Precision calculations for the LHC

or

From amplitudes to cross sections

Nigel Glover

IPPP, Durham University

European Research Council Established by the European Commission Supporting top researchers from anywhere in the world

Amplitudes 2015, Zurich 6 July 2015

From SU(3)xSU(2)xU(1) Lagrangian to Data

 $\mathcal{L} \sim -\frac{1}{\Delta} F_{\mu\nu} F^{\mu\nu} + i \bar{\psi} D \psi$ $+y_{ii}\bar{\psi}_i\phi\psi_i+h.c.+|D_\mu\phi|^2-V(\phi)$

The Task for Experimental Particle Physics

The Task for Theoretical Particle Physics

Theoretical input

- ✓ vital in making precise perturbative predictions in quantum field theory, in general, and in the Standard Model of particle physics, in particular.
- ✓ precise data enables information on new physics to be extracted indirectly (pre-discovery)

Theoretical input

✓ not crucial for direct discovery!!

Theoretical input

- ✓ but needed to interprete discovery as due to the production and decay of a Standard Model Scalar-like particle
- ✓ H production cross section (σ)
 - g cocco

✓ H branching ratio (BR)

Why loops?

- ✓ Loop integrals play an intrinsic part in
 - (a) the interpretation of experimental discoveries at the high energy frontier
 - (b) extracting precise information from precision experiments
 - (c) in making the case for the physics potential of future high energy facilities
- ⇒ Importance of developments in Amplitudes that will be showcased at this conference

The challenge from the LHC

- Everything (signals, backgrounds, luminosity measurement) involves QCD
- ✓ Strong coupling is not small: $\alpha_s(M_Z) \sim 0.12$ and running is important
 - ⇒ events have high multiplicity of hard partons
 - ⇒ each hard parton fragments into a cluster of collimated particles jet
 - ⇒ higher order perturbative corrections can be large
 - \Rightarrow theoretical uncertainties can be large
- ✓ Processes can involve multiple energy scales: e.g. p_T^W and M_W
 - \Rightarrow may need resummation of large logarithms
- Parton/hadron transition introduces further issues, but for suitable (infrared safe) observables these effects can be minimised
 - \Rightarrow importance of infrared safe jet definition
 - \Rightarrow accurate modelling of underlying event, hadronisation, ...

Cross Sections at the LHC

Theoretical Framework

$$\sigma(Q^2) = \int \sum_{i,j} d\hat{\sigma}_{ij}(\alpha_s(\mu_R), \mu_R^2/Q^2, \mu_F^2/Q^2) \otimes f_i^p(\mu_F) \otimes f_j^p(\mu_F) \qquad \left[+\mathcal{O}\left(\frac{1}{Q^2}\right) \right]$$

- ✓ partonic cross sections $d\hat{\sigma}_{ij}$
- \checkmark running coupling $\alpha_s(\mu_R)$
- ✓ parton distributions $f_i(x, \mu_F)$

- ✓ renormalization/factorization scale μ_R, μ_F
- ✓ jet algorithm + parton shower + hadronisation model + underlying event + ...

Theoretical Uncertainties

- Missing Higher Order corrections (MHO)
 - truncation of the perturbative series
 - often estimated by scale variation renormalisation/factorisation
 - ✓ systematically improvable by inclusion of higher orders
- Uncertainties in input parameters
 - parton distributions
 - masses, e.g., m_W , m_h , $[m_t]$
 - couplings, e.g., $\alpha_s(M_Z)$
 - ✓ systematically improvable by better description of benchmark processes
- Uncertainties in parton/hadron transition
 - fragmentation (parton shower)
 - ✓ systematically improvable by matching/merging with higher orders
 - hadronisation (model)
 - underlying event (tunes)

Goal: Reduce theory certainties by a factor of two compared to where we are now in next decade

What is the hold up?

