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2) T-channel Single Top in a CC-DIS framework :2) T-channel Single Top in a CC-DIS framework :

● An analytical result for the inclusive cross-section σ( b + q → t + q' ) at NNLO-QCD (order α
s

2) is still lacking

● Our aim is thus to compute order α
s

2 corrections to σ( b + q → t + q' ) in a structure function approach. 

    We neglect non-factorizable corrections and thus write the hadronic      
                                   cross-section as a product of hadronic tensors integrated over the         

variables Q2, W
1

2, W
2

2 describing the phase space of the 2 →2 process.

● Q2 is the virtuality of the W boson exchanged in t-channel                  

● W
1

2=(P
1
-q)2, W

2

2=(P
2
+q)2 are the hadronic remnants                             

● W
μν 

is the generic hadronic tensor, which gets decomposed on a basis of projectors as                                  ,

● W
μν

(x
1
,Q2)

 
, W

μν
(x

2
,Q2,m

t

2) describe the hadronic subprocesses p → W* + q' (light)
 
and p+W* → t (massive). 

● Structure Functions F
i 
 are computed as convolutions between the PDFs ( parton distribution functions)   

   and the coefficient functions C
i  
, these latters being obtained by contracting the cross-section for the partonic

   subprocess with the ad-hoc projectors P
i  
selecting the desired tensorial structure.  

● Our final result will be built up as follows: the C
i
 are computed analytically and plugged in a stand-alone*

 code which then performs integrations over the global variables Q2, W
1

2, W
2

2.. 
(In arXiv:1404.7116 all integrations, both over extra radiation (to obtain the C

i 
) and over 

global phase space are done numerically.)  

3) Structure of contributions to  σ( b + q → t + q' + X )  up to O(α
s

2) in a DIS framework :

LO:                                                               NLO:    

NNLO:

 All corrections to the massless current q  →  W* + q'  are already known analytically up to order α
s

2, 

whereas corrections to the massive current b + W* → t only up to order α
s
. 

Thus, our goal is to compute σ( b + W*   → t + X ) at O(α
s

2) ! This is the only piece left, which is needed to

complete the DIS-like picture of Single Top in t-channel (green blob in the above figure)!

Non-factorizable contributions:

● NLO:                                                                                              At LO and NLO diagrams with gluon      
                                                                                                      exchange between the two weak currents 
                                                                                                      are zero thanks to color, 
                                                                                                      so that the DIS-like approach to Single      
                                                                                                      Top in t-channel is indeed correct!

● NNLO:                                                                                           At NNLO, cross-talks diagrams are not   
                                                                                                      zero anymore, but non-factorizable 
                                                                                                      corrections (Fig. above) are still
                                                                                                      suppressed thanks to color by a factor       
                                                                                                      1/N

c

2 with respect to factorizable ones 

                                                                                                      (Fig. Below). 
                                                                                                      Thus, at NNLO, the DIS-approach is
                                                                                                      not exact anymore, but the approximation
                                                                                                      we introduce is still reasonably good. 

4) Organization of a NNLO computation: the case of σσ( b + W*   ( b + W*   →→ t + X ) at  t + X ) at OO((αα
ss

22)) 

At NNLO 3 channels are open, corresponding to bottom-, gluon-, or light quark- initiated 
diagrams. Inside each channel, Double-Real (RR), Real-Virtual (RV), Double-Virtual (VV)
diagrams can contribute, according to the table below.

The process is described by three independent dimensional scales:

● s=(p
b
 + q)2  (energy in the partonic c.o.m. frame), 

● Q2  (virtuality of the W boson),
● m

t

2 (mass of the top quark).

We choose to reparametrize everything in terms of one dimensional and two adimensional 
Scales, so that our final result will be expressed by the set of variables

                                                { z =  m
t

2 / s,   y = Q2 / s,   s } .                          

bottom gluon light quark

RR [b+W*→t+X]0l

X=gg,qq~,bb~
[g +W*→ t+ b~ + g]0l [q +W*→ t+ b~ + q]0l

RV [b+W*→t+X]1l

X=g
[g +W*→ t+ b~ ]1l                   /

VV [b+W*→t]2l                  /                   /

5) Master Integrals technique:5) Master Integrals technique:

RR, RV, VV are computed via a unique technique, namely Master Integrals (+ Reverse Unitarity to treat Phase Space integrals as 
Loop Integrals).

The steps which lead to final result are essentially three.

(a) Reduction of scalar matrix elements multiplied by the Phase Space measure to linear combinations of a finite (and possibly 
small!) set of scalar Feynman integrals, called  Master Integrals (Mis). This reduction is based on the solution of Integration by 
Parts Identities (IBPs) and can be performed automatically (we use Mathematica package FIRE).   

