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MOTIVATION — FEYNMAN DIAGRAMS EVALUATING TO POLYLOGARITHMS

Discontinuities of Feynman diagrams have a diagrammatic representation as

cuts. [Landau ('59), Cutkosky ('60), t Hooft & Veltman ('73), ..]

Discontinuities are naturally found within the coproduct of the Hopf algebra
of multiple polylogarithms (MPLSs).

For Feynman integrals, coproduct entries corresponding to
discontinuities have a diagrammatic representation as cuts

[SA, Britto, Duhr, Gardi, JHEP 1410 (2014) 125; SA, Britto, Gronqvist, arXiv:1504.00206 (to appear JHEP)]

Ex: ‘first entry condition’ [Gaiotto, Maldacena, Sever, Vieira, JHEP 1112 (2011) 011]

NP <—<[) — log (—p%) ® —<[ + log (—p%) ® —<[
+log (fpé) ® —<[ |



MOTIVATION — FEYNMAN DIAGRAMS EVALUATING TO POLYLOGARITHMS

The coproduct of the Hopf algebra of polylogarithms encodes a lot of the
analytic information of these functions:
- discontinuities ;

- derivatives;

Is there a completely diagrammatic representation of the
coproduct of one-loop Feynman integrals?

i.e, is there an operator A that maps a graph F to two other graphs and is
consistent with the coproduct of MPLs?



OUTLINE

Diagrammatic operations on polygons
The diagrammatic coproduct and the coproduct of MPLs

Conclusion and outlook



DIAGRAMMATIC  OPERATIONS ON
POLYGONS




EXAMPLE: THREE EDGES
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- 0dd number of cut edges, one graph on the left.
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- Even number of cut edges, two types of graphs on the left.



RULES FOR DIAGRAMMATIC COPRODUCT

A(F)=>Li®Ri

F graph with n edges, out of which ¢ are cut.

= R; graph with n edges out of which m are cut, such that c < m # 0.

Case 1: m odd.
L; is a graph with m edges obtained by pinching the uncut edges in R;.

Case 2: m even.

L is a sum of graphs:
+ the diagram with m edges obtained by pinching the uncut edges in R; ;
+ % times the graphs with m — 1 edges obtained by pinching an extra edge.

If F has cut edges they are never pinched.



DIAGRAMMATIC COPRODUCT OF UNCUT GRAPHS (c = 0)

= 0) — tadpole:

Oneedge(n=1c=
2(0)=0:0

Two edges (n =2, ¢ = 0) — bubble:

a(->)-0"s <>+ 0" <>
+<—< >—+;Q(1)+;Q(2)>®—<:>—




DIAGRAMMATIC COPRODUCT OF UNCUT GRAPHS (c = 0)

A( ):ZQU)® —T 0




DIAGRAMMATIC COPRODUCT OF CUT GRAPHS (c # 0)

Two edges, one cut (n =2, ¢ = 1) — single cut bubble:
) (M . . 7 () )
A(—o—):Q ®—<>—+(—<1>—+2Q )®—®—
Two edges, two cuts (n = 2, ¢ = 2) — double cut bubble:
A (—@—) = <O ® <>
Compare with uncut bubble:

A(=<>-)=0" 0 <>+ 0P 0 <>
+ (—o— +500 ;Q‘z)) ® <D~



COASSOCIATIVITY

A is coassociative:

(id® A) AF = (A ® id) AF

[No proof, but checked up to 20 edges]

Example:
(0o 8)[a(->-)]=0"ea (<) +0"ea ()
+ (o +30"+30%) A (<)

(aaid)[a(<>-)]=a(0") e <>-+4(09) e
(310 18(0") + 1o (o)) 0 >



THE DIAGRAMMATIC COPRODUCT AND
THE COPRODUCT OF MPLs




MULTIPLE POLYLOGARITHMS (MPL) AND THEIR COPRODUCT

Multiple Polylogarithms:

‘2 dt
G(ar,...,an;2) = : G(ay,...,an;t) aj,ze C
0o L=

A large class of Feynman diagrams can be written in terms of MPL.

