Teleportation Protocols for Abstract State Spaces

Alex Wilce

Susquehanna University

Zurich, May 2008 (Joint work with H. Barnum, J. Barrett and M. Leifer)

QM is (can be viewed as) a probability calculus with

- QM is (can be viewed as) a probability calculus with
 - · a relatively classical interpretation,

- QM is (can be viewed as) a probability calculus with
 - a relatively classical interpretation,
 - a rather non-classical formal apparatus.

- QM is (can be viewed as) a probability calculus with
 - · a relatively classical interpretation,
 - a rather non-classical formal apparatus.
- To what extent can we motivate this apparatus in purely probabilistic or information-theoretic terms?

- QM is (can be viewed as) a probability calculus with
 - · a relatively classical interpretation,
 - a rather non-classical formal apparatus.
- To what extent can we motivate this apparatus in purely probabilistic or information-theoretic terms?
 - Old problem (von Neumann, Mackey, Ludwig...)

- QM is (can be viewed as) a probability calculus with
 - · a relatively classical interpretation,
 - a rather non-classical formal apparatus.
- To what extent can we motivate this apparatus in purely probabilistic or information-theoretic terms?
 - Old problem (von Neumann, Mackey, Ludwig...)
 - New input from QIT (Brassard-Fuchs, Hardy, D'Ariano, Joyal,...)

 To approach this question: look at *general* probabilistic theories, and ask: what's special about QM?

- To approach this question: look at *general* probabilistic theories, and ask: what's special about QM?
 - Examples: no-cloning, no-broadcasting theorems are quite generic (BBLW06, 07).

- To approach this question: look at general probabilistic theories, and ask: what's special about QM?
 - Examples: no-cloning, no-broadcasting theorems are quite generic (BBLW06, 07).
 - Teleportation isn't so generic!

Outline

- (1) Abstract state spaces
- (2) Composite systems
- (3) Teleportation protocols

1. Abstract State Spaces

Definition

For purposes of this talk, an **abstract state space** is a pair (A, u_A) where

- (i) A is a (finite-dimensional!) ordered real vector space with (closed, generating) positive cone A_+ of *un-normalized* states.
- (ii) u_A is a *strictly* positive linear functional, called the *order* unit, picking out a set of *normalized states*

$$\Omega_A := u_A^{-1}(1).$$

Remarks:

- Ω_A is compact
- Any (f.d.) compact convex set has the form Ω_A for a canonical (A, u): take $A = \text{Aff}(\Omega)^*$, where $\text{Aff}(\Omega)$ is the space of real affine functionals on Ω , and set $u_A \equiv 1$.
- The convex hull of $\Omega \cup -\Omega$ is the unit ball for a norm, called the *base norm*, such that $\|\alpha\| = u(\alpha)$ for $\alpha \in A_+$.

Examples

Classical: $A = \mathbb{R}^X$, X a finite set with $u(f) = \sum_{x \in X} f(x)$; here Ω_A is the set of probability weights on X. Note that A has this form iff Ω_A is a simplex.

Quantum: $A = \mathcal{B}_h(\mathbf{H}) = \text{self-adjoint operators on complex (f.d.)}$ Hilbert space \mathbf{H} with u(A) = Tr(A); here Ω_A is the set of density operators.

Neither: $A = n \times n$ matrices with column sums = constant, with u(a) = column sum; here Ω_A is the set of stochastic matrices. (In 2 × 2 case, a square.)

Note: Any abstract state space can be represented *concrete* state space $A(X,\mathfrak{A})$ where (X,\mathfrak{A}) is a *test space*.

Effects and Observables

Definition

An **effect** on an abstract state space A is a positive functional $a \in A^*$ with $a(\alpha) \le 1$ for all $\alpha \in \Omega_A$. Write $[0, u_A]$ for the set of effects.

