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Standard Definition of the S-Matrix:
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Standard Definition of the S-Matrix:

This definition assumes the presence of poles. This can be formally
proven for massive particles but here we will assume it is also true
for massless particles.

We will be working in perturbation theory where this

assumption is valid.

(See Sever’s talk)



Standard Definition of the S-Matrix:

This definition assumes the presence of poles. This can be formally
proven for massive particles but here we will assume it is also true
for massless particles.

We will be working in perturbation theory where this
assumption is valid.

In the rest of this talk we will only consider the scattering of
Massless Particles



A Story of Interactions in a Space-Time

The standard definition of the S-matrix computes it as a sum over all
possible interactions that can occur in the interior of space-time.




A Story of Interactions in a Space-Time

The standard definition of the S-matrix computes it as a sum over all
possible interactions that can occur in the interior of space-time.

ﬁyuman Di?ram.



Quantum Field Theory: Locality and Unitarity

* Feynman diagrams lead to expressions where locality and unitarity
are manifest. This is because they come from the explicitly local
interactions of the theory.
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* Feynman diagrams lead to expressions where locality and unitarity
are manifest. This is because they come from the explicitly local
interactions of the theory.

* Since the work of Parke-Taylor and more recently all the explosion of
activity sparked by Witten’s twistor string theory in 2003, we have
learned that there are other formulations for the S-matrix which give
rise to more compact expressions at the expense of manifest locality
and/or unitarity.



Quantum Field Theory: Locality and Unitarity

* Feynman diagrams lead to expressions where locality and unitarity
are manifest. This is because they come from the explicitly local
interactions of the theory.

* Since the work of Parke-Taylor and more recently all the explosion of
activity sparked by Witten’s twistor string theory in 2003, we have
learned that there are other formulations for the S-matrix which give
rise to more compact expressions at the expense of manifest locality
and/or unitarity.

* Is this a sign that manifest locality and unitarity are not the basic
properties of a formulation of the S-matrix?



More Constraints

* Another very strong constraint on the S-matrix is that it has to be
Poincare covariant. Transformations must be consistent with those of
asymptotic one-particle states which are irreps. of Poincare.



More Constraints

* Another very strong constraint on the S-matrix is that it has to be
Poincare covariant. Transformations must be consistent with those of
asymptotic one-particle states which are irreps. of Poincare.

* For massless particles we also have Weinberg’s soft theorems (1965):
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Universality of gravitational coupling (Equivalence Principle), Electric charge
conservation, no particles with helicities greater then 2. (Weinberg 1965)




More Constraints

* Are there more constraints?

 Specially in the scattering of gravitons one could be looking for
symmetries of asymptotically flat spacetimes.



More Constraints

* Are there more constraints?

 Specially in the scattering of gravitons one could be looking for
symmetries of asymptotically flat spacetimes.

* This is known as the Bondi-van der Burg-Matzner-Sachs (BMS) group.

References: Bondi,van der Burg, Metzner 1962, Sachs 1962 (BMS). Ashtekar 1981,
Christodoulou, Klainerman 1993 (CK), Barnish and Troessaert 2009 (BT). Strominger

2014, FC and Strominger 2014 (CS).

(See Plefka’s talk)



BMS Group R S,L
T (Z”;'-';” TR, ept

S’-u, C) = Loren z

u— u+ 1) Em\"gf” V)
Sufe;trans\a tons

BMS™ 4 BMST

lo

T (vig)



[STvom'ma" 10‘3]
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A New Symmetry?

o Coold i be Thil iy BEEBMS™ Then
B'S-SB =07
+Bad BUS* K BMS do nat Talk To each oher.
o CK (1993) “resolved” 1° ;‘Diaao“al BMS

(Christodoulou-Klainerman 1993 )
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Sub-Leading Soft Theorems

* Proposal that extend the SL(2,C) to a full Virasoro (Barnish-Troessaert 2009)

Previous work (Gross and Jackiw 1968, White 2011,...)
Some extensions (Casali 2014, Bern, Davies and Nohle 2014, ...)



Sub-Leading Soft Theorems
* Proposal that extend the SL(2,C) to a full Virasoro (Barnish-Troessaert 2009)
* Sub-leading soft theorems (Fc-strominger 2014) : Einstein Gravity
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Sub-Leading Soft Theorems
* Proposal that extend the SL(2,C) to a full Virasoro (Barnish-Troessaert 2009)
* Sub-leading soft theorems (Fc-strominger 2014) : Einstein Gravity
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Previous work (Gross and Jackiw 1968, White 2011,...)

(Warning: Maybe not be Virasoro. See Lipstein’s talk) Some extensions (Casali 2014, Bern, Davies and Nohle 2014, ...)



Can the S-Matrix be determined purely from
BMS representation theory?

Answer:



Can the S-Matrix be determined purely from
BMS representation theory?

Answer: Probably NO but if BMS is extended then maybe YES!