Rough idea of complexity of process \sim #Loops + #Legs (+ #Scales)

- loop integrals are ultraviolet/infrared divergent
- complicated by extra mass/energy scales
- loop integrals often unknown
 - ✓ completely solved at NLO
- real (tree) contributions are infrared divergent
- isolating divergences complicated
 - ✓ completely solved at NLO
- currently far from automation
 - ✓ mostly solved at NLO

Current standard: NLO

Anatomy of a NLO calculation

- ✓ one-loop 2 → 3 process
 - ✓ explicit infrared poles from loop integral
 - ✓ looks like 3 jets in final state
- \checkmark tree-level $2 \rightarrow 4$ process
 - ✓ implicit poles from soft/collinear emission
 - ✓ looks like 3 or 4 jets in final state

- ✓ plus method for combining the infrared divergent parts
 - dipole subtraction Catani, Seymour; Dittmaier, Trocsanyi, Weinzierl, Phaf
 - residue subtraction

- Frixione, Kunszt, Signer
- antenna subtraction Kosower; Campbell, Cullen, NG; Daleo, Gehrmann, Maitre
- automated subtraction tools Gleisberg, Krauss (SHERPA); Hasegawa, Moch, Uwer (AutoDipole); Frederix, Gehrmann, Greiner (MadDipole); Seymour, Tevlin (TeVJet), Czakon, Papadopoulos, Worek (Helac/Phegas) and Frederix, Frixione, Maltoni, Stelzer (MadFKS)

For a long time **bottleneck** was the one-loop amplitudes

The one-loop problem

Any (massless) one-loop integral can be written as

$$= \sum_{i} d_{i}(D) + \sum_{i} c_{i}(D) + \sum_{i} b_{i}(D) - O$$

 $\mathcal{M} = \sum d(D) \operatorname{boxes}(\mathbf{D}) + \sum c(D) \operatorname{triangles}(\mathbf{D}) + \sum b(D) \operatorname{bubbles}(\mathbf{D})$

- ✓ higher polygon contributions drop out
- \checkmark scalar loop integrals are known analytically around D = 4 Ellis, Zanderighi (08)
- ✓ need to compute the *D*-dimensional coefficients d(D) etc.

The problem is **complexity** - the number of terms generated is too large to deal with, even with computer algebra systems, and there can be very large cancellations.

Unitarity for one-loop diagrams

Several important breakthroughs

✓ Sewing trees together

Bern, Dixon, Dunbar, Kosower (94)

✓ Freezing loop momenta with quadruple cuts

✓ OPP tensor reduction of integrand

Ossola, Pittau, Papadopoulos (06)

Britto, Cachazo, Feng (04)

✓ D-dimensional unitarity

Giele, Kunzst, Melnikov (08)

\implies automation

HELAC/CutTools, Rocket, BlackHat+SHERPA, GoSam+SHERPA/MADGRAPH, NJet+SHERPA, MADLOOPS+MADGRAPH

Numerical recursion for one-loop diagrams

Breakthroughs on the "traditional" side

✓ One-loop Berends-Giele recursion

van Hameren (09)

Recursive construction of tensor numerator

Cascioli, Maierhöfer, Pozzorini (11)

 \implies automation

OpenLoops+SHERPA, RECOLA

NLO - the new standard

✓ A lot of progress, and the "best" solution is still to emerge. In the meantime, there are public codes with NLO capability that could only be dreamed of a few years ago.

