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Motivation of Precise QCD Calculations

Precise QCD calculations involves:

PDF sets calculated and fitted with
higher order splitting function.
Fixed order pQCD calculations
including more loops and/or legs.
Parton shower, resummation etc.

Motivations:

Reduced theoretical uncertainty
Large contributions from higher
order terms in pQCD
Better understanding of S/B in LHC
Distinguish SM signal from
potential new physics

Example of cutting edge studies:

pp→ H @ N3LO Anastasiou et al
Di-jet production @ NNLO Currie et al
top pair production @ NNLO Abelof et al; Baernreuther et al
H+jet @ NNLO Chen et al; Boughezal et al
Z+jet @ NNLO Morgan et al
W+jet @ NNLO Boughezal et al
Higgs and Drell-Yan production@ NNLO + PS Hamilton et al
Colourless particles production@ NNLO + NNLL Wiesemann et al
And many more · · ·
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Matrix elements involved in fixed order pQCD
Renormalised factorized parton level differential cross section (dσ̂) for example:

dσ̂LO =

∫
[〈M0|M0〉]n+2dΦnJ

(n)
n

dσ̂NLO =

∫
[〈M0|M0〉]n+3dΦn+1J

(n+1)
n

+

∫
[〈M0|M1〉+ 〈M1|M0〉]n+2dΦnJ

(n)
n

dσ̂NNLO =

∫
[〈M0|M0〉]n+4dΦn+2J

(n+2)
n

+

∫
[〈M0|M1〉+ 〈M1|M0〉]n+3dΦn+1J

(n+1)
n

+

∫
[〈M1|M1〉+ 〈M2|M0〉+ 〈M0|M2〉]n+2dΦnJ

(n)
n

Higher order contributions contains both explicit (Pole structure) and implicit IR
divergences (singular in unresolved P.S.).

Whether those matrix elements are stable in unresolved P.S. is an open question.
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Factorisation of implicit IR divergence (NNLO)
Implicit IR divergent behaviour of qQCD matrix elements can be factorised.
Colour ordered amplitudes constrain the IR divergence only in colour connected
partons Mangano, Parke, Giele, Xu, Berends (1980s)
For single unresolved limits (tree level): Define |M0|2 ≡ 〈M0|M0〉

|M0(· · · , i, jg, k, · · · )|2
pj→0∼∆2

−−−−−−→ Sijk|M0(· · · , i, k, · · · )|2 ∼ O(∆−4)

|M0(· · · , i, j, · · · )|2 pi//pj−−−−→ 1

sij
Pij→K(z)|M0(· · · ,K, · · · )|2 ∼ O(∆−2)

where sij = (pi + pj)
2, z = pj/(pj + pi)

Sijk =
2sik
sijsjk

,

Pqg→Q = Pq̄g→Q̄ =
1 + (1− z)2 − εz2

z
,

Pqq̄→G = Pq̄q→G =
z2 + (1− z)2 − ε

1− ε
,

Pgg→G = 2

(
z

1− z
+

1− z
z

+ z(1− z)
)
.
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Factorisation of implicit IR divergence (NNLO)

For single unresolved limits (loop level): Define |M1|2 ≡ 〈M0|M1〉+ 〈M1|M0〉

|M1(· · · , i, jg, k, · · · )|2
pj soft−−−−−→ Sijk|M1(· · · , i, k, · · · )|2

+ S1
ijk|M0(· · · , i, k, · · · )|2 ∼ O(∆−4)

|M1(· · · , i, j, · · · )|2 pi//pj−−−−→ 1

sij
Pij→K(z)|M1(· · · ,K, · · · )|2

+
1

sij
P 1
ij→K(z)|M0(· · · ,K, · · · )|2 ∼ O(∆−2)

