Multiple polylogarithms and Feynman integrals

Erik Panzer Institute des Hautes Études Scientifiques

Amplitudes 2015
July 7th
ETH/University of Zürich

Topics

- hyperlogarithms & iterated integrals
- multiple polylogarithms
- functional equations, symbols
- parameter integrals
- other stuff
- o coaction (Brown, Goncharov)

Some FI/amplitudes are expressible via multiple polylogarithms (MPL)

$$\mathsf{Li}_{n_1,\dots,n_d}(z_1,\dots,z_d) = \sum_{0 < k_1 < \dots < k_d} \frac{z_1^{k_1} \cdots z_d^{k_d}}{k_1^{n_1} \cdots k_d^{n_d}}, \quad |z_i \cdots z_d| < 1$$

and their special values, e.g. multiple zeta values (MZV)

$$\zeta_{n_1,\ldots,n_d}=\mathsf{Li}_{n_1,\ldots,n_d}(1,\ldots,1).$$

Example
$$(p_1^2 = 1, p_2^2 = |z|^2, p_3^2 = |1 - z|^2)$$

$$\Phi \left(- \frac{4i \operatorname{Im} \left[\operatorname{Li}_2(z) + \log(1 - z) \log |z| \right]}{z - \overline{z}} \right)$$

$$\Phi \left(- \frac{25056}{875} \zeta_2^4 \right)$$

"expressible" means each term of the ε -expansion is a rational/algebraic linear combination of MPL whose arguments are rational/algebraic functions

iterated integrals (Chen 1973)

Take a manifold X and differential forms $\omega_1, \ldots, \omega_n \in \Omega^1(X)$. Integrating these along a path $\gamma \in C^1([0,1],X)$, we can construct functions (on γ):

$$\int_{\gamma} \omega_{\mathsf{n}} \cdots \omega_1 := \int_0^1 \gamma^*(\omega_{\mathsf{n}})(t_{\mathsf{n}}) \int_0^{t_{\mathsf{n}}} \cdots \int_0^{t_2} \gamma^*(\omega_1)(t_1)$$

- **1** If $\omega = \mathrm{d} f$ is exact, $\int_{\gamma} \omega = f(\gamma(1)) f(\gamma(0))$ is boring.
- Not all iterated integrals are homotopy invariant.

Example

Take $\omega = y \mathrm{d} x \in \Omega^1(\mathbb{R}^2)$, then $\int_{\gamma} \omega$ is the area between γ and the x-axis.

⇒ integrability condition (Chen), simplest case:

$$\int_{\gamma}\omega$$
 homotopy invariant $\Leftrightarrow \mathrm{d}\omega=0$

Hyperlogarithms (Poincaré 1884, Lappo-Danilevsky 1927)

Let $X = \mathbb{C} \setminus \Sigma$ for a finite set of points Σ . The regular, non-exact forms

$$\omega_{\sigma} = d \log(z - \sigma) = \frac{dz}{z - \sigma}$$

generate homotopy invariant iterated integrals, called hyperlogarithms.

Examples

$$\int_{\gamma} \omega_0 = \log \frac{\gamma(1)}{\gamma(0)}, \qquad \int_0^z \omega_1 = -\operatorname{Li}_1(z), \qquad \int_0^z \omega_0 \omega_1 = -\operatorname{Li}_2(z)$$

All MPL can be written this way:

$$\int_0^z \omega_0^{n_d-1} \omega_{\sigma_d} \cdots \omega_0^{n_1-1} \omega_{\sigma_1} = (-1)^d \operatorname{Li}_{n_1, \dots, n_d} \left(\frac{\sigma_2}{\sigma_1}, \cdots, \frac{\sigma_d}{\sigma_{d-1}}, \frac{z}{\sigma_d} \right)$$

Notation and some special cases:

- $\int_0^z \omega_{\sigma_n} \cdots \omega_{\sigma_1} = I(0; \sigma_1, \dots, \sigma_n; z) = G(\sigma_n, \dots, \sigma_1; z)$ [Goncharov]
- ullet $\Sigma = \{-1,0,1\}$ harmonic polylogarithms (HPL) [Remiddi & Vermaseren]
- $\Sigma = \{0, 1, 1-y, -y\}$ 2 dimensional HPL [Gehrmann & Remiddi]