						SHERPA	Process
ile Edit View History Bookmarks	Tools Help	aMC@NLO web	page - Mozilla Fi	refox	- 0	×	
aMC@NLO web page	Toora Tich					~	jets
amcatnio.web.cem.ch/amcatnio	0/			🏫 🗸 😫 🔣 😽 Go	pogle 🏥 1		$\gamma \pm iets$
	č	AMCONL	0 web	page			y y + jets
							V + Jets
The project	Optimized process-s	specific aMC	CONLO codes				V + bb + j
Home		-					VV'+jets
Contact	Here you find a col	lection of	aMC@NLO cod	les dedicated to key processes by MadLoop (for example for H	at the LHC. In some		$V\gamma$ +jets
MC Tools	Higgs Effective Fie	ald Theory),	while in c	thers analytic expressions mi	ght be faster than		
	MadLoop. We stress that all contributions to the cross sections except the finite part of the virtuals are still obtained with aMC@NLO, by generating the process with the [real=QCD]						
Download aMC@NLO	codes listed here p	the finite provide expl	part of the icit exampl	e virtuals that it is added "b es on how to interface aMC@NL	y hand". Therefore, the 0 with BLHA-compliant		VV'V''
Event samples DB	external codes for	one-loop co	rrections				$t\bar{t}$ +jets
Special Codes	Process	Codes	Plots	Extra info			$t\overline{t} \perp V \perp i$
Communication	Higgs characterization. Comparison plots: <u>pt of the "</u> H	iggs" rapidity of t	he "Higgs" jet rate	a :			· · · · · ·
Citations Publications	$pp \rightarrow 0^+ + X$	Code	aMCGNL04Pythia	Virtuals coded by hand by R. Frederix and N. Saro from the known analytic results. Scalar	-	_	tb
Talks & Seminars			80000001910	resonance. Process generated in the HEFT model			ti
Resources	$pp ightarrow 0^- + X$	Code	aMCENLO+Pythia aMCENLO+Herwig	Virtuals coded by hand by K. Frederix and N. Zaro from the known analytic results. Pseudo scalar resonance. Process generated in the			
Useful links File Sharing				Fully automatic in aWCSNIO, Vector resonance	-		tVV '
TITE Distring	$pp \rightarrow 1^- + X$	Code	aMC@NLO+Herwig	(Obtained from the Z using only vector coupling to quarks).			h+jets
	$pp ightarrow 1^+ + X$	Code	aMCSNLO+Pvthia aMCSNLO+Hervig	Fully automatic in aNCONLO. Pseudo vector resonance (Obtained from the 2 using only avial coupling to gmarks).			WBF: hac
	$pp \rightarrow (2^+ \rightarrow \gamma\gamma) + X$	Code	aMCBNLO+Pythia	Virtuals Provided by Prederix et al. arXiv:1209.6527 Code generated using the RS	Ä		VH
	$pp \rightarrow (2 \rightarrow p) + 3$		aMCBNLO+Herwig	model. Spin 2 (graviton like)	_		tth
	More to come soon				1		

Process	BlackHat	GoSam	OpenLoops
jets	≤ 3	—	\leq 4
$\gamma+jets$	≤ 3	≤ 2	≤ 3
$\gamma\gamma+$ jets	≤ 2	—	≤ 2
V+jets_	≤ 4	≤ 3	≤ 3
V + bb+jets	_	≤ 1	≤ 1
<i>VV</i> +jets	≤ 2	≤ 2	≤ 2
$V\gamma+$ jets	_	≤ 2	≤ 2
$W^{\pm}W^{\pm}qq$	_	0	0
VV'V''	—	—	≤ 1
<i>tī</i> +jets	—	≤ 1	≤ 1
$t\overline{t} + V$ +jets	—	_	≤ 1
tb [†]	_	—	≤ 1
tj †	_	—	≤ 1
tW [†]	—	—	≤ 1
h+jets	≤ 2	≤ 2	_
WBF: hqq'	—	—	≤ 1
VH		—	≤ 1
tTh	_	—	0
$gg \rightarrow 4\ell$	_	0	0

NLO EW corrections

- ✓ Relevance and size of EW corrections generic size $O(\alpha) \sim O(\alpha_s^2)$ suggests NLO EW ~ NNLO QCD but systematic enhancements possible, e.g.,
 - by photon emission, mass singular logs $\propto (\alpha) \ln(m_{\ell}/Q)$ for bare leptons important for measurement of W mass
 - + at high energies, EW Sudakov logs $\propto (\alpha / \sin^2 \theta_W) \ln^2 (M_W/Q)$
- EW corrections to PDFs at hadron colliders
 - photon PDF
- ✓ Instability of W and Z bosons
 - realistic observables have to be defined via decay products
 - off-shell effects ~ $\mathcal{O}(\Gamma/M) \sim \mathcal{O}(\alpha)$ are part of the NLO EW corrections
- ? How to combine QCD and EW corrections in predictions?