For double unresolved limits (tree level):

|M0(· · · , a, i, j, b, · · · )|2 pi,pj soft−−−−−−→ Saijb|M0(· · · , a, b, · · · )|2 ∼ O(∆−8)

|M0(· · · , i, j, k, · · · )|2 pi//pj//pk−−−−−−−→ Pijk→A(z1,2,3)|M0(· · · , A, · · · )|2 ∼ O(∆−6)

|M0(· · · , a, i, j, k, · · · )|2 pi soft, pj//pk−−−−−−−−−−→ Sa,ijk
1

sjk
Pjk→K(z)|M0(· · · , a,K, · · · )|2

Xuan Chen (Physics Institute, UZH) Improve Numerical Stabilities of Amplitudes in Precise QCD Calculations July 6-10, 2015 5 / 20



Testing numerical stability of matrix elements

Numerical instability comes from internal cancellation of terms with divergent
order higher than the factorisation functions.

Analytically check in each unresolved limits with known factorisation functions

Keep tracking of the order of divergences and find large cancellation behaviour
Only easy to check with small number of legs
Matrix elements calculated using different methods needs independent test

Numerically check with known factorisation functions in unresolved P.S. point

Can use each factorisation functions for comparison
Hard to relate parameters in exactly limit with unresolved P.S. points
Can also use special functions that converge to different factorisation functions
Hard to construct by hand

Solution is to combine analytical and numerical methods

Analytically check matrix elements against factorisation functions
Use analytical checked matrix elements to construct special functions for
numerical check (Antenna functions)
Recycle |M0

n+4(· · · , i, j, k, l · · · )|2 → X0
4 (i, j, k, l)|M0

n+2(· · · , I, L, · · · )|2
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Antenna functions: multi-purpose factorisation functions

Gehrmann-De Ridder, Gehrmann, Glover

Antenna functions constructed from normalised matrix elements

Each function has two specified hard radiators + 1 or 2 unresolved patrons

X0
3 (i, j, k) ∼

|M0
ijk|2

|M0
IL|2

X1
3 (i, j, k) ∼

|M1
ijk|2

|M0
IK |2

−X0
ijk

|M1
IK |2

|M0
IK |2

X0
4 (i, j, k, l) ∼

|M0
ijkl|2

|M0
IL|2

One antenna function mimics multiple double or single unresolved behaviour.

Antenna functions calculated from different ME for all parton combinations:

γ∗ → qq̄ + partons X̃ → g̃ + partons H → partons

Momentum mappings give the P.S. for reduced ME:
3→ 2 or 4→ 2 mapping ⊗{FF, IF, II} combinations of hard radiators.
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Testing numerical stability of matrix elements
Construct antenna subtraction terms (ATS) to mimic unresolved limits of ME

ME0 = |M0(· · · , i, j, k, · · · )|2, ATS0 = X0
3 (i, j, k)|M0(· · · , I,K, · · · )|2

ME0 = |M0(· · · , i, j, k, l · · · )|2, ATS0 = X0
4 (i, j, k, l)|M0(· · · , I, L, · · · )|2

ME1 = |M1(· · · , i, j, k, · · · )|2,
ATS1 = X0

3 (i, j, k)|M1(· · · , I,K, · · · )|2 + X1
3 (i, j, k)|M0(· · · , I,K, · · · )|2

Test structure

R =
ME0,1

AST 0,1

R ∼horizontal axis (centre at one
near the unresolved region)

Number of P.S. points in each bin ∼
vertical axis

Controlling singular region correctly
will achieve spike plot. For example:

 0

 200

 400

 600

 800

 1000

 0.99996  0.99998  1  1.00002  1.00004

Soft collinear - 3,4/5

    0 outside the plot

    0 outside the plot

    0 outside the plot

#phase space points =  1000
x=10

-5

x=10
-6

x=10
-7

x =
s45

s
, xs =

∑
i 6=3

s3i
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Testing numerical stability of matrix elements
Numerical stabilities are tested for the following ME for NNLO studies:

