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Motivation – Feynman diagrams evaluating to polylogarithms

Discontinuities of Feynman diagrams have a diagrammatic representation as
cuts. [Landau (’59), Cutkosky (’60), t’Hooft & Veltman (’73), …]

Discontinuities are naturally found within the coproduct of the Hopf algebra
of multiple polylogarithms (MPLs).

For Feynman integrals, coproduct entries corresponding to
discontinuities have a diagrammatic representation as cuts

[SA, Britto, Duhr, Gardi, JHEP 1410 (2014) 125; SA, Britto, Grönqvist, arXiv:1504.00206 (to appear JHEP)]

Ex: ‘first entry condition’ [Gaiotto, Maldacena, Sever, Vieira, JHEP 1112 (2011) 011]
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Motivation – Feynman diagrams evaluating to polylogarithms

The coproduct of the Hopf algebra of polylogarithms encodes a lot of the
analytic information of these functions:

- discontinuities ;

- derivatives ;

- …

Is there a completely diagrammatic representation of the
coproduct of one-loop Feynman integrals?

i.e., is there an operator ∆ that maps a graph F to two other graphs and is
consistent with the coproduct of MPLs?
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Outline

Diagrammatic operations on polygons

The diagrammatic coproduct and the coproduct of MPLs

Conclusion and outlook
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Diagrammatic operations on
polygons



Example: three edges
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- Odd number of cut edges, one graph on the left.

- Even number of cut edges, two types of graphs on the left.
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Rules for diagrammatic coproduct

∆(F) =
∑
i
Li ⊗ Ri

F graph with n edges, out of which c are cut.

⇒ Ri graph with n edges out of which m are cut, such that c ≤ m ̸= 0.

Case 1: m odd.

Li is a graph with m edges obtained by pinching the uncut edges in Ri.

Case 2: m even.
Li is a sum of graphs:
+ the diagram with m edges obtained by pinching the uncut edges in Ri ;
+ 1

2 times the graphs with m− 1 edges obtained by pinching an extra edge.

If F has cut edges they are never pinched.
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Diagrammatic coproduct of uncut graphs (c = 0)

One edge (n = 1, c = 0) — tadpole:
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Two edges (n = 2, c = 0) — bubble:
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Diagrammatic coproduct of uncut graphs (c = 0)

Four edges (n = 4, c = 0) — box:

∆
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Diagrammatic coproduct of cut graphs (c ̸= 0)

Two edges, one cut (n = 2, c = 1) — single cut bubble:

∆
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Two edges, two cuts (n = 2, c = 2) — double cut bubble:
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Coassociativity

∆ is coassociative:

(id⊗∆)∆F = (∆⊗ id)∆F

[No proof, but checked up to 20 edges]

Example:
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The diagrammatic coproduct and
the coproduct of MPLs



Multiple Polylogarithms (MPL) and their coproduct

Multiple Polylogarithms:

G (a1, . . . ,an; z) =
∫ z

0

dt
t− a1

G (a2, . . . ,an; t) ai, z ∈ C

A large class of Feynman diagrams can be written in terms of MPL.

Q-vector space of MPL forms Hopf algebra (graded by weight) — H

Equipped with a coproduct ∆ : H −→ H⊗H

Coassociativity

(id⊗∆)∆ = (∆⊗ id)∆
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Coproduct, discontinuities and differential operators

Coproduct and discontinuities

∆Disc = (Disc⊗ id)∆

Discontinuities act on the first entry of the coproduct

Coproduct and differential operators

∆
∂

∂z =

(
id⊗ ∂

∂z

)
∆

Differential operators act on the last entry of the coproduct
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Choice of Feynman diagrams

F = eγEϵ

π
D
2

∫
dDk

n∏
j=1

1
q2j −m2

j + i0

qj = αjk+
n∑
l=1

βjkql, αj, βjk ∈ {−1, 0, 1}

We choose D = d− 2ϵ with d ∈ N, even, such that d− 2 < n ≤ d. E.g.:

- tadpoles and bubbles: D = 2− 2ϵ ;
- triangles and boxes: D = 4− 2ϵ ;
- pentagons and hexagons: D = 6− 2ϵ ;
- . . . ;