(b) Explicit computations of Mis. This step is highly non-trivial, since it cannot be carried out automatically and its difficulty 
increases with the number of scales upon which the process depends.

(c) Plug-in of results for Mis into the matrix elements, renormalization and “cosmetics” of final expressions.

6) Solution of Master Integrals via Differential Equations 6) Solution of Master Integrals via Differential Equations 

Given the number of Mis needed to describe our process and their complexity,
we choose to solve them via the method of Differential Equations (DE).

Canonical form of Differential EquationsCanonical form of Differential Equations

● Given the complexity of (partial) DEs obtained, we solve them order by order in ε. 
● We apply the idea of J. Henn, arXiv:1304.1806: we find equivalent set of
Mis {M

i
'} such that the ε dependence is factorized from the kinematics in the PDEs 

(canonical form of DEs). Given the vector M={M
i  
} of masters and x={z,y,s} of variables  

∂
x 
M(x,ε)= ε [C(x) M(x,ε)].

Systems of DEs in canonical form are integrated in one go recursively in ε.

   

I) Mis form a closed set under IBPs operation.

II) We can express the derivative of a Mi with respect to a certain external 
momentum as a linear combination of the other Mis, with coefficients which

depend only on the external momenta.

III) The set of derivatives with respect to external momenta acting on
the Mis can be remapped to the set of derivatives 

with respect to external invariants.

IV) A system of Partial Differential Equations for the set of Mis in the 
external Invariants is generated! 

In the case of Single Top this reads

∂
z 
M

i
(z,y,s,ε)= c

i

z(z,y,s,ε) M
i
 + ∑ 

j ≠ i 
 c

j

z(z,y,s,ε) M
j
  

∂
y 
M

i
(z,y,s,ε)= c

i

y(z,y,s,ε) M
i
 + ∑ 

j ≠ i 
 c

j

y(z,y,s,ε) M
j
 

∂
s 
M

i
(z,y,s,ε)= c

i

s(z,y,s,ε) M
i
 + ∑ 

j ≠ i 
 c

j

s(z,y,s,ε) M
j
 

7) Master Integrals for 7) Master Integrals for σσ( b + W*   ( b + W*   →→ t + X ) at  t + X ) at OO((αα
ss

22))

We report in the following drawings of a handful of Mis describing our process. Mis are listed according to the channel they describe and to 
the number of cut propagators (namely phase space delta functions) they contain. For each set of Mis, the corresponding alphabet needed to solve them is reported.

● Bottom:

● Gluon: 
 

8) Conclusions and Outlook8) Conclusions and Outlook
● The complete set of Master Integrals describing The complete set of Master Integrals describing σσ( b + W*   ( b + W*   →→ t + X ) at  t + X ) at OO((αα

ss

22)) has been determined and all Mis computed has been determined and all Mis computed. The set contains ~O(75) Mis, depending on two 

dimensionless variables z,y. The most complicated part of the computation was represented by the determination of boundary conditions to be matched to the DEs and by
the integration of Mis for the gluon channel whose alphabet exhibit quadratic dependence on both variables (in this case remappings were found to linearize the DEs).

So, step number a) and b) (see blob n. 5) ) are accomplished. 
● We are now left with the last step c) to be done, namely plug-in of Mis into matrix elements, renormalization and cosmetics.

● As a final step, we will implement our analytic result for CC-DIS massive Coefficient Function into our stand-alone* code, which will eventually give us the value 
of t-channel Single Top cross-section. We will then be able to provide an analytical cross-check to the numerical results found in arXiv:1404.7116

and a fast and stable code to evaluate inclusive cross-section for Single Top in t-channel at NNLO. 

 * We kindly thanks the authors  of the original version of the stand-alone code (SINGLE-TOP FORTRAN) S. Moch and M. Zaro.

RR (2 cuts) RV (1 cut)

A
1
 = {z, 1-z, y, 1+y, y+z, 1+y+z, 1+2y+z, 1-z-((1-z)2+4y2+4y)1/2, 

        1-z+4y2+(1+2y)((1-z)2+4y2+4y)1/2, (1-z)2+4y2+4y}
A

2
 = {z, 1-z, y, 1+y, y+z, 1+y+z, 1+2y+z, 1+z+2y+((1+z)2+4yz)1/2, 

        1+z+2yz+((1+z)2+4yz)1/2, (1+z)2+4yz}

A = {z, 1-z, y, 1+y, y+z, 1+y+z, 1+2y+z, 1+z+2y+((1+z)2+4yz)1/2, 
        1+z+2yz+((1+z)2+4yz)1/2, (1+z)2+4yz}

RR (2 cuts) RV (1 cut)    VV (0 cuts)

A = {z,1-z, y, 1+y, y+z, 1+y+z, 1+2y+z } A = {z, 1-z, y, 1+y, y+z, 1+y+z } A = {y, 1+y }
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