Interpretation: a represents an event – e.g., measurement outcome – with probability $a(\alpha)$ in state normalized state ω . Thus:

Definition

An (discrete) **observable** on A is a sequence $(a_1,...,a_n)$ of effects with $\sum_i a_i = u_A$.

In classical examples, observables are (discrete) fuzzy random variables; in quantum examples, discrete POVMs.

Self-duality

Given an inner product on an abstract state space (A, u), we can define an **internal dual cone** by

$$A^+ = \{b \in A | \forall a \in A_+, \langle b, a \rangle \ge 0\}.$$

If $\langle \; , \; \rangle$ can be chosen so that $A^+=A_+$, one says that A (or A_+) is **self-dual**. Finite-dimensional classical, and all quantum, state spaces are self-dual in this sense.

Theorem (Koechers, Vinberg)

Let A be an irreducible, finite-dimensional, self-dual state space. Suppose the group of affine automorphisms of A_+ acts transitively on the interior of A_+ . Then Ω_A is affinely isomorphic to one of the following: (1) The set of density operators on an n-dimensional Hilbert space (i.e., A is quantum); (2) an n-ball; (3) the set of 3×3 trace-one matrices over the octonions.

Weak self-duality

A weaker condition is that there exist an *order-isomorphism* (a positive linear mapping with positive inverse)

$$\eta: A^* \simeq A$$
.

If this is the case, we shall say that A is **weakly self-dual**.

Example: Let $A = \text{Aff}(\Omega)$ where Ω is a square. There are just four minimal extremal effects, corresponding to the four faces of Ω ; using these, one can easily construct the desired isomorphism, so this cone is weakly self-dual. It's not self-dual, however: V^+ is V_+ rotated by $\pi/4$.

2. Composite Systems

Suppose we want to model a composite system A comprising several sub-systems $A_1,...,A_n$. We shall assume that a state ω of A is defined by a joint probability assignment

$$\omega: [0, u_1] \times \cdots \times [0, u_n] \rightarrow \mathbb{R}.$$

Such a state is **non-signaling** iff, for all observables E on A_1 ,

$$\omega_E(a_2,...,a_n) := \sum_{a \in F} \omega(a,a_2,...,a_n)$$

is independent of E, and similarly for the other components.

Theorem (KRF '87; JB '05)

 ω is non-signaling iff it extends to an n-linear form on $A_1^* \times \cdots \times A_n^*$.

Identify $\bigotimes_i A_i$ with the space of *n*-linear forms on $A_1^* \times \cdots \times A_n^*$. Thus, if $\alpha_i \in A_i$ for i = 1, ..., n, the pure tensor $\bigotimes_i \alpha_i$ is the form

$$(\otimes_i \alpha_i)(a_1,...,a_n) = \Pi_i \alpha_i(a_i).$$

Call a form $\omega \in \bigotimes_i A_i$ positive iff

$$a_1,...,a_n \geq 0 \Rightarrow \omega(a_1,...,a_n) \geq 0$$

for all $a_i \in A_i^*$. Example: $\otimes_i \alpha_i$ with $\alpha_1, ..., \alpha_n \ge 0$.

Definition

A **composite** of $A_1,...,A_n$ is a state space consisting of n-linear forms on $A_1^* \times \cdots \times A_n^*$, ordered by a cone of positive forms containing all pure tensors, and with order unit $u = \bigotimes_i u_i$.

(Thus, if we ignore the ordered structure, a composite A of $A_1, ..., A_n$ is just $A_1 \otimes \cdots \otimes A_n$.)

Examples

Examples

 The maximal tensor product, A⊗max B, uses the cone of all positive forms;

Examples

- The maximal tensor product, A⊗max B, uses the cone of all positive forms;
- The minimal tensor product, A⊗min B, uses the cone generated by the pure tensors.

Examples

- The maximal tensor product, A⊗max B, uses the cone of all positive forms;
- The minimal tensor product, A⊗min B, uses the cone generated by the pure tensors.
- If A, B are quantum state spaces, the usual cone of bipartite quantum states is properly between the maximal and minimal cones in A ⊗ B.