Path concatenation

Let $\gamma \star \eta$ denote the concatenation of γ and η at $\gamma(1) = \eta(0) = (\gamma \star \eta)(\frac{1}{2})$:

To decompose

$$\int_{\gamma \star \eta} \omega_2 \omega_1 = \int_{\gamma} \omega_2 \omega_1 + \int_{\eta} \omega_2 \int_{\gamma} \omega_1 + \int_{\eta} \omega_2 \omega_1,$$

split the interval

$$\underbrace{\{t_1 \leq t_2\}}_{\int_{\gamma \star \eta} \omega_2 \omega_1} = \underbrace{\{t_1 \leq t_2 \leq \frac{1}{2}\}}_{\int_{\gamma} \omega_2 \omega_1} \cup \underbrace{\{t_1 \leq \frac{1}{2} \leq t_2\}}_{\int_{\eta} \omega_2 \int_{\gamma} \omega_1} \cup \underbrace{\{\frac{1}{2} \leq t_1 \leq t_2\}}_{\int_{\eta} \omega_2 \omega_1}$$

More generally, the path concatenation formula reads

$$\int_{\gamma \star \eta} \omega_n \cdots \omega_1 = \sum_{k=0}^n \int_{\eta} \omega_n \cdots \omega_{k+1} \int_{\gamma} \omega_k \cdots \omega_1.$$

Path concatenation

 $G(\vec{\sigma}; z)$ is analytic in $z = \gamma(1)$ on $\mathbb{C} \setminus \Sigma$, but multivalued.

Remember

Even though γ is suppressed in the notation $G(\vec{\sigma}; z)$ and $\int_0^z w$, these functions still depend on the homotopy class of γ .

If η is a closed loop with $\eta(0)=\eta(1)=0$, analytic continuation \mathcal{M}_η gives

$$\mathcal{M}_{\eta} \int_{0}^{z} \omega_{n} \cdots \omega_{1} = \sum_{k=0}^{n} \int_{0}^{z} \omega_{n} \cdots \omega_{k+1} \int_{\eta} \omega_{k} \cdots \omega_{1}.$$

Note: This only adds lower weight functions (corresponding to prefixes).

Similar: change of basepoint

$$\int_{b}^{z} \omega_{n} \cdots \omega_{1} = \sum_{k=0}^{n} \int_{0}^{z} \omega_{n} \cdots \omega_{k+1} \int_{b}^{0} \omega_{k} \cdots \omega_{1}$$

Shuffle product

The shuffle product of two words

$$w_{n+m}\cdots w_{n+1} \sqcup w_n\cdots w_1 = \sum_{\sigma} w_{\sigma(n+m)}\cdots w_{\sigma(1)}$$

is the sum of all their shuffles σ , i.e. permutations which preserve the relative order of letters in both factors:

$$\sigma^{-1}(1) < \dots < \sigma^{-1}(n)$$
 and $\sigma^{-1}(n+1) < \dots < \sigma^{-1}(n+m)$.

For arbitrary words u and v, we find that $(\int_{\gamma}$ is linearly extended)

$$\left(\int_{\gamma} u\right) \cdot \left(\int_{\gamma} v\right) = \int_{\gamma} (u \sqcup v).$$

Example

$$\int_{\gamma} \omega_{3} \cdot \int_{\gamma} \omega_{2} \omega_{1} = \int_{\gamma} (\omega_{3} \omega_{2} \omega_{1} + \omega_{2} \omega_{3} \omega_{1} + \omega_{2} \omega_{1} \omega_{3})$$
$$\{t_{3}\} \times \{t_{1} \leq t_{2}\} = \{t_{1} \leq t_{2} \leq t_{3}\} \cup \{t_{1} \leq t_{3} \leq t_{2}\} \cup \{t_{3} \leq t_{1} \leq t_{2}\}$$

Singularities

Singularities when $\{\gamma(0), \gamma(1)\} \ni z \to \tau \in \{\infty\} \cup \Sigma$ are logarithmic: There exist (uniquely determined) functions $f_{k,w}(z)$, analytic at $z = \tau$, such that

$$\int_{\gamma} w = \sum_{k} \log^{k}(z - \tau) f_{k,w}(z).$$

Definition (logarithmic regularization)

The regularized limit is $\operatorname{Reg}_{z\to\tau}\int_{\gamma}w:=f_{0,w}(\tau)$.