Q-vector space of MPL forms Hopf algebra (graded by weight) — H

Equipped with a coproduct A:H — HOH

Coassociativity

(id2 A)A = (A®id)A



COPRODUCT, DISCONTINUITIES AND DIFFERENTIAL OPERATORS

Coproduct and discontinuities
ADisc = (Disc® id) A

Discontinuities act on the first entry of the coproduct

Coproduct and differential operators
0 : 0

Differential operators act on the last entry of the coproduct



CHOICE OF FEYNMAN DIAGRAMS
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We choose D = d — 2e with d € N, even, such thatd —2 < n < d. Eg.
- tadpoles and bubbles: D =2 — 2¢;

- triangles and boxes: D = 4 — 2¢;

- pentagons and hexagons: D = 6 — 2¢;

“ey

F evaluates to MPLs and is a pure function of weight ¢
(N.B.: we assume w(e) = —1)
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CUTS OF FEYNMAN DIAGRAMS

One, two and three propagator cuts as in ‘real kinematics”:

- replace propagator by delta function, keep real integration contour ;

- triple cuts isolating a three-point vertex with massless particles vanish.

Four, five, ... propagator cuts computed in ‘complex kinematics”:

- compute residues, change integration contour;

- cuts isolating a three-point vertex with massless particles don't vanish.
e [ [ #0

Cuts of F evaluate to MPLs and are pure functions of weight ¢ — [ 2]



COPRODUCT OF MPLS AND DIAGRAMMATIC COPRODUCT

Use the coproduct of MPLs to check diagrammatic coproduct conjecture

Make the following identifications:

Feynman diagram <— MPLs it evaluates to
Cut Feynman diagram <— MPLs it evaluates to

diagrammatic coproduct +— coproduct of MPLs

- Diagrams in dimensional regularisation = relations between different
weight MPLs, order by orderin ¢ ;

- Diagrammatic rules = relations between a priori unrelated diagrams ;
- Intricate interplay between e-expansions required to cancel singularities

of finite diagrams.
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EXAMPLE: TWO-MASS-HARD BOX B(S, t; p2, p3)

A(T ])==-0e :I + =m0
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Checked all coproduct components up to weight 4 (i.e., €2).



CHECKS

Explicitly checked for several orders in € for:

tadpole: trivial ;

bubbles: Bub(p?), Bub(p? m?) and Bub(p*; m?, m3) ;
triangles: several combinations of internal and external masse ;
box: B(s, t), B(s, t, p?), B(s,t, p?, p3), B(s, t, p?, p3), B(s,t; m%,) and
B(s, t; m,, m,).

Consistency checks for:

box: B(s, t,pi, p3, p3) and B(s, t, pi, p3, p3, pi) ;
pentagon: zero mass pentagon ;

hexagon: zero mass hexagon.



DISCONTINUITIES OF FEYNMAN DIAGRAMS

Discontinuity operators act on first entry of the coproduct

ADisc = (Disc® id) A

First entries of coproduct of graph have same number of cut edges as graph

=They have the same discontinuity structure (Landau equations).

The graphical coproduct is consistent with the action of
discontinuity operators

First entry condition — satisfied by construction by the diagrammatic
conjecture of a Feynman diagram: first entry is always a Feynman diagram.
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DISCONTINUITIES OF FEYNMAN DIAGRAMS

a (=) -=mtehe =+ <o =
+—©—(D§)®—<E+—<[®—<E

First entry condition:

DisCy: <—<[> = i(zﬂi)—<[

lterated discontinuities:
DisCye <—<[> = +(rip=f
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DIFFERENTIAL EQUATIONS OF FEYNMAN DIAGRAMS

Differential operators act on last entry of the coproduct

AL =(doZ)A

Last entries of coproduct of graph have same number of edges as graph

=They obey the same differential equations.

The graphical coproduct is consistent with the action of the
differential operators

Reverse unitarity — cut diagrams obey same differential equation as
uncut diagrams.
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DIFFERENTIAL EQUATIONS OF FEYNMAN DIAGRAMS

Diagrammatic coproduct predicts differential equations

Example: Differential equations without IBPs — (u = m?/p? and 8, = 9/0u)
‘ 1 ‘
A(-O—):Q®—<>—+<-O—+§Q)®—Q—

2e

€ 2¢
au('O—)ZZQ+1_M—O—

Same strategy can be used for cut graphs = reverse unitarity

Coefficient of differential equations are derivatives of the weight
one term in the e-expansion of cuts
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CONCLUSION AND OUTLOOK




CONCLUSION

We conjecture and give evidence that:

The coproduct of all one-loop Feynman diagrams has a
diagrammatic representation

We give explicit rules to construct the diagrammatic representation for any
one-loop diagram.

Explicitly checked for several non-trivial examples.

Diagrammatic representation consistent with differential equations and
discontinuitities.
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OuTLOOK

Can our construction be generalised to two and more loops?

What is a good basis of pure Feynman integral beyond one-loop?

Which combinations of diagrams appear in the first entry?

Elliptic functions appear beyond one loop. Can our construction be
generalised to diagrams that do not evaluate to MPLs?

Can a coproduct be defined for elliptic functions?
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