Hints:

* Correlation functions on a sphere. (witten-RSV, F.C-Geyer, F.C-Skinner-Mason,

Skinner 2013,F.C 2013, F.C-He-Yuan, Adamo-Casali-Geyer-Lipstein-Mason-Monteiro-Roehrig-
Skinner-Tourkine...)

* On-Shell diagrams. (Arkani-Hamed-Bourjaily-F.C. Caron-Huot-Trnka-Goncharov-
Postnikov,Franco-Galloni-Mariotti,Beisert-Broedel-Rosso, Huang-Wen, Bai,Cheung, Hodges...)
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Scattering Equations

Connect the space of kinematic invariants for the scattering of n-
massless particles to the moduli space of n-punctured spheres.

Ingredients: ,
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Scattering Equations

Connect the space of kinematic invariants for the scattering of n-
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Poincare requires gauge invariance

* Consider Massless particles of helicity +1 or -1 (e.g. gluons)
* Scattering Data:
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CHY Construction: Yang-Mills

* Integral over the moduli space of n-punctured spheres.
* Integrand must make gauge invariance manifest.
* U(N) color structure.

F.C., Song He and Ellis Yuan arXiv: 1307.2199



CHY Construction: Yang-Mills

* Integral over the moduli space of n-punctured spheres.
* Integrand must make gauge invariance manifest.
* U(N) color structure.
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F.C., Song He and Ellis Yuan arXiv: 1307.2199



CHY Construction: U(N) color structure
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F.C., Song He and Ellis Yuan arXiv: 1307.2199



CHY Construction: Integration measure

* Integral over the moduli space of n-punctured spheres.
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F.C., Song He and Ellis Yuan arXiv: 1307.2199




CHY Construction: Integration measure

* Integral over the moduli space of n-punctured spheres.

The integral localizes to the (n-3)! solutions to the scattering
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F.C., Song He and Ellis Yuan arXiv: 1307.2199



CHY Construction: Gauge Invariance
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CHY Construction: Gauge Invariance

If any polarization vector is replaced by its momentum vector, the matrix
reduces its rank and the pfaffian vanishes.
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CHY Construction: Gauge Invariance

If any polarization vector is replaced by its momentum vector, the matrix
reduces its rank and the pfaffian vanishes.

‘Pf _?(Ka)ea Ga) €l K}? O

The pfaffian is the basic object that transforms correctly under Lorentz
tranformations in the massless helicity +1 or -1 representation!
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CHY Construction: Gravity
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CHY Construction: Gravity

e Gauge invariance is manifest again.
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CHY Construction: Gravity

e Gauge invariance is manifest again.
* Soft theorems are manifest in both Yang-Mills and Gravity!
* These are the two important ingredients at Null Infinity (BMS).
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s this a general framework?

We don’t know but here are some of the theories for which the
formulation exists:
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The theories mentioned in
the previous slide are
connected by a web of
operations. All are natural
from the CHY formulation.
But some are rather
mysterious from a field
theory viewpoint.

.

compactify

DEBEI

Y MS
corollary

(FC, Song He, Ellis Yuan 2014)
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Operations: Compactification
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Pure Photon Amplitude in Einstein-Maxwell
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Pure Photon Amplitude in Einstein-Maxwell

Ao s fr A ) R B

v




Pure Photon Amplitude in Einstein-Maxwell
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Combining the New Building Blocks
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Combmlng the New Building Blocks
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Combining the New Building Blocks
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Combining the New Building Blocks
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Another Operation: Squeezing

* This is a procedure for replacing a set of particles that posses (s)
polarization vectors each by a set of particles with (s-1) polarization
vectors which interact through a single trace of U(N).

 Using this one can start with Einstein gravity and an amplitude of n
gravitons and squeeze m1 gravitons into m1 gluons with a single
trace.

* Having done that one can squeeze another set of m2 gravitons into
m2 gluons to get a double trace amplitude and so on.



Another Operation: Squeezing

* This is a procedure for replacing a set of particles that posses (s)
polarization vectors each by a set of particles with (s-1) polarization
vectors which interact through a single trace of U(N).

 Using this one can start with Einstein gravity and an amplitude of n
gravitons and squeeze m1 gravitons into m1 gluons with a single
trace.

* Having done that one can squeeze another set of m2 gravitons into
m2 gluons to get a double trace amplitude and so on.

* This leads to all amplitudes in Einstein-Yang-Mills!



KLT in CHY

The Kawai-Lewellen-Tye relations express a gravity amplitude as a sum

of product of two partial YM amplitudes. (Bern,Dixon,Perelstein,Rozowsky
1999)
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KLT in CHY
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KLT in CHY
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KLT in CHY
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KLT in CHY
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KLT in CHY follows from linear algebral

Atw: n{q\/‘] Ei{k._af’ M) - T:D I‘R

RN v

- (EIL)TMJ(E In) -
) AYH (A-.) - g.I,)f:

- ) {IM ) LA I

,,('ZP,.', [ o F (‘5) - Ry ok

=




KLT in CHY: Examples

KLT (YM, YM ) = Gravity + B-field + Dilaton
* KLT ( YM , NLSM ) = Born-Infeld

* KLT ( NLSM , NLSM) = special Galileon



Part Il



Observations:

* Scattering Ampllltudes of a variety of theories can be expressed as:
m-3)!