Tree level: M0
γ(5P ),M0(6P ), M0

H(5P ) (EFT ), M0
Z(5P ), M0

W (5P )
Loop level: M1

γ(4P ),M1(5P ), M1
H(4P ) (EFT ), M1

Z(4P ), M1
W (4P )

Generate unresolved P.S. points and test all possible limits

Abnormal spike plots are found for single soft limits in M1
H(4P ) (EFT):

 0

 200

 400

 600

 800

 1000

 0.998  0.9985  0.999  0.9995  1  1.0005  1.001  1.0015  1.002

single soft - 4

    5 outside the plot

  190 outside the plot

  947 outside the plot

#phase space points =  1000
x=10

-5

x=10
-6

x=10
-7

Figure: |M1
H(gggg)|2 xs =

∑
i 6=4 s4i

 0

 200

 400

 600

 800

 1000

 0.998  0.9985  0.999  0.9995  1  1.0005  1.001  1.0015  1.002

single soft - 3

   10 outside the plot

  394 outside the plot

  984 outside the plot

#phase space points =  1000
x=10

-5

x=10
-6

x=10
-7

Figure: |M1
H(qggq̄)|2 xs =

∑
i 6=3 s3i

Identify the unstable part of the amplitude (find NAN; change precision of
variable; find identical large vlaues)
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Amplitudes for M1
H(4P )

M1
H(4P ) (EFT) are calculated in hep-ph:0909.4457 and implemented in MCFM:

Use generalised unitarity method to construct the cut-constructible contributions.
A hybrid of Feynman diagram and recursive based techniques to determine the
rational piece.
All partons are considered massless and the Higgs boson only couples to g (EFT).

The general structure is:

M1
H(4P ) = C4(4P ) +R4(4P )

C4(4P ) =
∑
i

C4;iI4;i +
∑
i

C3;iI3;i +
∑
i

C2;iI2;i

Ij;i represents a j-point scalar basis integral (box, triangle, bubble)
Cj;i coefficients of basis integrals are calculated by on shell tree amplitudes

Numerical instabilities in M1
H(4P ) come from NMHV amplitude

M1
H(1+, 2−, 3−, 4−):

C3;1234|12|34 coefficient of three mass triangle integral
Large cancellation of terms between C4(4P ) and R4(4P )

Xuan Chen (Physics Institute, UZH) Improve Numerical Stabilities of Amplitudes in Precise QCD Calculations July 6-10, 2015 10 / 20



Amplitudes for M1
H(4P )

M1
H(4P ) (EFT) are calculated in hep-ph:0909.4457 and implemented in MCFM:

Use generalised unitarity method to construct the cut-constructible contributions.
A hybrid of Feynman diagram and recursive based techniques to determine the
rational piece.
All partons are considered massless and the Higgs boson only couples to g (EFT).

The general structure is:

M1
H(4P ) = C4(4P ) +R4(4P )

C4(4P ) =
∑
i

C4;iI4;i +
∑
i

C3;iI3;i +
∑
i

C2;iI2;i

Ij;i represents a j-point scalar basis integral (box, triangle, bubble)
Cj;i coefficients of basis integrals are calculated by on shell tree amplitudes

Numerical instabilities in M1
H(4P ) come from NMHV amplitude

M1
H(1+, 2−, 3−, 4−):

C3;1234|12|34 coefficient of three mass triangle integral
Large cancellation of terms between C4(4P ) and R4(4P )

Xuan Chen (Physics Institute, UZH) Improve Numerical Stabilities of Amplitudes in Precise QCD Calculations July 6-10, 2015 10 / 20



Rewrite three-mass coefficients for M1
H(4P )

The finite contributions of cut-constructible contributions contain:

C4(1+
g , 2

−
g , 3

−
g , 4

−
g ) ∼ C3;1234|12|34(H, 1+

g , 2
−
g , 3

−
g , 4

−
g )I3,3m(m2

H , s12, s34)

with (sij = 〈ij〉[ji])