F evaluates to MPLs and is a pure function of weight d2
(N.B.: we assume w(ϵ) = −1)
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Cuts of Feynman diagrams

One, two and three propagator cuts as in ‘real kinematics’:

- replace propagator by delta function, keep real integration contour ;

- triple cuts isolating a three-point vertex with massless particles vanish.

ex: = = = = 0

Four, five, . . . propagator cuts computed in ‘complex kinematics’:

- compute residues, change integration contour ;

- cuts isolating a three-point vertex with massless particles don’t vanish.

ex: ̸= 0

Cuts of F evaluate to MPLs and are pure functions of weight d2 −
⌈m
2
⌉

15



Coproduct of MPLs and diagrammatic coproduct

Use the coproduct of MPLs to check diagrammatic coproduct conjecture

Make the following identifications:

Feynman diagram←→ MPLs it evaluates to
Cut Feynman diagram←→ MPLs it evaluates to

diagrammatic coproduct←→ coproduct of MPLs

- Diagrams in dimensional regularisation⇒ relations between different
weight MPLs, order by order in ϵ ;

- Diagrammatic rules⇒ relations between a priori unrelated diagrams ;

- Intricate interplay between ϵ-expansions required to cancel singularities
of finite diagrams.
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Example: two-mass-hard box B(s, t;p21 ,p22)

∆
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Checked all coproduct components up to weight 4 (i.e., ϵ2).
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Checks

Explicitly checked for several orders in ϵ for:

tadpole: trivial ;

bubbles: Bub(p2), Bub(p2;m2) and Bub(p2;m2
1 ,m2

2) ;

triangles: several combinations of internal and external masse ;

box: B(s, t), B(s, t,p21), B(s, t,p21 ,p23), B(s, t,p21 ,p22), B(s, t;m2
12) and

B(s, t;m2
12,m2

23).

Consistency checks for:

box: B(s, t,p21 ,p22,p23) and B(s, t,p21 ,p22,p23,p24) ;

pentagon: zero mass pentagon ;

hexagon: zero mass hexagon.
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Discontinuities of Feynman diagrams

Discontinuity operators act on first entry of the coproduct

∆Disc = (Disc⊗ id)∆

First entries of coproduct of graph have same number of cut edges as graph

⇒They have the same discontinuity structure (Landau equations).

The graphical coproduct is consistent with the action of
discontinuity operators

First entry condition — satisfied by construction by the diagrammatic
conjecture of a Feynman diagram: first entry is always a Feynman diagram.
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Discontinuities of Feynman diagrams

∆

( )
= (p21)⊗ + (p22)⊗

+ (p23)⊗ + ⊗

First entry condition:

Discp21

( )
= ±(2πi)

Iterated discontinuities:

Discp21 ,p22

( )
= ±(2πi)2
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Differential equations of Feynman diagrams

Differential operators act on last entry of the coproduct

∆ ∂
∂z =

(
id⊗ ∂

∂z
)
∆

Last entries of coproduct of graph have same number of edges as graph

⇒They obey the same differential equations.

The graphical coproduct is consistent with the action of the
differential operators

Reverse unitarity — cut diagrams obey same differential equation as
uncut diagrams.

21



Differential equations of Feynman diagrams

Diagrammatic coproduct predicts differential equations

Example: Differential equations without IBPs (µ = m2/p2 and ∂µ = ∂/∂µ)
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Same strategy can be used for cut graphs⇒ reverse unitarity

Coefficient of differential equations are derivatives of the weight
one term in the ϵ-expansion of cuts
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Conclusion and outlook



Conclusion

We conjecture and give evidence that:

The coproduct of all one-loop Feynman diagrams has a
diagrammatic representation

We give explicit rules to construct the diagrammatic representation for any
one-loop diagram.

Explicitly checked for several non-trivial examples.

Diagrammatic representation consistent with differential equations and
discontinuitities.
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Outlook

Can our construction be generalised to two and more loops?

What is a good basis of pure Feynman integral beyond one-loop?

Which combinations of diagrams appear in the first entry?

Elliptic functions appear beyond one loop. Can our construction be
generalised to diagrams that do not evaluate to MPLs?

Can a coproduct be defined for elliptic functions?
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Thank you!
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