Introduction

Worldsheet formulations of quantum field theo-
ries have had wide ranging impact on the study
of amplitudes. However, the mathematical frame-
work becomes very challenging on the higher-
genus worldsheets required to describe loop ef-
fects. We derive a framework, applicable in such
worldsheet models based on the scattering equa-
tions, that transtorms formulae on higher-genus
surfaces to ones on nodal Riemann spheres, and
that can potentially be applied quite generally in
field theory.

Scattering Equations

The scattering equations underpin the CHY for-
mulae for tree-level scattering amplitudes arising
from ambitwistor string theories, and determine n

From Torus to Riemann Surface

Using a residue theorem and assuming holomor-
phicity of the integrand, we can reduce the for-
mula from the elliptic curve to a nodal Riemann
spere at ¢ = 0. The residue theorem is equivalent
to a contour integral argument in the fundamen-
tal domain, which equates the sum over residues
of 1/P%(zg,...|q) with the contour indicated. Con-
tributions from the sides and the unit circle cancel
due to modular invariance, so it localizes on ¢ = 0.
Mapping the fundamental domain to the Riemann
sphere o = e?™(?~7/2) we obtain

P(z)=P(o) =/ | Z Oki_d; .

=l

Setting S = P? — (*do?/o?, the vanishing of the
residues of S gives the off-shell scattering equations
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Contour argument in the fundamental domain

Using this, the 1-loop formula becomes

do;
Mu):_/zgddz Hék - P(0;)) ”,

Outlook: All-loop Integrands

Sarting from the natural extensions of the ACS pro-
posals to Riemann surfaces of genus g, we can
again use residue theorems to localize on bound-
ary components of the moduli space by contracting
g a-cycles to obtain a nodal Riemann sphere.

/ ~N

This fixes g moduli, with the remaining 2g — 3 now
associated with 2¢g new marked points. The 1-form
P is then given by

g
do
P:;ZTCUT_I_ZkiU—Ji’

1

points z; on a Riemann surface. To define the scat-
: ' _ . . k; -t k; - k; : : 0 T where w,. is a basis of g global holomorphic 1-forms
E;li;lég equations, construct a 1-form P(z, z;) satis 0 =Res,, S =k; - P(o;) = - | Z — ajj | i(c))ifell;lttgfrand, with Zy the ¢ = 0 limit of the ACS o the nodal Riemam f sphere. Setti]i ¢ (o) —
OP = 27i Z kid(z — 2z;)dz. - P2 —>9_ (w2, the multiloop off-shell scattering

which is our new proposal for the supergravity 1-

equations are

The n-gon conjecture Super Yang-Mills 1-loop integrand

e On the Riemann sphere, this
can be achieved for n null mo-

menta k; via
n

ki
PO(Z) :ZZ—Z- dz .

e Onthetorus, =C/{Z&Zr}
modes and obtain

i=1
with scattering equations Res,, P$(z) = 0.
where ¢ = e°™", we introduce
¢ € RY to parametrize the zero
01(z — 2;) 01 (zii)

P =2mildz+y k;| - - = dz

; (91(2 — %) Z n 01 (zi;)
Using this, the scattering equations are

ResZiPQ(z) L= QkZP(ZZ) :O, PQ(Z()) = 0.
The ACS proposal [2] for the 1-loop integrand of
type Il supergravity takes the form

The formula localizes on a discrete set of solutions
to the scattering equations. It was furthermore con-
jectured [3] that this integral with 7 = 1 is equiva-
lent to a sum over permutations of n-gons.

Following the framework derived above, the n-gon
conjecture becomes

/d%“z H(Sk . P(0;) d‘”,

which can be checked numerically to give

1 — 1) n—1
M"(l) — : 62) ZO’ESn Hizl s

1
Mfz(zzgon —

2
€°Z 1 ko +2( j=1 ko )
Using partial fraction identities and shifts in the
loop momentum, this is indeed equivalent to the

sum over permutations of n-gons.

Supergravity 1-loop integrand

For supergravity, Z, = Z(k;, €, zilq) = I Z;" [2].
At g = 0, this becomes

Ty = 16 (Pf(My) — Pf(M3)) — 20,1/2Pf(Ms3),

see [1,2] for details. The 1-loop supergravity inte-
grand is thus given by
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h=2

MO = 4o

This naturally leads to a conjecture for super Yang-
Mills scattering amplitudes at 1 loop;

dO’i

oF;

MWD (1,...,n) = /IOL PT, ﬁ 0(ki - P(0;))

="

Here, the supergravity factor Z;* has been replaced
by a cyclic sum over Parke-Taylors factor running
through the loop,

n

PT., = Z

1=1,2mod n

00 oo

00:03i4+10i4+1i4+2 +:-0i4n oo

Conclusion

e framework to derive formulae for loop in-
tegrands on a nodal Riemann sphere using
residue theorems

e new, off-shell scattering equations that de-
pend on the loop momenta

e new formulae for supergravity, super YM
and n-gon integrands at 1 loop

e proposal for the all-loop integrands in super-
gravity, SYM and biadjoint scalar theories

Res,, S =0, i1=1,...,n4 2g,.

This leads to the following proposal for the all-loop
integrand;

L+R 9 n—+2g
(9) _ Ly'L 1 5(Res- S(o
MSG /(@Pl)n—l—zg Vol G ]‘:_‘[ 72° 1;[1 ( o (O-Z))7

Ty Tk,  gravity
where Zy = { 75 PT,,, Yang-Mills
PT,PT) biadjoint scalar

Remarkably, this suggests that n-point g-loop in-
tegrands have a similar complexity to tree ampli-
tudes with n + 2¢g particles.
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