Example

$$\int_{\gamma} \omega_0 = \log \frac{z}{\gamma(0)} \qquad G(0; z) = \int_0^z \omega_0 := \underset{\gamma(0) \to 0}{\operatorname{Reg}} \int_{\gamma} \omega_0 = \log(z)$$

These expansions and limits can be computed algorithmically using shuffles and rescalings like $G(\lambda \vec{\sigma}, \lambda z) = G(\vec{\sigma}; z)$ ($\sigma_1 \neq 0$).

Differentials

By definition, $\partial_z G(\sigma_n, \vec{\sigma}; z) = \frac{1}{z - \sigma_n} G(\vec{\sigma}, z)$. But now consider the σ as variables themselves. Differentiating under the integral sign in

$$G(\sigma_n,\ldots,\sigma_1;z)=\int_0^z\frac{\mathrm{d}\,t_n}{t_n-\sigma_n}\int_0^{t_n}\frac{\mathrm{d}\,t_{n-1}}{t_{n-1}-\sigma_{n-1}}\cdots\int_0^{t_2}\frac{\mathrm{d}\,t_1}{t_1-\sigma_1}$$

one finds

$$dG(\vec{\sigma};z) = \sum_{i=1}^{n} G(\cdots, \phi_i, \cdots; z) d\log \frac{\sigma_i - \sigma_{i-1}}{\sigma_i - \sigma_{i+1}} \qquad \sigma_0 := z, \sigma_{n+1} := 0$$

Equivalently, in the sum representation of MPL we see

$$\mathrm{d}\,\mathsf{Li}_{\vec{n}}(\vec{z}) = \sum_{k} \mathsf{Li}_{\vec{n} - \vec{e}_i}(\vec{z}) \frac{\mathrm{d}z_k}{z_k}$$

and can replace any occurring zeros (resulting from $n_k=1$ say) by

$$\operatorname{Li}_{\vec{n}'}(\ldots, z_k z_{k-1}, \ldots) \frac{\mathrm{d} z_k}{1 - z_k} - \operatorname{Li}_{\vec{n}'}(\ldots, z_k z_{k+1}, \ldots) \frac{\mathrm{d} z_k}{z_k (1 - z_k)}.$$

Functional equations

Remember

Proving functional relations between MPL is easy - just differentiate!

Question

Can we write $Li_2(1-x)$ as a hyperlogarithm with argument x?

Take a derivative:

$$\partial_x \operatorname{Li}_2(1-x) = \frac{1}{x-1} \operatorname{Li}_1(1-x)$$

② Express all MPL in the integrand as hyperlogs (recursion):

$$Li_1(1-x) = -\log(x) = -G(0;x)$$

integrate back:

$$Li_2(1-x) = C - G(1,0;x) = C - \log(1-x)\log(x) - Li_2(x)$$

• Fix constant $C = \frac{\pi^2}{6} = \zeta_2$ via some limit, for example $x \to 1$

Products of hyperlogarithms basis

The representation in terms of hyperlogarithms is free of relations:

Lemma

All hyperlogarithms $G(\vec{\sigma}; z)$ are linearly independent functions of z (even with algebraic coefficients).

The recursive algorithm (differentiation & integration & limits) solves

Problem

Given some MPL $G(\vec{\sigma}(\vec{x}), z(\vec{x}))$ or $\text{Li}_{\vec{n}}(\vec{z}(\vec{x}))$ whose arguments $(\vec{\sigma}, z \text{ or } \vec{z})$ are rational functions of variables x_1, \ldots, x_n , write it in the basis

$$\sum_{\vec{\sigma}_1,\ldots,\vec{\sigma}_n} G(\vec{\sigma}_1(x_2,\ldots,x_n);x_1) G(\vec{\sigma}_2(x_3,\ldots,x_n);x_2) \cdots G(\vec{\sigma}_n;x_n).$$