Entanglement

Definition

States of $A \otimes_{max} B$ not in $A \otimes_{min} B$ are **entangled**.

Dually, entangled *effects* are those in $(A \otimes_{\min} B)^*$ not in $(A \otimes_{\max} B)^*$.

Entanglement

Definition

States of $A \otimes_{max} B$ not in $A \otimes_{min} B$ are **entangled**.

Dually, entangled *effects* are those in $(A \otimes_{\min} B)^*$ not in $(A \otimes_{\max} B)^*$.

Theorem (Namioka-Phelps)

 $A \otimes_{max} B = A \otimes_{min} B$ for all B iff A is classical.

Entanglement

Definition

States of $A \otimes_{max} B$ not in $A \otimes_{min} B$ are **entangled**.

Dually, entangled *effects* are those in $(A \otimes_{\min} B)^*$ not in $(A \otimes_{\max} B)^*$.

Theorem (Namioka-Phelps)

 $A \otimes_{max} B = A \otimes_{min} B$ for all B iff A is classical.

Thus, entanglement is a feature of any theory involving more than one non-classical state space – unless artificially ruled out by stubborn insistence on using \otimes_{min} .

Marginal and Conditional States

Any state ω in a composite AB has marginal or reduced states $\omega_A \in A$, $\omega_B \in B$, given by

$$\omega_A(a) := \omega(a, u_B)$$
 and $\omega_B(b) = \omega(u_A, b)$.

If $\omega_A(a) \neq 0$, the **conditional state** of *B* given effect $a \in A^*$ is given by

$$\omega_{B|a}(b) := \omega(a,b)/\omega_A(a)$$

Just as in QM, pure entangled states have mixed marginals:

Lemma

Let ω be a pure state in $A \otimes B$. If either ω_A or ω_B is pure, then $\omega = \omega_A \otimes \omega_B$.

Bipartite states as operators

Every bipartite state ω in a composite AB corresponds to a positive operator $\hat{\omega}: A^* \to B$, given by

$$\hat{\omega}(a) = \omega(a, \cdot).$$

Any positive operator $\phi: A^* \to B$ with $\phi(u) \in \Omega_B$ has the form $\hat{\omega}$ for a state $\omega \in A \otimes_{\max} B$. Note that $\hat{\omega}(u_A) = \omega_B$; thus, $\hat{\omega}(a)$ is the un-normalized *conditional* state of B given the effect a on A.

Similarly, a bipartite effect $f \in (AB)^*$ corresponds to an operator $\hat{f}: A \to B^*$, given by

$$\hat{f}(\alpha)(\beta) = f(\alpha \otimes \beta)$$

for all $\alpha \in A$ and $\beta \in B$.

The theory of composites of n > 2 systems is a bit more delicate.

The theory of composites of n > 2 systems is a bit more delicate.

The theory of composites of n > 2 systems is a bit more delicate.

Examples: Let A_1, A_2, A_3 be (say) quantum state spaces. Some composites:

• $A_1 \otimes_{\min} A_2 \otimes_{\min} A_3$

The theory of composites of n > 2 systems is a bit more delicate.

- $A_1 \otimes_{\min} A_2 \otimes_{\min} A_3$
- $A_1 \otimes_{\max} A_2 \otimes_{\max} A_3$

The theory of composites of n > 2 systems is a bit more delicate.

- $A_1 \otimes_{\min} A_2 \otimes_{\min} A_3$
- $A_1 \otimes_{\max} A_2 \otimes_{\max} A_3$
- $\bullet \ A_1 \otimes_{\mbox{QM}} A_2 \otimes_{\mbox{QM}} A_3$

The theory of composites of n > 2 systems is a bit more delicate.

