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Try this ONE WEIRD TRICK

to CALCULATE FOUR-LOOP
SCATTERING

AMPLITUDES*

*In planar N=4 super Yang-Mills, for six points




N=4 super Yang-Mills

@ We are looking at N = 4 super Yang-Mills in the planar limit, in

4 — 2¢ dimensions
e Maximally Helicity-Violating (MHV) component simplest

(= — 4+ + ++), Next-to-MHV (NMHV) is what this talk will explore.
@ Conformal symmetry enhanced by dual conformal symmetry: A/ = 4

amplitudes can be interpreted as polygonal Wilson loops with corners
defined in terms of the amplitude momenta, k; = x; — xjy1.

@ This led to understanding of IR divergences via BDS ansatz [Bern,
Dixon, Smirnov '05].

@ Dividing NMHV by MHYV leads to IR-finite Ratio Function, with
transcendental weight two times the loop order
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Transcendental Functions
Transcendental Functions

@ Transcendental functions have fixed transcendental weight:
7Tn7 Cnu |0gn z, Lin(Z), etc.

@ Classical Polylogarithms:

z t1 th—1 tp
Lin(z) = / dint; dinty.. / dlIn l’n—1/ din(1 — t,)
0 0 0 0

@ Transcendental functions fall into a more general class, with integrals
over some set of rational functions:

/Ozdlnm(n)/otldln@(rz).../ot"dlwn(rn)

Here n is the transcendental weight, while the ¢, are the letters of
the symbol

o Final entry of the symbol corresponds to outermost integration =
First derivative
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(RECINETIGHNE  Space of Functions

Hexagon Functions

@ Want to bootstrap things up through four loops, for six-particle
amplitudes

@ To do this, need functions germane to six-point dual conformally
invariant processes: Hexagon Functions [Dixon, Drummond, MvH,
Pennington 1308.2276]

@ These functions depend on three dual conformally invariant cross
ratios: u, v, w, or alternatively parity-odd variables y,, ., yw.
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(RECINETIGHNE  Space of Functions

Construction

We construct functions with:

e Symbol entries from S, = {v,v,w,1 —u,1 —v,1 — w,yu, ¥v, Yw}
o Physical branch cuts: first entry must be u, v, or w
From there, bootstrap!

@ Derivatives of hexagon functions composed of hexagon functions of
lower weight

@ Fix transcendental constants with branch cuts

End up with basis of a few hundred irreducible functions.
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Computing The Ratio Function
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Computing The Ratio Function

Tree Level Ratio Function

@ Out of momentum twistor four-brackets (abcd) = eRSTUZfZ,fZCTZf/,

build the six superconformal R-invariants:

5*(xa(bcde) + cyclic)
(abcd)(bcde) (cdea) (deab) (eabc)

(f) = [abcde] =

@ The tree-level ratio function then is:

Py = (6) + (4) + (2) = (1) + (3) + (5)
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Computing The Ratio Function

Loop Level

@ At loop level, R-invariants are dressed with permutations of two
transcendental functions: an even parity function V, and and odd
parity function V

1

Pawiev= 5| [(1) + (4)1V (v, w) +[(1) ~ ()] V(v w)
+[2) + GV (v, w.u) ~ [(2) = (5] V(v w.u)
+[3) + ONV(w. 1. v) +[(3) = (6] V(w. u.v)]
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Computing The Ratio Function

Constraints

Lance Dixon and | tackled the ratio function at three loops [1408.1505],
and with Andrew McLeod at four loops [to appear]. We began with a
general ansatz of Hexagon Functions, then applied constraints:

@ Symmetry:
V(w,v,u) = V(u,v,w) and V(w,v,u)=—V(u,v,w)

o “Gauge Freedom”: Add a cyclically symmetric function to V

> [10) — @1, v, w) — [2) — (v w) + [(3) — (6)]F(w. v, w)]

= )+ (3 + ) - [2)+ (@) + ()] F(w.v.w) = 0
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Computing The Ratio Function

Constraints, Continued

e Final Entry Constraint: Q equation requires that R-invariant (1) can
only multiply a function with final entries from

{ u v w uw}
1_u)1_v71_w7yU7yV7yW7 V M

while the other R-invariants multiply appropriate cyclic permutations
[Caron-Huot, He '11].
» We found for loops 1-3 this is even more constrained, used for new
final entry condition

u w uw
1_ua1_W7yun7yV7 v .

@ Spurious Pole Constraints: Unphysical poles should cancel.
R-invariants (1) and (3) contain poles as (2456) — 0, so we must
have that

[V(u,v,w) = V(w,u,v) + V(yu yv, yw) — V(Yw#u>)’v)]<2456>:o =0
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Computing The Ratio Function

Near-Collinear Expansion

@ The ratio function vanishes in the collinear

limit.

@ Basso, Sever, and Vieira calculate Wilson
loops in N = 4 sYM for finite coupling
using integrability, expanding in GKP string

states propagating across.

» This corresponds to expansion around the

collinear limit.

» We use first-order data as constraints,

second order as a check.
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Computing The Ratio Function

Constraints in Action

Constraint L=1 L=2 L=3 L=4

even even odd even odd even odd
Integrable functions 10 82 6 639 122 5153 1763
(Anti)symmetry 7 50 2 363 39+10 2797 5834203
Final-entry conditions 3 14 1 78 2143 487 321464
Collinear vanishing 0 2 1 28 21+3 284 321464
Spurious Pole 0 1 443 180 + 64
Near-Collinear OPE 0 0 043 0+ 64
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The Final Form

© The Final Form
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The Function

@ Can “show the function”, but it's long, not illuminating, relies on
defining lots of lower-weight functions.

@ Better to look at plots.
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The Final Form

Planes in v

VO (u,v,w)

Figure: V) (u, v, w) evaluated on
successive planes in v.
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Figure: VO)(u, v, w)/ V@ (u, v, w)

evaluated on successive planes in v.
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Lines through the space

V(u1,1)
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Figure: V®(u,1,1), VO (u,1,1), Figure: V®(u,1,1), VO (u,1,1) and
V@ (u,1,1), and V(u,1,1) V@) (u,1,1) normalized so they have a
normalized to one at (1,1,1). One loop In”u term in the v — 0 limit with
is in red, two loops is in green, three coefficient one. Two loops is in green,
loops is in yellow, and four loops is in three loops is in yellow, and four loops is
blue. in blue.
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Conclusions

Conclusions and Open Questions

@ We have bootstrapped up amplitudes at 6 points through 4 loops for
both MHV and NMHV, with no need to know the integrands
beforehand.

@ Recently, Drummond, Papathanasiou, and Spradlin have found 3 loop
7 point MHV symbol in arXiv:1412.3763 [hep-th], more 7 point work
ahead, potential to go beyond 77

@ BSV’s calculation of the OPE provides an enormous amount of data.
Even at first order, terms “want to be re-summed”. Better
understanding of this might lead to all-loop, all-kinematics picture.
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