- completely algebraic (no numerics), programmed (HyperInt)
- in general not the shortest or "simplest" representation
- dependence on order of the variables x_1, \ldots, x_n

Higher dimensions: multiple polylogarithms

Idea: treat all variables equally; via higher dimensional iterated integrals

Example

$$\begin{aligned} \operatorname{d} \operatorname{Li}_{1,1}(z_1, z_2) &= \frac{\operatorname{d} z_1}{1 - z_1} \operatorname{Li}_1(z_2) - \frac{\operatorname{d} z_1}{z_1(1 - z_1)} \operatorname{Li}_1(z_1 z_2) + \frac{\operatorname{d} z_2}{1 - z_2} \operatorname{Li}_1(z_1 z_2) \\ &= \frac{\operatorname{d} z_1}{1 - z_1} \int_0^{z_2} \frac{\operatorname{d} z_2}{1 - z_2} - \left(\frac{\operatorname{d} z_2}{1 - z_2} - \frac{\operatorname{d} z_1}{z_1} - \frac{\operatorname{d} z_1}{1 - z_1} \right) \int_0^{(z_1, z_2)} \operatorname{d} \log(1 - z_1 z_2) \\ &= \int_{(0,0)}^{(z_1, z_2)} \left[\frac{\operatorname{d} z_1}{1 - z_1} \frac{\operatorname{d} z_2}{1 - z_2} + \left(\frac{\operatorname{d} z_1}{z_1} + \frac{\operatorname{d} z_1}{1 - z_1} - \frac{\operatorname{d} z_2}{1 - z_2} \right) \frac{z_1 \operatorname{d} z_2 + z_2 \operatorname{d} z_1}{1 - z_1 z_2} \right] \end{aligned}$$

Corollary (MPL as iterated integrals)

Every $\operatorname{Li}_{\vec{n}}(\vec{z})$ of d arguments is an iterated integral on $\mathbb{C}^d \setminus \mathbf{V}\left(S_d^{MPL}\right)$ for the singularities (alphabet)

$$S_d^{MPL} = \{z_1, \dots, z_d\} \cup \{1 - z_i \cdots z_j : 1 \le i \le j \le d\}$$

[Brown & Bogner]

Higher dimensions & simplification

Every subset $S \subset \mathbb{Q}[z_1,\dots,z_d]$ of polynomials determines a manifold

$$X = \mathbb{C}^d \setminus \mathbf{V}(S) = \mathbb{C}^d \setminus \bigcup_{f \in S} \{f = 0\}$$

which defines a space of iterated integrals. We consider homotopy invariant (Chen condition on w!) integrals $\int_{\gamma} w$ of forms $d \log(f)$, $f \in S$.

Theorem (Kummer 1840)

Every iterated integral of at most three rational forms can be expressed as a sum of products of \log , Li_2 and Li_3 .

Conjecture (Duhr, Gangl & Rhodes)

To express every MPL up to weight 4, it suffices to add the functions Li_4 , $Li_{2,2}$. At weight 5 it suffices to add Li_5 and $Li_{2,3}$.

Method: basis Ansatz, fit coefficients via symbol (differentiation) or motivic coaction

Basepoints

Remember

The symbol w determines the function $\int_b^z w$ completely if one fixes a choice b for the basepoint.

- when b is forgotten, then the symbol w only captures the highest weight
- with b fixed, $w \mapsto \int_b^z w$ is injective
- the motivic coaction is not necessary
- different basepoints can make expressions simpler
- physics can sometimes hint a good basepoint

Programs

Symbol techniques are standard now, many people have programs which can do at least some of the work in an automatized way. Ask around; public: HyperInt, ...?...yours here!

Motivic coaction

Idea: abstract from the integral/function and define algebraic objects (motivic periods) which have more structure. The construction is complicated. [Brown, Dupont, Goncharov,...]

Hint

In recent lectures at the IHES (available online), Brown constructed motivic Feynman periods in very general cases. Thus, a coaction is defined under very mild assumptions (in particular not restricted to polylogarithmic integrals).

