/wa(a)

Just as in QM, pure entangled states have mixed marginals:

Let o be a pure state in A® B. If either wa or wg is pure, then
0= WaAR 0B.



Every bipartite state w in a composite AB corresponds to a
positive operator @ : A* — B, given by

Any positive operator ¢ : A* — B with ¢(u) € Qg has the form @
for a state @ € A®@max B. Note that ®(ua) = wg; thus, &(a) is
the un-normalized conditional state of B given the effect a on A.

Similarly, a bipartite effect f € (AB)* corresponds to an operator
f: A— B*, given by

f(a)(B) = f(a®B)

foralla € Aand B € B.
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The theory of composites of n > 2 systems is a bit more
delicate.

Examples: Let A, A5, A3 be (say) quantum state spaces.
Some composites:

* A1 ®min A2 ©min A3

® A1 ®max A2 ®max A3

o A1 ®@qm A2 ®qm As

® A1 ®min (A2 ®qm As)

® (A1 ®min A2) ®max As...

etc!



If Ais a composite of Ay, ...,An, then given JC {1,...,n} and a
list a = (&)¢y of functionals a; € A7 for i € I'\\ J, we can define a
partially evaluated form

wy(a) € QA

jed
This represents an un-normalized conditional state.
Example: For n=4,

®13(82,84) : (@1,83) — ©(&1,82,83,84).

Let A be a composite of Aq,..., A, and suppose J C {1,...,n}.
The J-reduced subsystem of Ais &), A), ordered by the cone
generated by the partially evaluated states wy(f).
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We say that A is a regular composite of A4, ..., A, iff, for all
JC {1,...,n}, Ais a composite of A, and Ay . Equivalently:
HLEA,VEA\ = URVEA;
feA) ge A}, implies fogeA*.

Examples:
Any bipartite composite (trivially)
A1 ®---® Ap, ® any monoidal product
A®min (B®max C), (A®min B) ®max C;

Non-example: (A®pyin A) ®max (A®min A) where Ais any
weakly self-dual nonclassical state space.



As observed above, if @ is a bipartite state on AB, with
corresponding operator @ : A* — B, then ®(a) € B.. represents
the un-normalized conditional state of B given measurement
result a.

Let ABC be a regular composite of A, B and C with reduced
systems AB and BC. If f € (AB)* is a bipartite effect and
o € BC is a bipartite state, then for any state o € A,

(@@ o) (fo-)=d(f(a)).
If the tripartite system ABC is in state a@ ® @, a unknown, then

conditional on securing measurement outcome f on AB, the
state of C is a known function of a.



If C=Aand t = dofis physically reversible (invertible with
norm non-increasing inverse), then performing the operation
71 at C reproduces a. This is conclusive (one-outcome
post-selected) teleportation. When this is possible, we say that
B teleports A.

B teleports A iff there exist a positive embedding i : A— B*, and
a positive idempotent compression P : B* — B* with range i(A).



Remote evaluation is a special case of a more general result:

Let A= A{A; and B = By B, be composite systems, and let AB
be a regular composite of A1, Ao, By and B,. If u is a state of
A1B; and o is a state of A>B», then for any f € A*,

dofofl* = (u®w)s(f) € B.

A< B;
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The protocol is simply

pe(poo)(fo -)

If @ and f realize a conclusive teleportation protocol, we
end up with state u pivoted from A;B; to B1B, = B.

Therefore, if A; ~ B, we need Ay By ~ By B,. This is what
fails for (A®min A) ®max (A®min A) With A weakly self-dual.



In order to deterministically teleport an unknown state o € A
through B, we need not just one entangled effect f, but an
entire observable’s worth.

A deterministic teleportation protocol for A through B consists
of an observable E = (fi,...,f,) on AB and a state  in BA, such
that for all i =1, ..., n, the operator f;o @ is physically invertible.



Suppose that G is a finite group acting linearly on A in such a
way as to preserve Q). Suppose that

there exists a unique G-invariant state o, € 2, and

there exists an order-automorphism @ : A* — A with

a(u) = op.
Then A® min (A®maxA) supports a deterministic teleportation
protocol.

Sketch of proof: Not that @ defines a bipartite state
o € A®max A. For each g € G, let fy € (A®max B)* correspond

to the operator
= g
= — O .
76l

Then E = {fy|g € G} is an observable, and (E,®) is a
deterministic teleportation protocol. O



Let A= Aff(Q2)* with Q a square. We've seen that this is weakly
self-dual. Let G = D4 acting on Q in the obvious way: the center
of the square is the unique fixed point. It’'s easy to see that the
obvious isomorphism A* ~ A (suitably normalized) takes u to
the center of the square. Thus, A®max A supports deterministic
teleportation.



Conclusions
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theories; however



The possibility of teleportation is a sharp constraint on physical
theories; however

There do exist non-classical, non-quantum theories supporting
deterministic TP.
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