C3;1234|12|34(H, 1+
g , 2

−
g , 3

−
g , 4

−
g ) =

∑
γ=γ±

m4
H〈34〉3〈2|K[

1|1]〈2|K[
1|3]〈2|K[

1|4]

2γ(γ +m2
H)〈12〉s1K[

1
s3K[

1
s4K[

1

K[µ
1 = γ

γKµ
1 −K2

1K
µ
2

γ2 −K2
1K

2
2

where K1, K2 (and K3) are the momenta of the three off-shell legs and where γ
is determined by the two solutions that ensure that K[

1 is light-like

Kµ
1 = −pµ1 − p

µ
2 − p

µ
3 − p

µ
4 , Kµ

2 = pµ1 + pµ2 , Kµ
3 = pµ3 + pµ4

γ2 − 2K1 ·K2γ +K2
1K

2
2 = 0

γ± = K1 ·K2 ±
√

(K1 ·K2)2 −K2
1K

2
2
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Rewrite three-mass coefficients for M1
H(4P )

Solutions of γ satisfy following identities:

γ+ + γ− = 2K1 ·K2, γ+γ− = K2
1K

2
2 ,

(γ− +K2
1 )(γ+ +K2

1 ) = K2
1K

2
3 ,

(γ− +K2
2 )(γ+ +K2

2 ) = K2
2K

2
3

In general C3;K1|K2|K3
is sensitive to the three massive momentum inputs K1,

K2 and K3 when one of the legs becomes massless (e.g. K2
3 → 0):

−2K1 ·K2 → K2
1 +K2

2 γ+ → −K2
2 γ− → −K2

1

A potentially large cancellation for example is inside s3K[
1
:

s−
3K[

1

=
−γ−(K2

1 + γ−)(s13 + s23)− γ2
−s34

γ2
− −K2

1K
2
2

,

The result of (K2
1 + γ−) in K2

3 → 0 limit is analytically proportional to the small
value K2

3 = s34.
Numerically unstable when the result of large cancellation is combined with small
values.
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Rewrite three-mass coefficients for M1
H(4P )

Rewrite s−
3K[

1

using identities of γ±:

s−
3K[

1

=− γ−s34m
2
H

γ+(γ2
− −m2

Hs12)(m2
H + γ+)

(
m2
Hs12s34

γ− + s12
− (s14 + s24 + s34)γ+

)
s−

3K[
1

is explicitly proportional to the s34 and there are no large cancellations

s−
4K[

1

in C3;1234|12|34(H, 1+
g , 2

−
g , 3

−
g , 4

−
g ) has similar issue

C3;1234|12|34(H, 1−q̄ , 2
+
q , 3

−
g , 4

−
g ) and C3;1234|41|23(H, 1−q̄ , 2

+
q , 3

−
g , 4

−
g )
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Rewrite cut-completion terms for M1
H(4P )

Counting the order of divergence (∆−1) in single soft limit (p2 → 0 ∼ ∆2):

〈2i〉, [2i] ∼ ∆, si2 ∼ ∆2

The overall divergence of the M1
H(4P ) amplitude should be O(∆−2), however

there are terms of O(∆−4) inside M1
H(4P ):

C4(1+
g ,2
−
g , 3

−
g , 4

−
g ) ∼

+
〈34〉[41] (3s124〈34〉[41] + 〈24〉〈3|pH |1][42])

3[42]2
L̂2 (s124, s12)

+

(
2s124〈34〉2[41]2

〈24〉[42]3
− 〈24〉〈3|pH |1]2

3s124[42]

)
L̂1 (s124, s12)

+
〈3|pH |1](4s124〈34〉[41] + 〈3|pH |1](2s14 + s24))

s124〈24〉[42]3
L̂0 (s124, s12)

R4(1+
g ,2
−
g , 3

−
g , 4

−
g ) ∼ [14]2〈43〉2

2s12[42]2
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Rewrite cut-completion terms for M1
H(4P )

