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• QM is (can be viewed as) a probability calculus with

• a relatively classical interpretation,
• a rather non-classical formal apparatus.

• To what extent can we motivate this apparatus in purely
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• Old problem (von Neumann, Mackey, Ludwig...)
• New input from QIT (Brassard-Fuchs, Hardy, D’Ariano,
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• To approach this question: look at general probabilistic
theories, and ask: what’s special about QM?

• Examples: no-cloning, no-broadcasting theorems are quite
generic (BBLW06, 07).

• Teleportation isn’t so generic!
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1. Abstract State Spaces

Definition
For purposes of this talk, an abstract state space is a pair
(A,uA) where

(i) A is a (finite-dimensional!) ordered real vector space with
(closed, generating) positive cone A+ of un-normalized
states.

(ii) uA is a strictly positive linear functional, called the order
unit, picking out a set of normalized states

ΩA := u−1
A (1).



Remarks:

• ΩA is compact

• Any (f.d.) compact convex set has the form ΩA for a
canonical (A,u): take A = Aff(Ω)∗, where Aff(Ω) is the
space of real affine functionals on Ω, and set uA ≡ 1.

• The convex hull of Ω∪−Ω is the unit ball for a norm, called
the base norm, such that ‖α‖= u(α) for α ∈ A+.



Examples

Classical: A = RX , X a finite set with u(f ) = ∑x∈X f (x); here ΩA
is the set of probability weights on X . Note that A has this form
iff ΩA is a simplex.

Quantum: A = Bh(H) = self-adjoint operators on complex (f.d.)
Hilbert space H with u(A) = Tr(A); here ΩA is the set of density
operators.

Neither: A = n×n matrices with column sums = constant, with
u(a) = column sum; here ΩA is the set of stochastic matrices.
(In 2×2 case, a square.)

Note: Any abstract state space can be represented concrete
state space A(X ,A) where (X ,A) is a test space.



Effects and Observables
Definition
An effect on an abstract state space A is a positive functional
a ∈ A∗ with a(α)≤ 1 for all α ∈ ΩA. Write [0,uA] for the set of
effects.

Interpretation: a represents an event – e.g., measurement
outcome – with probability a(α) in state normalized state ω.
Thus:

Definition
An (discrete) observable on A is a sequence (a1, ...,an) of
effects with ∑i ai = uA.

In classical examples, observables are (discrete) fuzzy random
variables; in quantum examples, discrete POVMs.



Self-duality
Given an inner product on an abstract state space (A,u), we
can define an internal dual cone by

A+ = {b ∈ A|∀a ∈ A+,〈b,a〉 ≥ 0}.

If 〈 , 〉 can be chosen so that A+ = A+, one says that A (or A+)
is self-dual. Finite-dimensional classical, and all quantum,
state spaces are self-dual in this sense.

Theorem (Koechers, Vinberg)
Let A be an irreducible, finite-dimensional, self-dual state
space. Suppose the group of affine automorphisms of A+ acts
transitively on the interior of A+. Then ΩA is affinely isomorphic
to one of the following: (1) The set of density operators on an
n-dimensional Hilbert space (i.e., A is quantum); (2) an n-ball;
(3) the set of 3×3 trace-one matrices over the octonions.



Weak self-duality

A weaker condition is that there exist an order-isomorphism (a
positive linear mapping with positive inverse)

η : A∗ ' A.

If this is the case, we shall say that A is weakly self-dual.

Example: Let A = Aff(Ω) where Ω is a square. There are just
four minimal extremal effects, corresponding to the four faces of
Ω; using these, one can easily construct the desired
isomorphism, so this cone is weakly self-dual. It’s not self-dual,
however: V+ is V+ rotated by π/4.



2. Composite Systems

Suppose we want to model a composite system A comprising
several sub-systems A1, ...,An. We shall assume that a state ω

of A is defined by a joint probability assignment

ω : [0,u1]×·· ·× [0,un]→ R.

Such a state is non-signaling iff, for all observables E on A1,

ωE(a2, ...,an) := ∑
a∈E

ω(a,a2, ...,an)

is independent of E , and similarly for the other components.

Theorem (KRF ’87; JB ’05)
ω is non-signaling iff it extends to an n-linear form on
A∗

1×·· ·×A∗
n.



Identify
⊗

i Ai with the space of n-linear forms on A∗
1×·· ·×A∗

n.
Thus, if αi ∈ Ai for i = 1, ...,n, the pure tensor ⊗iαi is the form

(⊗iαi)(a1, ...,an) = Πiαi(ai).

Call a form ω ∈
⊗

i Ai positive iff

a1, ...,an ≥ 0 ⇒ ω(a1, ...,an)≥ 0

for all ai ∈ A∗
i . Example: ⊗iαi with α1, ...,αn ≥ 0.