Mixed QCD - EW corrections

✓ Tree contributions: $\mathcal{O}(\alpha_s \alpha)$, $\mathcal{O}(\alpha^2)$

(W/Z emission suppressed in graphs)

 $V = \gamma, \mathbf{Z}, \mathbf{W}$

✓ Loop contributions: $O(\alpha_s^2 \alpha)$

Example: W/Z+higher jet multiplicities at NLO

• $H_{\mathrm{T}}^{\mathrm{tot}} = p_{\mathrm{T,W}} + \sum p_{\mathrm{T},j_k}$

Kallweit, Lindert, Maierhoefer, Pozzorini, Schoenherr (15)

NLO precision for event simulation

Fixed order calculations

- ✓ Expansion in powers of the coupling constant
- ✓ Correctly describes hard radiation pattern
- ✓ Final states are described by single hard particles
- ✓ NLO: up to two particles in a jet, NNLO: up to three..
- ✓ Soft radiation poorly described

Parton shower

- Exponentiates multiple soft radiation (leading logarithms)
- ✓ Describes multi-particle dynamics and jet substructure
- ✓ Allows generation of full events (interface to hadronization)
- ✓ Basis of multi-purpose generators (SHERPA, HERWIG, PYTHIA)
- ✓ Fails to account for hard emissions

Ideally: combine virtues of both approaches

Shape: Real Radiation and Normalisation: Loops

MEPS - merging

Several fixed order calculations of increasing multiplicity supplemented by PS CKKW: Catani, Krauss, Kuhn, Webber (01); MLM: Mangano

NLOPS - matching

One fixed order calculation supplemented by PS

MC@NLO: Frixione, Webber (02); POWHEG: Nason, Oleari (07)

MENLOPS

Supplements core NLOPS with higher multiplicity MEPS

Hamilton, Nason; Hoeche, Krauss, Schoenherr, Siegert; Lonnblad, Prestel

MEPS@NLO (UNLOPS)

Combines multiple NLOPS

Lavesson, Lonnblad; Hoeche, Krauss, Schoenherr, Siegert; Frederix, Frixione

Reaching NNLOPS accuracy

MINLO

Multiscale improved NLO CKKW scale for Born pieces Sudakov form factors for Born functions in POWHEG

Hamilton, Nason, Zanderighi

Exciting idea! starting from HJ@NLO+PS generate H rapidity distribution at NNLO

Hamilton, Nason, Oleari, Re, Zanderighi

Motivation for more precise theoretical calculations

 Estimated signal strengths with larger LHC data set

ATL-PHYS-PUB-2013-014

- Theory uncertainty has big impact on measurement
- Revised wishlist of theoretical predictions for
 - Higgs processes
 - Processes with vector bosons
 - Processes with heavy quarks or jets

1405.1067

ATLAS Simulation Preliminary

 $\sqrt{s} = 14 \text{ TeV}: \int Ldt = 300 \text{ fb}^{-1}$; $\int Ldt = 3000 \text{ fb}^{-1}$

0 0.2 0.4

 $\Delta \mu / \mu$

What NNLO might give you

Reduced renormalisation scale dependence

- Event has more partons in the final state so perturbation theory can start to reconstruct the shower
 - \Rightarrow better matching of jet algorithm between theory and experiment

✓ Reduced power correction as higher perturbative powers of $1/\ln(Q/\Lambda)$ mimic genuine power corrections like 1/Q

Motivation for NNLO

 Better description of transverse momentum of final state due to double radiation off initial state

- ✓ At LO, final state has no transverse momentum
- ✓ Single hard radiation gives final state transverse momentum, even if no additional jet
- ✓ Double radiation on one side, or single radiation of each incoming particle gives more complicated transverse momentum to final state
- ✓ NNLO provides the first serious estimate of the error
- ✓✓✓ and most importantly, the volume and quality of the LHC data!!