The cut-completion terms are defined as

L̂3(s, t) = L3(s, t)− 1

2(s− t)2

(
1

s
+

1

t

)
,

L̂2(s, t) = L2(s, t)− 1

2(s− t)

(
1

s
+

1

t

)
,

L̂1(s, t) = L1(s, t), L̂0(s, t) = L0(s, t), Lk(s, t) =
log (s/t)

(s− t)k

Identities for cut-completion terms

sL̂3(s, t) = tL̂3(s, t) + L̂2(s, t),

sL̂2(s, t) = tL̂2(s, t) + L̂1(s, t)− 1

2

(
1

s
+

1

t

)
,

1

s
L̂1(s, t) = L̂2(s, t)− t

s
L̂2(s, t) +

1

2s

(
1

s
+

1

t

)
,

sL̂1(s, t) = tL̂1(s, t) + L̂0(s, t),
1

s
L̂0(s, t) = L̂1(s, t)− t

s
L̂1(s, t)
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Rewrite cut-completion terms for M1
H(4P )

The cut-completion terms are defined as

L̂3(s, t) = L3(s, t)− 1

2(s− t)2

(
1

s
+

1

t

)
,

L̂2(s, t) = L2(s, t)− 1

2(s− t)

(
1

s
+

1

t

)
,

L̂1(s, t) = L1(s, t), L̂0(s, t) = L0(s, t), Lk(s, t) =
log (s/t)

(s− t)k

Identities for cut-completion terms

sL̂3(s, t) = tL̂3(s, t) + L̂2(s, t),

sL̂2(s, t) = tL̂2(s, t) + L̂1(s, t)− 1

2

(
1

s
+

1

t

)
,

1

s
L̂1(s, t) = L̂2(s, t)− t

s
L̂2(s, t) +

1

2s

(
1

s
+

1

t

)
,
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s
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Rewrite cut-completion terms for M1
H(4P )

Inserting 〈3|pH |1] = −〈32〉[31]− 〈34〉[41] into C4(1+
g , 2

−
g , 3

−
g , 4

−
g ):

C4(1+
g , 2

−
g , 3

−
g , 4

−
g ) ∼〈34〉2[41]2

3[42]2

(
+ 3s124L̂2 −

3

s124
L̂0

+
1

s24
(6s124L̂1 − 6L̂0 −

6s12

s124
L̂0)

)
∼ O(∆−4)

Repeat using identities for cut-completion terms, we can rewrite:

〈34〉2[41]2

3[42]2

(
3s124L̂2 −

3

s124
L̂0

)
=

〈34〉2[41]2

[42]2

(
s12L̂2 +

s12

s124
L̂1 −

1

2

(
1

s124
+

1

s12

))
∼ O(∆−2)− 〈34〉2[41]2

2s12[42]2

〈34〉2[41]2

3[42]2s24

(
6s124L̂1 − 6L̂0 −

6s12

s124
L̂0

)
=
〈34〉2[41]2

[42]2s24

(
2s2

12

s124
L̂1

)
∼ O(∆0)

Cancellation with R4(1+
g , 2

−
g , 3

−
g , 4

−
g ) ∼ [14]2〈43〉2

2s12[42]2
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Improve numerical stability of matrix elements

After rewriting of C4(1+
g , 2

−
g , 3

−
g , 4

−
g ) and R4(1+

g , 2
−
g , 3

−
g , 4

−
g ):
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Figure: |M1
H(gggg)|2 stable

|M1
H(qggq̄)|2 and |M̂1

H(gggg)|2 can achieve spike plots with the same treatment
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Summary

Precise QCD calculations require amplitudes for higher orders

More and more efforts are required to obtain amplitudes with more loops and
legs. We also need these amplitudes to be IR stable in unresolved P.S.

Subtraction terms from phenomenology studies can be used to test the IR
behaviour of amplitudes

Examples of identifying large cancellations and rewriting amplitudes are
introduced in this talk

Testing of more amplitudes are needed
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Improve numerical stability of matrix elements
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