- $A_1 \otimes_{\min} A_2 \otimes_{\min} A_3$
- $A_1 \otimes_{\max} A_2 \otimes_{\max} A_3$
- \bullet $A_1 \otimes_{QM} A_2 \otimes_{QM} A_3$
- $A_1 \otimes_{\min} (A_2 \otimes_{QM} A_3)$

The theory of composites of n > 2 systems is a bit more delicate.

- $A_1 \otimes_{\min} A_2 \otimes_{\min} A_3$
- $A_1 \otimes_{\max} A_2 \otimes_{\max} A_3$
- $A_1 \otimes_{QM} A_2 \otimes_{QM} A_3$
- $A_1 \otimes_{\min} (A_2 \otimes_{QM} A_3)$
- $(A_1 \otimes_{\min} A_2) \otimes_{\max} A_3...$

The theory of composites of n > 2 systems is a bit more delicate.

Examples: Let A_1, A_2, A_3 be (say) quantum state spaces. Some composites:

- $A_1 \otimes_{\min} A_2 \otimes_{\min} A_3$
- $A_1 \otimes_{\max} A_2 \otimes_{\max} A_3$
- $A_1 \otimes_{QM} A_2 \otimes_{QM} A_3$
- $A_1 \otimes_{\min} (A_2 \otimes_{QM} A_3)$
- $(A_1 \otimes_{\min} A_2) \otimes_{\max} A_3...$

etc!

Subsystems

If A is a composite of $A_1,...,A_n$, then given $J\subseteq\{1,...,n\}$ and a list $a=(a_i)_{i\not\in J}$ of functionals $a_i\in A_i^*$ for $i\in I\setminus J$, we can define a partially evaluated form

$$\omega_J(a) \in \bigotimes_{j \in J} A_j$$
.

This represents an un-normalized *conditional* state.

Example: For n = 4,

$$\omega_{1,3}(a_2,a_4):(a_1,a_3)\mapsto \omega(a_1,a_2,a_3,a_4).$$

Definition (Subsystems)

Let *A* be a composite of $A_1,...,A_n$, and suppose $J \subseteq \{1,...,n\}$. The *J-reduced subsystem* of *A* is $\bigotimes_{j \in J} A_j$, ordered by the cone generated by the partially evaluated states $\omega_J(f)$.

Definition (Regularity)

We say that A is a **regular** composite of $A_1,...,A_n$ iff, for all $J \subseteq \{1,...,n\}$, A is a composite of A_J and $A_{I \setminus J}$. Equivalently:

Definition (Regularity)

We say that A is a **regular** composite of $A_1,...,A_n$ iff, for all $J \subseteq \{1,...,n\}$, A is a composite of A_J and $A_{\bigwedge J}$. Equivalently:

(a)
$$\mu \in A_J$$
, $v \in A_{I \setminus J} \Rightarrow \mu \otimes v \in A$;

Definition (Regularity)

We say that A is a **regular** composite of $A_1,...,A_n$ iff, for all $J \subseteq \{1,...,n\}$, A is a composite of A_J and $A_{I \setminus J}$. Equivalently:

- (a) $\mu \in A_J$, $v \in A_{I \setminus J} \Rightarrow \mu \otimes v \in A$;
- (b) $f \in A_J^*$, $g \in A_{I \setminus J}^*$ implies $f \otimes g \in A^*$.

Definition (Regularity)

We say that A is a **regular** composite of $A_1,...,A_n$ iff, for all $J \subseteq \{1,...,n\}$, A is a composite of A_J and $A_{I \setminus J}$. Equivalently:

- (a) $\mu \in A_J$, $v \in A_{I \setminus J} \Rightarrow \mu \otimes v \in A$;
- (b) $f \in A_J^*$, $g \in A_{ \cap J}^*$ implies $f \otimes g \in A^*$.