Definition
A composite of A1, ...,An is a state space consisting of n-linear
forms on A∗

1×·· ·×A∗
n, ordered by a cone of positive forms

containing all pure tensors, and with order unit u =⊗iui .

(Thus, if we ignore the ordered structure, a composite A of
A1, ...,An is just A1⊗·· ·⊗An.)



Bipartite composites

Examples

• The maximal tensor product, A⊗max B, uses the cone of
all positive forms;

• The minimal tensor product, A⊗min B, uses the cone
generated by the pure tensors.

• If A,B are quantum state spaces, the usual cone of
bipartite quantum states is properly between the maximal
and minimal cones in A⊗B.
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Entanglement

Definition
States of A⊗max B not in A⊗min B are entangled.

Dually, entangled effects are those in (A⊗min B)∗ not in
(A⊗max B)∗.

Theorem (Namioka-Phelps)
A⊗max B = A⊗min B for all B iff A is classical.

Thus, entanglement is a feature of any theory involving more
than one non-classical state space – unless artificially ruled out
by stubborn insistence on using ⊗min.
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Marginal and Conditional States

Any state ω in a composite AB has marginal or reduced states
ωA ∈ A, ωB ∈ B, given by

ωA(a) := ω(a,uB) and ωB(b) = ω(uA,b).

If ωA(a) 6= 0, the conditional state of B given effect a ∈ A∗ is
given by

ωB|a(b) := ω(a,b)/ωA(a)

Just as in QM, pure entangled states have mixed marginals:

Lemma
Let ω be a pure state in A⊗B. If either ωA or ωB is pure, then
ω = ωA⊗ωB.



Bipartite states as operators

Every bipartite state ω in a composite AB corresponds to a
positive operator ω̂ : A∗→ B, given by

ω̂(a) = ω(a, · ).

Any positive operator φ : A∗→ B with φ(u) ∈ ΩB has the form ω̂

for a state ω ∈ A⊗max B. Note that ω̂(uA) = ωB; thus, ω̂(a) is
the un-normalized conditional state of B given the effect a on A.

Similarly, a bipartite effect f ∈ (AB)∗ corresponds to an operator
f̂ : A→ B∗, given by

f̂ (α)(β ) = f (α ⊗β )

for all α ∈ A and β ∈ B.



N-partite composites

The theory of composites of n > 2 systems is a bit more
delicate.

Examples: Let A1,A2,A3 be (say) quantum state spaces.
Some composites:

• A1⊗min A2⊗min A3

• A1⊗max A2⊗max A3

• A1⊗QM A2⊗QM A3

• A1⊗min (A2⊗QM A3)

• (A1⊗min A2)⊗max A3...

etc!
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Subsystems
If A is a composite of A1, ...,An, then given J ⊆ {1, ...,n} and a
list a = (ai)i 6∈J of functionals ai ∈ A∗

i for i ∈ I \J, we can define a
partially evaluated form

ωJ(a) ∈
⊗
j∈J

Aj .

This represents an un-normalized conditional state.

Example: For n = 4,

ω1,3(a2,a4) : (a1,a3) 7→ ω(a1,a2,a3,a4).

Definition (Subsystems)
Let A be a composite of A1, ...,An, and suppose J ⊆ {1, ...,n}.
The J-reduced subsystem of A is

⊗
j∈J Aj , ordered by the cone

generated by the partially evaluated states ωJ(f ).



Regular composites

Definition (Regularity)
We say that A is a regular composite of A1, ...,An iff, for all
J ⊆ {1, ...,n}, A is a composite of AJ and AI\J . Equivalently:

(a) µ ∈ AJ , ν ∈ AI\J ⇒ µ ⊗ν ∈ A;
(b) f ∈ A∗

J , g ∈ A∗
I\J implies f ⊗g ∈ A∗.

Examples:

• Any bipartite composite (trivially)
• A1⊗·· ·⊗An, ⊗ any monoidal product
• A⊗min (B⊗max C), (A⊗min B)⊗max C;

Non-example: (A⊗min A)⊗max (A⊗min A) where A is any
weakly self-dual nonclassical state space.
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3. Teleportation

As observed above, if ω is a bipartite state on AB, with
corresponding operator ω̂ : A∗→ B, then ω̂(a) ∈ B+ represents
the un-normalized conditional state of B given measurement
result a.

Lemma (Remote Evaluation)
Let ABC be a regular composite of A,B and C with reduced
systems AB and BC. If f ∈ (AB)∗ is a bipartite effect and
ω ∈ BC is a bipartite state, then for any state α ∈ A,

(α ⊗ω)(f ⊗−) = ω̂(f̂ (α)).