Anatomy of a NNLO calculation e.g. $pp \rightarrow 2j$

- ✓ double real radiation matrix elements $d\hat{\sigma}_{NNLO}^{RR}$ ✓ implicit poles from double unresolved emission
- ✓ single radiation one-loop matrix elements $d\hat{\sigma}_{NNLO}^{RV}$
 - ✓ explicit infrared poles from loop integral
 - ✓ implicit poles from soft/collinear emission
- ✓ two-loop matrix elements $d\hat{\sigma}_{NNLO}^{VV}$
 - $\checkmark\,$ explicit infrared poles from loop integral
 - ✓ including square of one-loop amplitude

$$\mathrm{d}\hat{\sigma}_{NNLO} \sim \int_{\mathrm{d}\Phi_{m+2}} \mathrm{d}\hat{\sigma}_{NNLO}^{RR} + \int_{\mathrm{d}\Phi_{m+1}} \mathrm{d}\hat{\sigma}_{NNLO}^{RV} + \int_{\mathrm{d}\Phi_m} \mathrm{d}\hat{\sigma}_{NNLO}^{VV}$$

NNLO - amplitudes

small number of two loop matrix elements know	own
---	-----

✓ 2 → 1:
$$q\bar{q} \rightarrow V$$
, $gg \rightarrow H$, $(q\bar{q} \rightarrow VH)$

- ✓ 2 → 2: massless parton scattering, e.g. $gg \to gg$, $q\bar{q} \to gg$, etc
- ✓ 2 → 2: processes with one offshell leg, e.g. $q\bar{q} \rightarrow V$ +jet, $gg \rightarrow H$ +jet

✓ 2 → 2:
$$q\bar{q} \rightarrow t\bar{t}$$
, $gg \rightarrow t\bar{t}$ known numerically

✓ 2 → 2:
$$q\bar{q} \rightarrow VV$$
, $gg \rightarrow VV$ new results in 2014

- ✓ $2 \rightarrow 3$: $gg \rightarrow ggg$ first results in 2014
- ?? Basis set of master integrals
- ?? Efficient evaluation of master integrals
- ?? Far from Automation
- Eager to have input from Amplitudes community

Bärnreuther, Czakon, Mitov Cascioli et al Badger, Frellesvig, Zhang

IR subtraction at NNLO

✓ The aim is to recast the NNLO cross section in the form

$$d\hat{\sigma}_{NNLO} = \int_{d\Phi_{m+2}} \left[d\hat{\sigma}_{NNLO}^{RR} - d\hat{\sigma}_{NNLO}^{S} \right] + \int_{d\Phi_{m+1}} \left[d\hat{\sigma}_{NNLO}^{RV} - d\hat{\sigma}_{NNLO}^{T} \right] + \int_{d\Phi_{m}} \left[d\hat{\sigma}_{NNLO}^{VV} - d\hat{\sigma}_{NNLO}^{U} \right]$$

where the terms in each of the square brackets is finite, well behaved in the infrared singular regions and can be evaluated numerically.

NNLO - IR subtraction schemes

We do not have a fully general subtraction scheme as we have at NLO

Five main methods:

- Antenna subtraction
- + q_T subtraction
- Colourful subtraction
- + Stripper
- N-jettiness subtraction
 Tackmann, Walsh (15)

Gehrmann, Gehrmann-De Ridder, NG (05)

- Catani, Grazzini (07)
- Del Duca, Somogyi, Tronsanyi
- Czakon (10); Boughezal et al (11)

Boughezal, Focke, Liu, Petriello (15); Gaunt, Stahlhofen,

Each method has its advantages and disadvantages

	Analytic	FS Colour	IS Colour	Local
Antenna	✓	1	1	×
qΤ	 Image: A set of the set of the	×	√	 Image: A second s
Colourful	√	✓	×	✓
Stripper	×	✓	✓	✓
N-jettiness	1	1	1	✓

Higgs production at N3LO $m_t \rightarrow \infty$

- ✓ Aim to reduce the theoretical error for the inclusive Higgs cross section via gluon fusion to O(5%)
 - ✗ In principle, need double box with top-quark loop! currently not known
 - ✓ Higgs boson is lighter than the top-pair threshold
 - ✓ $1/m_t$ corrections known to be small at NNLO
- ⇒ Work in effective theory where top quark is integrated out

$$\mathcal{L} = \mathcal{L}_{QCD,5} - \frac{1}{4v} C_1 H G^a_{\mu\nu} G^{a\mu\nu}$$