Upshot: There exist algebraically/geometrically defined objects $I_G^{\mathfrak{m}}(\vec{s})$ for a wide class of Feynman graphs G and kinematics \vec{s} . These are elements of some algebra $\mathcal{H}^{\mathfrak{m}}$ with a period map

$$\mathsf{per} \colon \mathcal{H}^{\mathfrak{m}} \longrightarrow \mathbb{C}$$

sending $I_G^{\mathfrak{m}}(\vec{s})$ to the actual Feynman integral (number) $I_G(\vec{s})$.

However, there is more structure: A coaction

$$\Delta \colon \mathcal{H}^{\mathfrak{m}} \longrightarrow \mathcal{H}^{\mathfrak{dr}} \otimes \mathcal{H}^{\mathfrak{m}}$$

which is very powerful to obtain relations, in particular for multiple polylogarithms (where differentiation does not buy us anything!).

Example

$$\Delta\zeta_{2,3}^{\mathfrak{m}} = 1 \otimes \zeta_{2,3}^{\mathfrak{m}} + \zeta_{2,3}^{\mathfrak{dr}} \otimes 1 + 2\zeta_{3}^{\mathfrak{dr}} \otimes \zeta_{2}^{\mathfrak{m}} + \zeta_{2}^{\mathfrak{dr}} \otimes \zeta_{3}^{\mathfrak{m}}$$

Note $\zeta_2^{\mathfrak{dr}}=0$ and that $\{\zeta_5^{\mathfrak{m}},\zeta_2^{\mathfrak{m}}\zeta_3^{\mathfrak{m}}\}$ is a basis of motivic MZV in weight 5, therefore we conclude $\zeta_{2,3}^{\mathfrak{m}}=2\zeta_2^{\mathfrak{m}}\zeta_3^{\mathfrak{m}}+c\zeta_5^{\mathfrak{m}}$, with c undetermined.

An explicit formula for the coproduct/coaction for MPL is due to Goncharov/Brown.

Caution

If people speak about a coproduct $\Delta \longrightarrow \mathcal{H}^{\mathfrak{dr}} \otimes \mathcal{H}^{\mathfrak{dr}}$, they necessarily work with de Rham periods, which have no associated real period ($\zeta_2^{\mathfrak{dr}} = 0$). For multiple polylogarithms, this means that multiples of $i\pi$ are dropped.

Motivic coaction

Caution

The similarity of both sides, $\mathcal{H}^{\mathfrak{dr}}$ and $\mathcal{H}^{\mathfrak{m}}$ in the case of MPL is rather misleading. In fact, by construction both sides are very different.

In the case of Feynman integrals, the \mathfrak{m} -side corresponds to Feynman integrals again, whereas the \mathfrak{dr} -side, at least empirically, relates to cuts of integrals, i.e. residues. [talk by Abreu]

Further points

- elliptic MZV and integrals [talk by Bogner, Schlotterer]
- numeric evaluation of MPL, e.g. Ginac, but also optimizations [Manteuffel, Tancredi]
- algebraic functions in the forms (root-valued letters)
- single-valued MPL
- cluster polylogarithms
- special values (number theory): relations between MZV, MPL at roots of unity,...
- ...

Feynman integrals \longrightarrow polylogarithms

differential equations in normal form [talk by Henn,von Manteuffel]

$$d\vec{f}(\varepsilon, \vec{x}) = \varepsilon \left(\sum_{s \in S} d \log(s) \mathbf{A}_s \right) \vec{f}(\varepsilon, \vec{x})$$

- summation: extremely powerful computer algebra tools for sums [Ablinger, Raab, Schneider, Weinzierl...]
- bootstrap, Ansätze, recursions [talk by Drummond, von Hippel]
- integration of parameter integrals
- **⑤** ...