A=) T LT = T DT,

* Each one of the (n-3)! solutions to the scattering equations knows
many physical features but not all.



Observations:

* Scattering Ampllltudes of a variety of theories can be expressed as:
m-3)!

A=) T LT = T DT,

* Each one of the (n-3)! solutions to the scattering equations knows
many physical features but not all.

They know about: Soft limits, Poincare, Global symmetries, etc.

They do not know about: Locality in spacetime. (Each solution has no
meaning as a story of local interactions in spacetime.)



Irreducible Representations?

* Consider a single kind of massless particles and a single free
parameter that trivially multiplies each amplitude (coupling
constant).

* Construct the corresponding CHY integrand. So far all examples
contain a left and a right mtegr(?wg”!

L., 1,¢C
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the BMS group? Let’s call it the group Z.



Irreducible Representations?

* Consider a single kind of massless particles and a single free
parameter that trivially multiplies each amplitude (coupling
constant).

* Construct the corresponding CHY integrand. So far all examples
contain a left and a right integr(?wg”!

L., 1,¢C

* Are these vectors irreducible representations of some extension of
the BMS group? Let’s call it the group Z. (Zurich)



Irreducible Representations?

* Could it be that the diagonal matrix D is an invariant tensor of the
group Z?
e If this is true, then scattering amplitudes are “partial inner products”.

* In other words, to construct scattering amplitudes we trace over the
“solution space” part and leave the rest.

* But then, what’s the meaning of theories that contain several kinds of
particles?

* What’s the meaning of KLT?



Irreducible Representations?

* But then, what’s the meaning of theories that contain several kinds of
particles?

Combining particles <=> Direct sum of representations
* What'’s the meaning of KLT?

KLT =‘-> Tensor product of representations



Other Hints

* Clearly, Poincare is in Z and covariance is a very strong constraint
when we consider particles with non-vanishing helicity.

* When particles have zero helicity Poincare loses its power.



Other Hints

* Clearly, Poincare is in Z and covariance is a very strong constraint
when we consider particles with non-vanishing helicity.

* When particles have zero helicity Poincare loses its power.
* For massless scalar particles we still have the soft limits.

* Cheung-Kampf-Novotny-Trnka 2014 proposed a classification in D=4
based on two integers. One of them is the power of the vanishing
using a single soft limit.

* Are these numbers also part of the labeling of irreps of Z?
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Other Symmetries:

* Planar N=4 Super-Yang Mills enjoys an infinite dimensional symmetry:
PSL(4|4) Yangian
Superconformal algebra Level O
Super-dualconformal algebra Level 1
* Is there a framework that makes these symmetries manifest?

(Arkani-Hamed, Bourjaily, FC, Goncharov, Postnikov, Trnka 2012)



Other Symmetries:

* Planar N=4 Super-Yang Mills enjoys an infinite dimensional symmetry:
PSL(4|4) Yangian
Superconformal algebra Level O
Super-dualconformal algebra Level 1
* Is there a framework that makes these symmetries manifest?
* The answer is yes!
* The framework is called on-shell diagrams.

(Arkani-Hamed, Bourjaily, FC, Goncharov, Postnikov, Trnka 2012)



On-Shell Diagrams

All planar amplitudes at all loop orders are given by interactions of
purely on-shell particles. All interactions take place in a complexified
version of null infinity. Again no need for interactions in space-time.

Basic building blocks:
N 5 f\‘\
1 3 1 )

Three-Point Amplitudes




All Loop Recursion Relation

A scattering amplitude at any loop order and any number of particles
can be obtained in terms of on-shell diagrams as:

Tree-Level
BCFW

(Britto, FC, Feng, Witten 2005)



All Loop Recursion Relation

A scattering amplitude at any loop order and any number of particles
can be obtained in terms of on-shell diagrams as:
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* S-matrices not only relate states at null infinity but seem to be
described purely in terms of “boundary data and boundary
interactions”.
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and the CHY formulation. Perhaps ambitwistor string ideas will make
the connection clear. (Mason, Skinner, et.al 2014)



Conclusions

* S-matrices not only relate states at null infinity but seem to be
described purely in terms of “boundary data and boundary
interactions”.

* There seems to be a connection between symmetries of null infinity
and the CHY formulation. Perhaps ambitwistor string ideas will make

the connection clear. (Mason, Skinner, et.al 2014)

* The connection of on-shell diagrams and the Yangian symmetry,
which is non-local, shows that “boundary descriptions” are useful and
perhaps fundamental.
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s there a Holographic S-Matrix Theory?
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