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Applying N=4 sYM insights to QCD

* easier to obtain multi-leg/loop results in N=4 sYM
simplicity allows to ‘see’ things analytically

sometimes leads to techniques that are universally applicable

* important example: connection between leading singularities
of integrals and weight properties (' transcendentality ') of
integrated answer

* these ideas have led to efficient methods for computing loop
integrals in QCD



Outline of talk

* motivation for multi-leg computations
* technique

* analytic results for 2-loop 5-particle integrals

e applications to amplitudes



Experiment and theory

* The Higgs boson has been found at the LH

Huge success both for theory and experiment

* What’s next!

- determine properties of the new particle

- search for deviations from the standard model

* Increasing experimental precision puts new challenges to
theory community



Les Houches wishlist

NNLO QCD and NLO EW Les Houches Wishlist

Wishlist part 1 - Higgs (V=W,Z)

Process | known desired motivation

H d\sigma @ NNLO QCD d\sigma @ NNNLO QCD + NLO EW | H branching ratios and
d\sigma @ NLO EW MC@NNLO couplings
finite quark mass effects @ NLO finite quark mass effects (@ NNLO

H+j d\sigma @ NNLO QCD (g only) d\sigma @ NNLO QCD + NLO EW Hp T
d\sigma @ NLO EW finite quark mass effects @ NLO

H+2j \sigma_tot(VBF) @ NNLO(DIS) QCD | d\sigma @ NNLO QCD + NLO EW H couplings
d\sigma(gg) @ NLO QCD
d\sigma(VBF) @ NLO EW

H+V d\sigma(V decays) @ NNLO QCD with H—bb @ same accuracy H couplings
d\sigma @ NLO EW

t\bar d\sigma(stable tops) @ NLO QCD d\sigma(NWA top decays) top Yukawa coupling

H @ NLO QCD + NLO EW

HH d\sigma @ LO QCD finite quatk mass | d\sigma @ NLO QCD finite quark mass | Higgs self coupling
effects effects
d\sigma @ NLO QCD large m_t limit | d\sigma @ NNLO QCD

Wishlist part 2 - jets and heavy quarks

Process known desired motivation
t\bar t \sigma_tot @ NNLO d\sigma(top decays) precision top/QCD,
QCD @NNLO QCD + NLOEW | gluon PDF
d\sigma(top decays) @ effect of extra radiation at high rapidity
NLO QCD top asymmetries
d\sigma(stable tops) @
NLO EW
t\bar t+j | d\sigma(NWA top d\sigma(NWA top decays) @ precision top/QCD, top asymmetries
decays) @ NLO QCD NLO QCD + NLO EW
single-top | d\sigma(NWA top d\sigma(NWA top decays) @ precision top/QCD, V_tb
decays) @ NLO QCD NNLO QCD (t channel)
dijet d\sigma @ NNLO d\sigma @ NNLO QCD + Obs.: incl. jets, dijet mass




Les Houches wishlist

QCD (g only)
d\sigma @ NLO weak

NLO EW

—> PDF fits (gluon at high x)

—> alpha_s

CMS x sections: http:/ /arxiv.org/abs/1212.6660
[http://arxiv.org/abs/1212.6660]

d\sigma @ NLO EW

NLO EW

3j d\sigma @ NLO QCD | d\sigma @ NNLO QCD + Obs.: R3/2 ot similar
NLO EW —> alpha_s at high pT
dom. uncertainty: scales
see http://arxiv.org/abs/1304.7498
[http:/ /arxiv.org/abs/1304.7498] (CMS)
\gamma-+j | d\sigma @ NLO QCD | d\sigma @ NNLO QCD + gluon PDF,

\gamma-+b for bottom PDF

Wishlist part 3 - EW gauge bosons (V=W,Z)