Definite parameter integrals

They are everywhere [talk by Borowka]:

• hypergeometric functions ${}_{p}F_{q}(\cdots;z)$

$$_{2}F_{1}\left(egin{array}{c} a,b \\ c \end{array} \middle| z
ight) = rac{\Gamma(c)}{\Gamma(b)\Gamma(c-b)} \int_{0}^{1} t^{b-1} (1-t)^{c-b-1} (1-zt)^{-a} \mathrm{d}t$$

• Appell's functions F_1 , F_2 , F_3 , F_4

$$F_{3}\begin{pmatrix} \alpha, \alpha' \\ \beta, \beta' \end{vmatrix} \gamma | x | y \end{pmatrix} = \frac{\Gamma(\gamma)}{\Gamma(\beta)\Gamma(\beta')\Gamma(\gamma - \beta - \beta')} \times \int_{0}^{1} \int_{0}^{1-\nu} u^{\beta-1} v^{\beta'-1} (1-u-v)^{\gamma-\beta-\beta'-1} (1-ux)^{-\alpha} (1-\nu y)^{-\alpha'} du dv$$

- Feynman integrals in Schwinger parameters
- Phase-space integrals [talk by Dulat]
- . . .

Idea: If the representation is simple enough (linearly reducible), there is an order of integration for the parameters such that each intermediate partial integral is a MPL of rational arguments.

Schwinger parameters

With the superficial degree of divergence $sdd = |E(G)| - D/2 \cdot loops(G)$,

$$\Phi(\textit{G}) = \frac{\Gamma(\text{sdd})}{\prod_{e} \Gamma(\textit{a}_{e})} \int_{(0,\infty)^{\textit{E}}} \frac{1}{\psi^{\textit{D}/2}} \left(\frac{\psi}{\varphi}\right)^{\text{sdd}} \delta(1-\alpha_{\textit{N}}) \prod_{e} \alpha_{e}^{\textit{a}_{e}-1} d\alpha_{e}$$

Graph polynomials:

$$\mathcal{U} = \sum_{\textit{T}} \prod_{e \notin \textit{T}} \alpha_{e} \qquad \qquad \mathcal{F} = \sum_{\textit{F} = \textit{T}_{1} \cup \textit{T}_{2}} \textit{q}^{2} \left(\textit{T}_{1} \right) \prod_{e \notin \textit{F}} \alpha_{e} + \mathcal{U} \sum_{e} \textit{m}_{e}^{2} \alpha_{e}$$

Example: massless triangle

$$\Phi\left(\begin{array}{c} d\alpha_2 d\alpha_3 \\ \hline (1+\alpha_2+\alpha_3)(\alpha_2\alpha_3+z\overline{z}\alpha_3+(1-z)(1-\overline{z})\alpha_2) \\ = \frac{1}{z-\overline{z}} \int \left(\frac{d\alpha_2}{\alpha_2+\overline{z}}-\frac{d\alpha_2}{\alpha_2+z}\right) \log \frac{(\alpha_2+1)(\alpha_2+z\overline{z})}{(1-z)(1-\overline{z})\alpha_2} \\ \end{array}$$

Singularities of the original integrand: $S = \{\psi, \varphi\}$, i.e. at $\alpha_3 = \sigma_i$ for

$$\sigma_1 = -1 - \alpha_2$$
 and $\sigma_2 = -\frac{\alpha_2(1-z)(1-\overline{z})}{\alpha_2 + z\overline{z}}$

After integrating α_1 from 0 to ∞ , the integrand has singularities

$$S_{3} = \left\{ \underbrace{1 + \alpha_{2}}_{\sigma_{1} = 0}, \underbrace{\alpha_{2}, 1 - z, 1 - \bar{z}}_{\sigma_{2} = 0}, \underbrace{\alpha_{2} + z\bar{z}}_{\sigma_{2} = \infty}, \underbrace{z + \alpha_{2}, \bar{z} + \alpha_{2}}_{\sigma_{1} = \sigma_{2}} \right\}$$

With the same logic, predict the possible singularities after $\int_0^\infty d\alpha_2$:

$$S_{3,2} = \{z, \bar{z}, 1-z, 1-\bar{z}, z-\bar{z}, z\bar{z}-1\}$$

Polynomial reduction [F. Brown]

Definition

Let S denote a set of polynomials, then S_e are the irreducible factors of

$$\left\{ \left[\operatorname{lead}_e(f), \left. f \right|_{\alpha_e = 0}, D_e(f) \colon \right. \left. f \in S \right\} \right. \text{ and } \left. \left\{ [f, g]_e \colon \right. \left. f, g \in S \right\}.$$

Lemma

If the singularities of F are cointained in S, then the singularities of $\int_0^\infty F d\alpha_e$ are contained in S_e .

