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Bootstrap programme




Hexagon amplitudes

[Dixon, JMD, Henn], [Dixon, JMD, von Hippel, Pennington],
[Dixon, JMD, Duhr, Pennington]

Simplest amplitudes are the six-point ones.
Functions appearing are polylogarithms on MO,6
Impose physical branch cuts: Hexagon functions.
Impose proper collinear behaviour.

OPE (near collinear) limit/Regge limit data required to fix amplitude
from three loops onwards.

Fruitful interplay with integrable OPE approach [Sever’s tall]



Cluster Algebras on G(4,n)

Observation: singularities of two-loop results ([Caron-Huot]) coincide with A-

coordinates of cluster algebras based on the Grassmannians G(4,n).
[Golden, Goncharov, Spradlin,Vergu,Volovich]

This allows us to expand the bootstrap programme to higher points.

Today we analyse heptagon amplitudes (next simplest & finite set of A-
coordinates).




Scattering amplitudes

Amplitudes depend on:
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N=4 supersymmetry

On-shell supermultiplet
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MHYV expansion

MAV " MHV



Wilson loops

Naturally come with a dihedral symmetry.

Colour-ordered MHV amplitudes and Wilson loops coincide.
[Alday, Maldacena], [JMD, Korchemsky, Sokatchev], [Brandhuber, Heslop, Travaglini], [JMD,Henn,Korchemsky,Sokatchev],...

Super Wilson loops for non-MHYV amplitudes.

[Mason, Skinner], [Caron-Huot]

Conformal symmetry of Wilson loop is symmetry of amplitude.



Dual conformal symmetry

Space of light-like polygons stable under conformal transformations.
Conformal symmetry of Wilson loops broken by ultraviolet divergences.

Divergences factorise and exponentiate.

Interesting piece is the conformally invariant finite ‘remainder’.
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Divergences organised so that remainder begins at two loops in pert. theory.

First conformal invariants at six points: 5 o 2 5 55
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Four and five points ‘trivial’.




Twistors

Zn—l

Best to describe a sequence of intersecting null rays via twistors Z; € CP*

Due to the relation to particle momenta, often called ‘momentum twistors’.
[Hodges]
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Twistors
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Polylogarlth

[Chen] [Goncharov], [Brown], .
Classical polylogarithms: Lin(x / _Lln e bapel = logld o)

More generally, polylogarithms in many variables:
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The ‘letters’ ¢ run over a finite set of rational functions.

‘Symbol’ recursively defined S(f*)) = Z S(f (k 1) o Ser gl — o
Examples: SLiz(z)) = —-[1 —z)®z], Slog’z)=2[r® z]
Integrability: gl g Z dfg(bk_l) Adlog¢p =0
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Cluster algebras
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Quivers

More generally, consider a quiver diagram, corresponding to a cluster.
Each cluster variable corresponds to node.
Mutation on node £ yields a new quiver via the rules:

Foreach 1 — k — 3

add new arrow 7 — j , 1
(= Oy = Hai+ Haj
reverse all arrows to/from £ i e =
delete opposing pairs and returning arrows
Sometimes finite, sometimes infinite.
Ao Initial quiver 1 > 2 becomes 1 — 2

with a3 = a'l =



Grassmannian G(4,n)

Can associate a cluster algebra to the Grassmannian G(4,n) [Scot]
Initial cluster given by specified set of 4-brackets (ijkl)

Mutation generates homogeneous polynomials in 4-brackets

For n = 6, 7 algebras are finite (correspond to A3 and Fj)

For n > & algebra is infinite.

Observation: [Golden, Goncharov, Spradlin,Vergu,Volovich]
known two-loop results show that letters are cluster A-coordinates.

Cluster bootstrap ansatz: letters are A-coordinates.

For hexagon: 9 A-coordinates,
For heptagon: 42 of them.



Hexagons

Mutations generate letters,

(1236)(3456) (1356)(2346) (1345)(2456) (1236)

U1 = 1—u1:

(1346)(2356) ’ (1346)(2356) °  “' ~ (1235)(3456)(1246)

and those related by cyclic rotation of the labels.
Once obtained, any multiplicatively independent set of nine will do.

Topology of mutations is Stasheff polytope.

Can replace 4-brackets with 2-brackets: (1234) — (56)

Space of functions identified with polylogarithms on Mg



Heptagons

For heptagons we generate the following letters

(1234)(1567)(2367) -
- = IETRDL R =
(1234)(2567) .
2L = 1267)(2345) =
 (1567)(2347) -
L 3T e A

and those obtained by cyclic rotation of the labels.

(a(be)(de)(fg)) = (abde){acfg) —

(1(23)(45)(67))

(1234)(1567)
(1(34)(56)(72))

(1234)(1567)

(abfg)(acde)

Unlike in the hexagon case, the space of singularities depends on the choice of

dihedral structure.

Naturally associated to the kinematic space of light-like Wilson loops.



Heptagon symbols

Heptagon symbols:
Now we want to build integrable words from the 42 heptagon letters

Locality: initial letters are a;;

Symbol of heptagon Wilson loop remainder should be a heptagon symbol
Supersymmetry: final letters are as; , as;

Collinear limit: R, — R, g 1)



Constructing symbols

Impose integrability by equating two decompositions of a word into integrable parts:
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These give homogeneous linear equations for D 2
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The calculation is just linear algebra but for rather large matrices.
Efficient algorithms for calculating the null spaces of integer matrices are very useful.

The calculation can be adapted easily for imposing conditions on initial and final
entries simultaneously.



Results |

Weight k = 2 3 4 5
Number of heptagon symbols 7 42 | 237 | 1288 | 6763 7
well-defined in the 7 || 6 limit 3 15 98 | 646 ? ?
which vanish in the 7 || 6 limit 0 6 72 | 572 ? 7
well-defined for all i41 || ¢ 0 0 1 ? 7
with MHYV last entries 0 1 2 1 4
with both of the previous two 0 0 1 0 1

Table 1: Heptagon symbols and their properties.

The symbol of the two-loop remainder function is the only weight 4 heptagon
symbol which is well-defined in all collinear limits.

There is a unique weight 6 heptagon symbol which obeys the final entry and is
finite in all collinear limits.
We conclude this must be the symbol of the three-loop heptagon remainder.



Results 2

For comparison, hexagon symbols:

Weight k = 1 2 3 4 5 6
Number of hexagon symbols 3 9 26 75| 218 | 643
well-defined (hence vanish) in the 6 || 5 limit 0 2 11 44 | 155 | 516
well-defined (hence vanish) for all i+1 || 4 0 0 2 12 68 | 307
with MHV last entries 0 3 7 21 62 | 188
with both of the previous two 0 0 1 4 14 59

Table 1: Hexagon symbols and their properties.

In hexagon case must appeal to further input to fix the Wilson loop.

OPE data or information from Regge limit required.

Heptagon bootstrap more powerful than hexagon one!

Hexagon can be recovered from heptagon by collinear limit.




Checks and Extensions

The Wilson loop admits an expansion around the collinear limit, similar to the
operator product expansion for local operators in a CFT.

[Alday, Gaiotto, Maldacena, Sever,Vieira]

Further progress allows the prediction of the power suppressed terms in
this limit.

[Basso, Sever,Vieira]

We find perfect agreement between this expansion and the series expansion
of our symbol.

NMHV: We also find that the two-loop NMHV amplitude of Caron-Huot and He

is the unique possible expression compatible with dihedral symmetry both before
and after taking a collinear limit.

(up to adding the MHV expression multiplied by the tree amplitude).



Discussion and QOutlook