Examples:

Definition (Regularity)

We say that A is a **regular** composite of $A_1,...,A_n$ iff, for all $J \subseteq \{1,...,n\}$, A is a composite of A_J and $A_{I \setminus J}$. Equivalently:

- (a) $\mu \in A_J$, $v \in A_{I \setminus J} \Rightarrow \mu \otimes v \in A$;
- (b) $f \in A_J^*$, $g \in A_{I \setminus J}^*$ implies $f \otimes g \in A^*$.

Examples:

Any bipartite composite (trivially)

Definition (Regularity)

We say that A is a **regular** composite of $A_1,...,A_n$ iff, for all $J \subseteq \{1,...,n\}$, A is a composite of A_J and $A_{I \setminus J}$. Equivalently:

- (a) $\mu \in A_J$, $v \in A_{I \setminus J} \Rightarrow \mu \otimes v \in A$;
- (b) $f \in A_J^*$, $g \in A_{I \setminus J}^*$ implies $f \otimes g \in A^*$.

Examples:

- Any bipartite composite (trivially)
- $A_1 \otimes \cdots \otimes A_n$, \otimes any monoidal product

Definition (Regularity)

We say that A is a **regular** composite of $A_1,...,A_n$ iff, for all $J \subseteq \{1,...,n\}$, A is a composite of A_J and $A_{I \setminus J}$. Equivalently:

- (a) $\mu \in A_J$, $v \in A_{I \setminus J} \Rightarrow \mu \otimes v \in A$;
- (b) $f \in A_J^*$, $g \in A_{I \setminus J}^*$ implies $f \otimes g \in A^*$.

Examples:

- Any bipartite composite (trivially)
- $A_1 \otimes \cdots \otimes A_n$, \otimes any monoidal product
- $A \otimes_{\min} (B \otimes_{\max} C), (A \otimes_{\min} B) \otimes_{\max} C;$

Definition (Regularity)

We say that A is a **regular** composite of $A_1,...,A_n$ iff, for all $J \subseteq \{1,...,n\}$, A is a composite of A_J and $A_{I \setminus J}$. Equivalently:

- (a) $\mu \in A_J$, $v \in A_{I \setminus J} \Rightarrow \mu \otimes v \in A$;
- (b) $f \in A_J^*$, $g \in A_{I \setminus J}^*$ implies $f \otimes g \in A^*$.

Examples:

- Any bipartite composite (trivially)
- $A_1 \otimes \cdots \otimes A_n$, \otimes any monoidal product
- $A \otimes_{\min} (B \otimes_{\max} C), (A \otimes_{\min} B) \otimes_{\max} C;$

Non-example: $(A \otimes_{\min} A) \otimes_{\max} (A \otimes_{\min} A)$ where A is any weakly self-dual nonclassical state space.

3. Teleportation

As observed above, if ω is a bipartite state on AB, with corresponding operator $\hat{\omega}: A^* \to B$, then $\hat{\omega}(a) \in B_+$ represents the un-normalized conditional state of B given measurement result a.

Lemma (Remote Evaluation)

Let ABC be a regular composite of A, B and C with reduced systems AB and BC. If $f \in (AB)^*$ is a bipartite effect and $\omega \in BC$ is a bipartite state, then for any state $\alpha \in A$,

$$(\alpha \otimes \omega)(f \otimes -) = \hat{\omega}(\hat{f}(\alpha)).$$

If the tripartite system ABC is in state $\alpha \otimes \omega$, α unknown, then conditional on securing measurement outcome f on AB, the state of C is a *known function of* α .

Conclusive teleportation

If C=A and $\tau=\hat{\omega}\circ\hat{f}$ is *physically reversible* (invertible with norm non-increasing inverse), then performing the operation τ^{-1} at C reproduces α . This is *conclusive* (one-outcome post-selected) teleportation. When this is possible, we say that B teleports A.

Theorem (Conclusive TP)

B teleports A iff there exist a positive embedding $i: A \rightarrow B^*$, and a positive idempotent compression $P: B^* \rightarrow B^*$ with range i(A).