If the tripartite system ABC is in state α ⊗ω, α unknown, then
conditional on securing measurement outcome f on AB, the
state of C is a known function of α.



Conclusive teleportation

If C = A and τ = ω̂ ◦ f̂ is physically reversible (invertible with
norm non-increasing inverse), then performing the operation
τ−1 at C reproduces α. This is conclusive (one-outcome
post-selected) teleportation. When this is possible, we say that
B teleports A.

Theorem (Conclusive TP)
B teleports A iff there exist a positive embedding i : A→ B∗, and
a positive idempotent compression P : B∗→ B∗ with range i(A).



Entanglement Swapping

Remote evaluation is a special case of a more general result:

Theorem (State Pivoting)
Let A = A1A2 and B = B1B2 be composite systems, and let AB
be a regular composite of A1,A2,B1 and B2. If µ is a state of
A1B1 and ω is a state of A2B2, then for any f ∈ A∗,

ω̂ ◦ f̂ ◦ µ̂
∗ = (µ ⊗ω)B(f ) ∈ B.

A1

f̂
��

B∗
1

µ̂∗
oo

���
�
�
�

A∗
2

ω̂

// B2



• The protocol is simply

µ 7→ (µ ⊗ω)(f ⊗ − )

• If ω and f realize a conclusive teleportation protocol, we
end up with state µ pivoted from A1B1 to B1B2 = B.

• Therefore, if A1 ' B2, we need A1B1 ' B1B2. This is what
fails for (A⊗min A)⊗max (A⊗min A) with A weakly self-dual.
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Deterministic Teleportation

In order to deterministically teleport an unknown state α ∈ A
through B, we need not just one entangled effect f , but an
entire observable’s worth.

Definition
A deterministic teleportation protocol for A through B consists
of an observable E = (f1, ..., fn) on AB and a state ω in BA, such
that for all i = 1, ...,n, the operator f̂i ◦ ω̂ is physically invertible.



Theorem
Suppose that G is a finite group acting linearly on A in such a
way as to preserve Ω. Suppose that
(a) there exists a unique G-invariant state αo ∈ Ω, and
(b) there exists an order-automorphism ω̂ : A∗→ A with

ω̂(u) = αo.
Then A⊗min (A⊗max A) supports a deterministic teleportation
protocol.

Sketch of proof: Not that ω̂ defines a bipartite state
ω ∈ A⊗max A. For each g ∈G, let fg ∈ (A⊗max B)∗ correspond
to the operator

f̂g =
1
|G|

ω̂
−1 ◦g.

Then E = {fg |g ∈G} is an observable, and (E ,ω) is a
deterministic teleportation protocol. �



Example

Let A = Aff(Ω)∗ with Ω a square. We’ve seen that this is weakly
self-dual. Let G = D4 acting on Ω in the obvious way: the center
of the square is the unique fixed point. It’s easy to see that the
obvious isomorphism A∗ ' A (suitably normalized) takes u to
the center of the square. Thus, A⊗max A supports deterministic
teleportation.



Conclusions

The possibility of teleportation is a sharp constraint on physical
theories; however

There do exist non-classical, non-quantum theories supporting
deterministic TP.



Conclusions

The possibility of teleportation is a sharp constraint on physical
theories; however

There do exist non-classical, non-quantum theories supporting
deterministic TP.



Conclusions

The possibility of teleportation is a sharp constraint on physical
theories; however

There do exist non-classical, non-quantum theories supporting
deterministic TP.



References

BBLW06: Cloning and broadcasting in general probabilistic
theories, quant-ph/061129

BBLW07 (A) general no-cloning theorem, Phys. Rev. Lett. 99
(1977) 240501; arXiv:0707.0620.

BBLW08 Teleportation in general probabilistic theories, arXiv:
...



References

BBLW06: Cloning and broadcasting in general probabilistic
theories, quant-ph/061129

BBLW07 (A) general no-cloning theorem, Phys. Rev. Lett. 99
(1977) 240501; arXiv:0707.0620.

BBLW08 Teleportation in general probabilistic theories, arXiv:
...



References

BBLW06: Cloning and broadcasting in general probabilistic
theories, quant-ph/061129

BBLW07 (A) general no-cloning theorem, Phys. Rev. Lett. 99
(1977) 240501; arXiv:0707.0620.

BBLW08 Teleportation in general probabilistic theories, arXiv:
...



References

BBLW06: Cloning and broadcasting in general probabilistic
theories, quant-ph/061129

BBLW07 (A) general no-cloning theorem, Phys. Rev. Lett. 99
(1977) 240501; arXiv:0707.0620.

BBLW08 Teleportation in general probabilistic theories, arXiv:
...


	Introduction
	Outline
	Abstract State Spaces
	Composite Systems
	Teleportation