Process known desired motivation
\Y d\sigma(lept. V decay) @ NNLO d\sigma(lept. V decay) precision EW, PDFs
QCD + EW @ NNNLO QCD + NLO EW
MC@NNLO
V+j d\sigma(lept. V decay) @ NLO d\sigma(lept. V decay) Z+j for gluon PDF
QCD + EW @ NNLO QCD + NLO EW Wc for strange PDF
V+ij d\sigma(lept. V decay) @ NLO d\sigma(lept. V decay) study of systematics of H+jj
QCD @ NNLO QCD + NLO EW final state
\A% d\sigma(V decays) @ NLO QCD [ d\sigma(V decays) bkg H— VV
d\sigma(stable V) @ NLO EW @ NNLO QCD + NLO EW TGCs
gg —> VV d\sigma(V decays) @ LO d\sigma(V decays) @ NLO QCD bkg to H=>VV
V\gamma d\sigma(V decay) @ NLO QCD d\sigma(V decay) TGCs
d\sigma(PA, V decay) @ NLO EW | @ NNLO QCD + NLO EW
Vb\bar b d\sigma(lept. V decay) @ NLO d\sigma(lept. V decay) @ NNLO | bgk to VH(—bb)
QCD QCD
massive b massless b
VV'\gamma d\sigma(V decays) @ NLO QCD d\sigma(V decays) QGCs
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Challenges for calculations in QFT

® Many processes involve several variables
(masses, scattering angles), e.g. 2->3 processes

® One of the main obstacles: often, no analytic expressions
for the Feynman integrals are available

® |n this talk, | will focus on virtual contributions and present
tools for the evaluation of the Feynman integrals




Connection between integrands and
integrated functions

1
/del . .dPkr e > Z (special functions)

* | will review how looking at" the LHS can be used to learn
a lot about the RHS

* this talk: RHS evaluates to multiple polylogarithms



Analyzing loop integrands:
maximal cuts, leading singularities

e maximal cuts
Dy =k* Dy=(k+p1)*> Ds=(k+p+p2)° Dy=(k+p+ps+p3)

— [ RADDSDID)ID) ~

note: there are two solutions that localize the loop
momentum (related by complex conjugation); these
correspond to the leading singularities [Cachazo; Cachazo, Skinner]

* at higher loops, maximal cuts do not completely localize the
loop momenta; leading singularities cut also Jacobian factors



Pentagon example

* one-loop pentagon integrals
D=k Dy=(k+p1)* Ds=(k+pi+p2)° Dys=(k+p+p2+p3)° Ds=(k—ps)°
- now there are five different maximal cuts we can take

- leading singularities of the scalar pentagon
integral cannot all be normalized to one

- consider a pentagon integral with numerator:
N (k
D1Ds D3 D4 Ds

- can choose numerator such that integral has constant leading singularities

* Such integrals naturally appear in N=4 SYM [Arkani-Hamed et l, 2010]
j k

1 .
2—loo :
Avmy. = ) E '

i<j<k<l<i




Leading singularities, weight conjecture

* observation: these integrals have homogeneous logarithmic
weight (" transcendentality ); e.g.,

6 1

2

5 2 = ng(l — ’U,1> -+ ng(l — UQ) -+ ng(l — Ug) -+ log(u3)log(u1) — ?
4 3

assign log weight: w(log) =1 w(Lin) =N w(ﬂ) =1
w(ab) = w(a) + w(b)

function has uniform weight 2 and kinematic-independent prefactors

° Weight Conjectu re [Arkani-Hamed, Bourijaily, Cachzao, Trnka, 2010]
[Arkani-Hamed et al, 201 2]

integrals with constant leading singularities should have uniform weight

* as we will see, differential equations can

MH, 2013
shed more light on the weight properties : ]



Example: choice of integral basis
three-loop N=4 SYM form factor

(3 _ (3D —14)? 2(3D — 14) 4(2D — 9)(3D — 14)
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B 3(D — 142D — 9)(5D — 22) >
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Figure 1: Master integrals for the three-loop form factors. Labels in brackets indicate the naming
convention of Ref. [25].
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Gehrmann, Glover, Huber, lkizlerli, Studerus;
Lee, Smirnov & Smirnov

Rutgers - J. M. Henn, IAS



Example: choice of integral basis
three-loop N=4 SYM form factor

FP = R BF™P — 2 FPP L AFSP L A F™P _ 4 FOP _ 4 FOP _ 4 FOP 4 2 FOP]