Entanglement Swapping

Remote evaluation is a special case of a more general result:

Theorem (State Pivoting)

Let $A = A_1A_2$ and $B = B_1B_2$ be composite systems, and let AB be a regular composite of A_1, A_2, B_1 and B_2 . If μ is a state of A_1B_1 and ω is a state of A_2B_2 , then for any $f \in A^*$,

$$\hat{\omega} \circ \hat{f} \circ \hat{\mu}^* = (\mu \otimes \omega)_B(f) \in B.$$

The protocol is simply

$$\mu \mapsto (\mu \otimes \omega)(f \otimes -)$$

The protocol is simply

$$\mu \mapsto (\mu \otimes \omega)(f \otimes -)$$

• If ω and f realize a conclusive teleportation protocol, we end up with state μ pivoted from A_1B_1 to $B_1B_2=B$.

The protocol is simply

$$\mu \mapsto (\mu \otimes \omega)(f \otimes -)$$

- If ω and f realize a conclusive teleportation protocol, we end up with state μ pivoted from A_1B_1 to $B_1B_2=B$.
- Therefore, if $A_1 \simeq B_2$, we need $A_1B_1 \simeq B_1B_2$. This is what fails for $(A \otimes_{\min} A) \otimes_{\max} (A \otimes_{\min} A)$ with A weakly self-dual.

Deterministic Teleportation

In order to *deterministically* teleport an unknown state $\alpha \in A$ through B, we need not just one entangled effect f, but an entire observable's worth.

Definition

A deterministic teleportation protocol for A through B consists of an observable $E = (f_1, ..., f_n)$ on AB and a state ω in BA, such that for all i = 1, ..., n, the operator $\hat{f}_i \circ \hat{\omega}$ is physically invertible.

Theorem

Suppose that G is a finite group acting linearly on A in such a way as to preserve Ω . Suppose that

- (a) there exists a unique G-invariant state $\alpha_o \in \Omega$, and
- (b) there exists an order-automorphism $\hat{\omega}: A^* \to A$ with $\hat{\omega}(u) = \alpha_o$.

Then $A \otimes_{min} (A \otimes_{max} A)$ supports a deterministic teleportation protocol.

Sketch of proof: Not that $\hat{\omega}$ defines a bipartite state $\omega \in A \otimes_{\max} A$. For each $g \in G$, let $f_g \in (A \otimes_{\max} B)^*$ correspond to the operator

$$\hat{f}_g = \frac{1}{|G|}\hat{\omega}^{-1} \circ g.$$

Then $E = \{f_g | g \in G\}$ is an observable, and (E, ω) is a deterministic teleportation protocol. \square

Example

Let $A=\operatorname{Aff}(\Omega)^*$ with Ω a square. We've seen that this is weakly self-dual. Let $G=D_4$ acting on Ω in the obvious way: the center of the square is the unique fixed point. It's easy to see that the obvious isomorphism $A^*\simeq A$ (suitably normalized) takes u to the center of the square. Thus, $A\otimes_{\max} A$ supports deterministic teleportation.

Conclusions

Conclusions

The possibility of teleportation is a sharp constraint on physical theories; however

Conclusions

The possibility of teleportation is a sharp constraint on physical theories; however

There do exist non-classical, non-quantum theories supporting deterministic TP.

BBLW06: Cloning and broadcasting in general probabilistic theories, quant-ph/061129

BBLW06: Cloning and broadcasting in general probabilistic theories, quant-ph/061129

BBLW07 (A) general no-cloning theorem, Phys. Rev. Lett. **99** (1977) 240501; arXiv:0707.0620.

BBLW06: Cloning and broadcasting in general probabilistic theories, quant-ph/061129

BBLW07 (A) general no-cloning theorem, Phys. Rev. Lett. **99** (1977) 240501; arXiv:0707.0620.

BBLW08 Teleportation in general probabilistic theories, arXiv: ...