- ✓ Ingredients: Three-loop H+0 parton, Two-loop H+1 parton, One-loop H+2 parton, Tree-level H+3 parton all known as matrix elements for $m_t \to \infty$
 - key part is to extract the infrared singularities

Higgs production at N3LO $m_t \rightarrow \infty$

$$\frac{\hat{\sigma}_{ij}(z)}{z} = \hat{\sigma}^{SV} \delta_{ig} \delta_{jg} + \sum_{N=0}^{\infty} \hat{\sigma}_{ij}^{(N)} (1-z)^N$$

At N3LO,

$$\hat{\sigma}^{SV} = a\delta(1-z) + \sum_{k=0}^{5} b_k \left[\frac{\log^k(1-z)}{1-z}\right]_+$$

- Plus-distributions produced by soft gluon emissions and already known a decade ago
- ✓ a computed by Anastasiou, Duhr, Dulat, Furlan, Gehrmann, Herzog, Mistlberger (14)

$$\sigma_{ij}^{(N)} = \sum_{k=0}^{5} c_{ijk}^{(N)} \log^{k} (1-z)$$

- Describes subeading soft emissions
- Single emissions known exactly, but double and triple emissions known only as an expansion
 Anastasiou, Duhr, Dulat, Herzog, Mistlberger (14)

Higgs cross section at N3LO

Anastasiou, Duhr, Dulat, Herzog, Mistlberger

Higgs cross section at N3LO

$\mathbf{pp} \rightarrow \mathbf{H}$ + jet production at NNLO $m_t \rightarrow \infty$

- ✓ Key goal: Establish properties of the Higgs boson!
- experimental event selection according to number of jets
 - ✓ different backgrounds for different jet multiplicities
 - ✓ H+0 jet known at NNLO

Anastasiou, Melnikov, Petriello; Catani, Grazzini

- ✓ H+n jets (n=1,2,3) known at NLO
- ✓ H+0 jet and H+1 jet samples of similar size
- ✓ NNLO H+1 jet crucial, particularly for *WW* channel
 - ✓ Three independent computations:
 - Stripper Boughezal, Caola, Melnikon, Petriello, Schulze
 - N-jettiness

- Boughezal, Focke, Giele, Liu, Petriello
- Antenna (gluons only)

- Chen, Gehrmann, Jaquier, NG
- ✓ Fully differential and allows for arbitrary cuts on the final state

$pp \rightarrow H + jet at NNLO m_t \rightarrow \infty$

$p_T^{jet} > 30 \text{ GeV}, Y^{jet} < 0$	2.5
Leading order:	$3.1^{+1.3}_{-0.9}$ pb
Next-to-leading order:	$4.8^{+1.1}_{-0.9}$ pb
Next-to-next-to-leading order:	$5.5^{+0.3}_{-0.4}$ pb

NNPDF2.3, m_H =125GeV, anti-K_T with R = 0.5

- ✓ large effects near partonic threshold
- ✓ large *K*-factor

$$\sigma_{NLO}/\sigma_{LO} \sim 1.6$$

 $\sigma_{NNLO}/\sigma_{NLO} \sim 1.3$

✓ significantly reduced scale dependence $\mathcal{O}(4\%)$

NNLO Higgs production via VBF

- Second largest source of Higgs bosons
- ✓ distinctive signature
 ⇒ very useful for signal extraction and background suppression

- ✓ suppressed color exchange between quark lines gives rise to
 - little jet activity in central rapidity region
 - Is scattered quarks → two forward tagging jets
 - Higgs decay products typically between tagging jets
 - many Feynman diagrams suppressed by colour or kinematic considerations
- ✓ NLO QCD corrections moderate and well under control (order 10% or less)

NNLO Higgs production via VBF

		$\sigma^{(ext{no cuts})}$ [pb]	$\sigma^{(extsf{VBF cuts})} extsf{[pb]}$	
	LO	$4.032{}^{+0.057}_{-0.069}$	$0.957 {}^{+0.066}_{-0.059}$	
	NLO	$3.929 {}^{+0.024}_{-0.023}$	$0.876 {}^{+0.008}_{-0.018}$	
	NNLO	$3.888^{+0.016}_{-0.012}$	$0.826 {}^{+0.013}_{-0.014}$	
relative NNLO corrections $\sim 1\%$			relati correct	ve NNLO tions $\sim 6\%$