[ T

/
Py
F® = R .BFXP — 2 FPP 4 AFSP 4 4 FOP — 4 FSP 4 &P — 4 FOP 4 9 [P N
1 N 11¢5 N 24774 1 _857T2C3 439¢s . /
6e  12¢3  25920€2 € 432 60 Pa
883¢3  22523n° . ~ 478037%¢3 N 24497°Cs  385579¢7 ~
36 466560 51840 432 1008
) (1549, 2249966 4967°C;  11837599817° ) 5.2 I 5 Iy
€ —_— — — € . .
45 >3 30 27 7838208000
Pb /pb/ e
Pa D
* each integral has uniform (and maximal) i d
AW Y . \ \
transcendentality”
T[ Zeta[n] ] = n "
T[eps™-n] =n Fy F F
T[A B] =T[A] + T[B]

e for theories with less susy, other integrals
also needed

Gehrmann, J.M.H., Huber (2011)
Rutgers - J. M. Henn, IAS




"d-log forms’

* observation: sometimes, loop integrand can be rewritten in
suggestive form

& 2 ) , , [Arkani-Hamed et al, 201 2]
A0 x = A0 x / e i ¢ )(5(1;;192%5191 ;‘2 &3)_ E [Caron-Huot, talk at Trento, 2012]
) ¢ . b b [Lipstein and Mason, 2013-2014]

1 4

[also see recent work, on non-planar cases:

d* (p1 + p2)?(p1 + p3)? Arkani-Hamed et al, 2014; Bern et al., 2015]
02(0 + p1)2(L + p1 + p2)2(€ — ps)?

el e 2

* 'd-log forms : make leading singularities obvious




Summary integrand investigations

* leading singularities - maximal weight conjecture

* allows to systematically construct uniform weight integrals

* works both in planar/non-planar case

* assign weight -1 to |/eps to extend to dimensionally
regulated integrals

Next step: JMH, 2013]

* prove uniform weight properties using differential equations

e extend to uniform but non-maximal weights



Differential equations (DE) technique

* idea: differentiate Feynman integral w.r.t. external
variables, e.g. s, t, masses

Some general facts:

* a given Feynman integral J satisfies an n-th order DE

* equivalently described by a system of n first-order
equations for f

—

(333]?(3?, 6) — A(xa G)f(CE, 6)

since they come from Feynman integrals, they can only have
regular singularities. Constrains matrix A(x, €)

Long and successful history:
[Kotikov, 1991] [Remiddi, 1997] [Gehrmann, Remiddi, 2000] [...]

New idea: use integrals with constants leading
singularities as basis for DE system  [MH,2013]



Example: one-loop four-point integral

® choose basis according to [JMH, 2013]

o differential equations x =1/s D =4 — 2¢
- a b | -
a — I ]
w0 =%+ | flano

—1 0 O O 0 O
a = 0 0 O b = 0O 0 O
-2 0 -1 2 9 1

* make singularities manifest

* asymptotic behavior governed by matrices a, b
e Solution: expand to any order in €
]?: P Z ekf_(k‘)

k>0
£lk)

is k-fold iterated integral (uniform weight k)



Technique applies to QCD integrals

e system of DE for N=4" integral contains QCD integrals

flae) = f) _ i/j 2

flz,e) = <>
, b ,
0, flw,€) = e |~ - | fla,o




Multi-variable case and the alphabet

e Natural generalization to multi-variable case

df(Fe) = ed | Y Aploga()| f(Z;e)

constant matrices letters (alphabet)

e Examples of alphabets:

4-point on-shell a={xr,1+x}
two-variable example (from a={z,1+z,y,1+ty,2+vy,1+zy}
| -loop Bhabha scattering): 0M.H. Smirnov]
"“hexagon functions'" in a=1z,9,%,1-z,1-y,1-%
N=4 SYM 1 —zy,1 —x2,1—yz,1—2yz}
[Goncharoyv, Spradlin,Vergu,Volovich] [Caron-Huot, He]
[Dixon, Drummond, |.M.H.] [Dixon et al.]

e Matrices and letters determine solution

* Immediate to solve in terms of iterated integrals




Physics applications of new ideas for DE

JMH, 2013]
* vector boson production

VV’ planar and non-planar NNLO integrals
[Caola, JMH, Melnikov, Smirnov, Smirnov, 2014]

equal mass case: [Gehrmann, von Manteuffel, Tancredi,Weihs, 2014]

essential ingredient for ZZ and W+W- production at NNLO
[Cascioli et al, 2014] [Gehrmann et al, 2014]
* 3-loop QCD cusp anomalous dimension (determines IR
structure of planar QCD scattering amplitudes)
[Grozin, JMH, Korchemsky, Marquard, 201 4]