Cacciari, Dreyer, Karlberg, Salam, Zanderighi

- NNLO QCD corrections are much larger in VBF setup than for inclusive cuts
- NNLO corrections appear to make jets softer, hence fewer events pass the VBF cut

Improved precision for input parameters

- ✓ More precise measurements of strong coupling
- Improved parton distributions

$pp \rightarrow 2$ jets at NNLO

- One of key processes for perturbative QCD
- ✓ Current experimental precision
 𝒪(5-10%) for jets from 200 GeV/c-1
 TeV/c
 - Need NNLO QCD and NLO EW
- Only process currently included in global PDF fits that is not known at NNLO
 - ✓ gg channel leading colour Currie, Gehrmann-De Ridder, Gehrmann, Pires, NG
- Scale variation much reduced for $0.5 < \mu/p_T < 2$.
- Size of corrections, and uncertainty, still depends on scale choice p_{T1} v p_T .

Di-jet mass distribution (gluons only) at NNLO

Gehrmann-De Ridder, Gehrmann, Pires, NG; Currie, Gehrmann-De Ridder, Pires, NG

NNLO Z+1 jet production

Gehrmann, Gehrmann-De Ridder, Huss, Morgan, NG

- An important background for beyond the standard model searches
- Very precise measurements can be obtained.
- Provides a fantastic testing ground for precision QCD and electroweak corrections
- Useful for detector calibration, jet energy scale can be determined from the recoil of the jet against the Z boson.
- ✓ Useful process for PDF determination

	Initial State	σ (pb)	% contribution
	qg	80.2	55.6
	qar q	33.1	22.9
	$ar{q}g$	33.1	22.9
	gg	-4.0	-2.7
	qq	1.8	1.2
1	$ar{q}ar{q}$	0.1	0.1
	Total	144.3	100.0

NNLO Z+1 jet production

Gehrmann, Gehrmann-De Ridder, Huss, Morgan, NG

- ✓ Excellent convergence of NNLO in the jet p_T distribution
- ✓ Significant reduction in the scale uncertainty

NNLO Z+1 jet production

Gehrmann, Gehrmann-De Ridder, Huss, Morgan, NG

- ✓ NNLO corrections uniform in rapidity, approximately 7%
- ✓ Significant reduction in the scale uncertainty

$\mathbf{p}\mathbf{p}\to\mathbf{Z}\mathbf{Z}$ at NNLO

Observe

- ✓ The NNLO corrections increase the NLO result by an amount varying from 11% to 17% as \sqrt{s} goes from 7 to 14 TeV.
- ✓ The loop-induced gluon fusion contribution provides about 60% of the total NNLO effect.
- ✓ When going from NLO to NNLO the scale uncertainties do not decrease and remain at the $\pm 3\%$ level.

$\mathbf{pp} \to W^+ W^-$ at NNLO

- Provides a handle on the determination of triple gauge couplings, and possible new physics
- Severe contamination of the W^+W cross section due to top-quark resonances

$\frac{\sqrt{s}}{\text{TeV}}$	σ_{LO}	σ_{NLO}	σ_{NNLO}	$\sigma_{gg \to H \to WW^*}$
7	$29.52^{+1.6\%}_{-2.5\%}$	$45.16^{+3.7\%}_{-2.9\%}$	$49.04^{+2.1\%}_{-1.8\%}$	$3.25^{+7.1\%}_{-7.8\%}$
8	$35.50^{+2.4\%}_{-3.5\%}$	$54.77^{+3.7\%}_{-2.9\%}$	$59.84_{-1.9\%}^{+2.2\%}$	$4.14^{+7.2\%}_{-7.8\%}$
13	$67.16^{+5.5\%}_{-6.7\%}$	$106.0^{+4.1\%}_{-3.2\%}$	$118.7^{+2.5\%}_{-2.2\%}$	$9.44^{+7.4\%}_{-7.9\%}$
14	$73.74^{+5.9\%}_{-7.2\%}$	$116.7^{+4.1\%}_{-3.3\%}$	${}^{131.3^{+2.6\%}_{-2.2\%}}_{-2.2\%}$	$10.64_{-8.0\%}^{+7.5\%}$

- The NNLO QCD corrections increase the NLO result by an amount varying from 9% to 12% as \sqrt{s} goes from 7 to 14 TeV.
- Scale uncertainties at the $\pm 3\%$ level.