B Ph)’SiCS [Bell, Huber, 2014] [Huber, Kraenkl, 2015]

* integrals for H production in gluon fusion at N3LO
[Dulat, Mistlberger, 2014] [Hoeschele,Hoff,Ueda, 201 4]
physics result: [Anastasiou et al,2014]



Beyond iterated integrals

* Note: functions beyond iterated integrals can appear in
Feynman integrals

* One such class are elliptic functions, needed e.g. in top quark
Ph)’SiCS [Czakon and Mitov, 2010]

* A generalization of the above methods is required here

For more information, cf. recent lecture notes:
JMH, arXiv:1412.2296 [hep-ph]


http://arxiv.org/abs/arXiv:1412.2296

New results for penta-box

integrals and five-particle
amplitudes at NNLO

[Gehrmann, JMH, Lo Presti]

[related work with Frellesvig on one-loop pentagon integrals]



five-point kinematics

* massless 5->0 process

sij = (pi +pj)° / Y

/N,

D5

* independent variables 7 = {s12, 523, S34,

* convenient to start with non-physical region
where all planar integrals are real-valued

e other kinematic regions can be reached by
analytic continuation

S45 851}

Siit1 <0



differential equations for penta-box integrals

* 6| planar master integrals

-

df(ZFe) = ed | Y Aplogay()| f(Z;e)
|k _

* integral basis chosen following [MH,2013]
¥ = {512,523,534, 545, 551}
e alphabet of 24 letters (%) e.g.

512 512 — S34
S12 + S23 S$12 — S34 1+ S51

9 9
(S23 — S51) VA + $19553 — S34553 + S34545523 — 2512551523

2 2
1534551523 + S45551523 + S12S551 — S45S551 1T S34545S551

Gram determinant A



boundary conditions (1)

* the boundary conditions can be obtained from physical
conditions

* no singularities in non-physical region s; ;11 <0
* this means that certain singularities are spurious (on the
first sheet of the multivalued functions), e.g. at

512 = 534
S12 + S51 = S34

* similarly, no branch cuts should startat A = 0

* these conditions fix everything except trivial single-scale
integrals that are evaluated in terms of gamma functions



boundary conditions (2)

* boundary values at symmetric point
X

512 = 1—z)2’

S23 — —1, S34 — —1, S45 — —1, S51 — —1

* reduced alphabet (no square root)

1
{a:—l—l,.:z:,x—5,:17—1,x—2,1—3x+a¢2,1—x—|—:€2}




analytic solution

* we have
Af(7,6) =edAflFe) A=Y (@
* solution in terms of iterated integrals % [cf. Panzer's overview lecture]
f(:z_:", e) = Pexp e/ dA f(fo,e)
Y

v : 0, 1-] — /\/l
v(0) =2 (1) =2

* can be written in terms of Goncharov polylogarithms
(for a convenient choice of 7 )

* Note: knows about all 'symbol " simplifications, but has
exact information about boundary values



application to five-particle amplitudes

* five-particle scattering amplitudes were conjectured to
have the following form (in modern language) [Bern Dixon, Smirnov, 2003]

(L) g(L> 3 2\ Le
loo M- — L Y 0 f(L) H
0g Mz =) o S(Lo?  aLe 2

S. .
L>1 i=1 \Zurtl

| W(Z) FT(Ll)(Sz’j) + C(a) + O(e)

* This is in part due to the infrared structure of amplitudes

* The BDS conjecture fixes the finite part; it is now

understood to follow from dual conformal symmetry
[Drummond, JMH, Korchemsky, Sokatchey, 2008]

* previously, this formula had been tested numerically

[Cachazo, Spradlin,Volovich, 2006] (parity-even part)
[Bern, Czakon, Kosower, Roiban, Smirnov, 2006]



application to five-particle amplitudes

(L) (L) 1 5 2\ Le
g Go 3 1

log M5 = a” - (L)

08 5 Z@ 8(Le)2  4Le / Z( )

S. .
L>1 i=1 \“bLrtl

| /Y(f) EY(s45) + C(a) + Ofe)

* all ingredients now known analytically
* we verified the parity-even part of it using our analytic results