LHC cross sections at NNLO

- Past few years, there has been an accelerating progress in computing NNLO corrections to important LHC processes

 - W+Jet, Z+Jet, Di-Jet, Di-Gamma, WW, ZZ, Z+Gamma, single $t, t\bar{t}, \ldots$
- \checkmark Mostly of $2 \rightarrow 2$ variety based on amplitudes computed a while ago
- ✓ Several IR subtraction technologies available
- ✓ Whenever gluons are involved, the NNLO contributions can be large
- ✓ All show a reduced scale variation

Estimating uncertainties of MHO

✓ Consider a generic observable O (e.g. σ_H)

$$\mathcal{O}(Q) \sim \mathcal{O}_k(Q,\mu) + \Delta_k(Q,\mu)$$

where

$$\mathcal{O}_k(Q,\mu) \equiv \sum_{n=0}^k c_n(Q,\mu)\alpha_s(\mu)^n, \qquad \Delta_k(Q,\mu) \equiv \sum_{n=k+1}^{\dots} c_n(Q,\mu)\alpha_s(\mu)^n$$

 \checkmark Usual procedure is to use scale variations to estimate Δ_k ,

$$\Delta_k(Q,\mu) \sim \max\left[\mathcal{O}_k\left(Q,\frac{\mu}{r}\right), \mathcal{O}_k(Q,r\mu)\right] \sim \alpha_s(\mu)^{k+1}$$

where μ is chosen to be a typical scale of the problem and typically r = 2.

Choice of μ and r = 2 is convention

Theoretical uncertainty on σ_H

Warning: Scale variation may not give an accurate estimate of the uncertainty in the cross section!!

– p. 59

Going beyond scale uncertainties

Series acceleration

sequence transformations gives estimates of some of the unknown terms in series

- ✓ Estimate coefficients using information on the singularity structure of the Mellin space cross section coming from all order resummation
 Ball et al
 - large N (soft gluon, Sudakov)
 - small N (high energy, BFKL)

✓ Bayesian estimate of unknown coefficients

Cacciari, Houdeau

make the assumption that all the coefficients c_n share a (process dependent)upper bound $\bar{c} > 0$ leading to density functions $f(c_n | \bar{c})$ and $f(\ln \bar{c})$ recent refinement of methodBagnaschi, Cacciari, Guffanti, Jenniches

 Accepting that scale variation does not give reliable error estimate, can predict the part of the N³LO cross section coming from scale variations.

Pressure is building to better estimate MHO

David, Passarino

Theoretical uncertainty on σ_H revisited

Uncertainty in Modified CH approach larger but more realistic!!

Where are we now?

Witnessed a revolution that has established NLO as the new standard

- previously impossible calculations now achieved
- very high level of automation for numerical code
- standardisation of interfaces linkage of one-loop and real radiation providers
- take up by experimental community
- ✓ Substantial progress in NNLO in past couple of years
 - several different approaches for isolating IR singularities
 - several new calculations available
 - codes typically require significant CPU resource

Where are we going?

NNLO automation?

- as we gain analytical and numerical experience with NNLO calculations, can we benefit from (some of) the developments at NLO, and the improved understanding of amplitudes
- automation of two-loop contributions?
- automation of infrared subtraction terms?
- standardisation of interfaces linkage to one-loop and real radiation providers?
- interface with experimental community

Next few years:

- \checkmark Les Houches wishlist to focus theory attention
- ✓ New high precision calculations that will appear such as, e.g. N3LO σ_H , could reduce Missing Higher Order uncertainty by a factor of two
- NNLO will emerge as standard for benchmark processes such as dijet production leading to improved pdfs etc. could reduce theory uncertainty due to inputs by a factor of two