M = N7 [ (foo + foa + fo2)]
cyclic
s0 = —3C]
(1) = 2C[5] + C[7] + C[8] + C[10] + C[11] + 3C[12] — 4C[14] — 3C[16] + 2C[21]

* reproduces everything, including constants



Summary

* unitarity-based methods for determining integrands
complemented with a new method for evaluating the integrals

* both rely on analyzing the integrand’s singularity structure

* DE method particularly useful for problems with many scales

* new result: all planar on-shell five-particle two-loop integrals

Outlook

* opens the door for applications to 2->3 amplitudes

* can be used to compute QCD +++++ amplitude

. [Badger, Frellesvig, Zhang, 201 3]
* non-planar integrals

e extension to Higgs plus jet integrals
g8S PIus | g



Thank you!



Extra slides



Algebraic approach to differential
equations

* The leading singularities approach allows to find a canonical form
of the differential equations in an efficient way

* The exist also approaches (mostly) ignoring the Feynman integral
origin, and working directly at the level of the DE

e Differential equations for Feynman integrals only have regular
singularities (Fuchsian differential equations)

* Algorithms exist to make this manifest [Moser, 1960; Barkatou]
e Recently proposed to apply this to obtain canonical form [JMH,2014]

* Implementation (with improvements) [Lee,2014]



The alphabet and perfect bricks (1)

Can we parametrize variables such that alphabet is rational?
Not essential, but nice feature.

e Example: Higgs production

encounter /1 — 4m2/s
—m?/s =z/(1 — z)°
a={zr,1—x,1+z} (totwo loops)

choose

Higgs production

~ Hig

Note: this is a purely kinematical question. Independent of basis choice.

* Related to diophantine equations
e.g. find rational solutions to equations such as

1+4a=0b

here we found a |-parameter solution

X

a —=

(1—x)°

1
p— 1%
1l —x




The alphabet and perfect bricks (2)

e Classic example: Euler brick problem .
b
Find a brick with sides @, b C a’ + b% =d? :
and diagonals d e |nte ers
g , | integ 21 =e?
smallest solution (P. Halcke): b2 2 —f2 c
(a,b,c)=(44,117,240) B

Perfect cuboid (add eq. @2 4 b2 4 2 = 92 ): open problem in mathematics!

* Similar equations for particle kinematics [Caron-Huot JMH, 2014]
e.g encountered in 4-d light-by-light scattering

U = —4m2/8 U = —4m2/t az]"“_a[
— \/1 -+ U, 5?} — \/1 + U, Buv — \/1 + U+ v I—“IJ

Need two-parameter solution to

Bu+ By = Buy +1

1 —wz w+ z 1 +wz
e.g. B

, Bo = , Buv =
more roots in D-dim and at 3 loops! - in general alphabet changes with the loop order!

w — w —z

Find such solutions systematically?! Minimal polynomial order?



Feynman integrals as iterated integrals (1)

* Logarithm and dilogarithm are first examples of iterated integrals
with special 'd-log " integration kernels

dt —dt dt
" dlogt T dlog(1 —t) T+ dlog(1l +t)

e these are called harmonic polylogarithms (HPL)  [Remiddi,Vermaseren]

T odx 1 dx
eg Hy, _1(z) = / = 1 / 1 2
0 X1 Jo + o

* shuffle product algebra

e coproduct structure

 Mathematica implementation [Maitre]

e weight: number of integrations

e special values related to multiple zeta values (MZV)

1 .
E — , cf. e.g. [Bluemlein, Broadhurst,
ai'ay ...a;" Vermaseren]

C’il,ig ..... 1L —
ai1>as>...ap>1

e.g. H(),l(l) — L12(1) — CQ



Feynman integrals as iterated integrals (2)

* Natural generalization: multiple polylogarithms 56 called hyperiogarithms;

h lyl ith
allow kernels w = dlog(t — a) Goncharov polylogarithms]

Gal,...an(z):/ at Gag,...,an(t)
0

t—a1

numerical evaluation: GINAC [Vollinga, Weinzierl]

e Chen iterated integrals

/ Wiz .. .Wn C: [O, 1] —— M (space of kinematical variables)
C

Alphabet: set of differential forms w; = dlog «;

integrals we discuss will be monodromy invariant on M \ S
S (set of singularities)

more flexible than multiple polylogarithms!

e Uniform weight functions (pure functions):

@Q -linear combinations of functions of the same weight