Improvements

- Fubini: intersect over different orders
- Compatibility graphs

HyperInt: massive triangle

Graph polynomials:

```
> E:=[[2,3],[1,3],[1,2]]:
> M:=[[1,s1],[2,s2],[3,s3]],[m1^2,m2^2,m3^3]:
> psi:=graphPolynomial(E):
> phi:=secondPolynomial(E,M):
Polynomial reduction:
> L[{}]:=[{psi,phi}, {{psi,phi}}]:
> cgReduction(L, {s1,s2,s3,m1,m2,m3}, 2):
> L[\{x[1],x[2]\}][1]:
                    \left\{s_i+(m_j\pm m_k)^2,\sum_i s_i^2-\sum_{i\neq i} s_i s_j\right\}
\cup \left\{ s_1 s_2 s_3 - \sum_i s_i^2 m_i^2 + \sum_i s_i (m_i^2 - m_j^2) (m_i^2 - m_k^2) + \sum_{i < i} s_i s_j (m_i^2 + m_j^2) \right\}
```

Linear reducibility

Definition

If for some order of variables (edges), all $S_{1,\dots,k}$ are linear in α_{k+1} , then S (the Feynman graph G with $S=\{\psi,\varphi\}$) is called linearly reducible.

Lemma

If S is linearly reducible, the integral $\prod_e \int_0^\infty \mathrm{d}\alpha_e$ f of any rational function f with singularities in S is a MPL with symbol letters in $S_{1,\dots,N}$.

Integration of linearly reducible integrands in terms of MPL can be automatized via hyperlogarithms.

HyperInt

- open source Maple program
- integration of hyperlogarithms
- transformations of MPL to $G(\cdots; z)$ **Note:** No further simplification (e.g. rewrite as $Li_{2,2}$) provided!
- polynomial reduction
- graph polynomials
- symbolic computation of constants (no numerics)

Example

- > read "HyperInt.mpl":
- > hyperInt(polylog(2,-x)*polylog(3,-1/x)/x,x=0..infinity):
- > fibrationBasis(%);

$$\frac{8}{7}\zeta_2^3$$

computes $\int_0^\infty \text{Li}_2(-x) \, \text{Li}_3(-1/x) dx = \frac{8}{7} \zeta_2^3$.

HyperInt: propagator


```
> E := [[2,1],[2,3],[2,5],[5,1],[5,3],[5,4],[4,1],[4,3]]: 

> psi := graphPolynomial(E): 

> phi := secondPolynomial(E, [[1,1], [3,1]]): 

> add((epsilon*log(psi^5/phi^4))^n/n!,n=0..2)/psi^2: 

> hyperInt(eval(%,x[8]=1), [seq(x[n],n=1..7)]): 

> collect(fibrationBasis(%), epsilon); 

 \left(254\zeta_7 + 780\zeta_5 - 200\zeta_2\zeta_5 - 196\zeta_3^2 + 80\zeta_2^3 - \frac{168}{5}\zeta_2^2\zeta_3\right)\varepsilon^2 
 + \left(-28\zeta_3^2 + 140\zeta_5 + \frac{80}{7}\zeta_2^3\right)\varepsilon + 20\zeta_5
```

HyperInt: triangle

```
Graph polynomials:
> E:=[[1,2],[2,3],[3,1]]:
> M:=[[3,1],[1,z*zz],[2,(1-z)*(1-zz)]]:
> psi:=graphPolynomial(E):
> phi:=secondPolynomial(E,M):
Integration:
> hyperInt(eval(1/psi/phi,x[3]=1),[x[1],x[2]]):
> factor(fibrationBasis(%,[z,zz]));
          (G(z; 1) G(zz; 0) - G(z; 0) G(zz; 1) + G(zz; 0, 1)
           -G(zz; 1, 0) + G(z; 1, 0) - G(z; 0, 1))/(z - zz)
Polynomial reduction:
> L[{}]:=[{psi,phi}, {{psi,phi}}]:
> cgReduction(L):
> L[\{x[1],x[2]\}][1]:
                    \{-1+z, -1+zz, -zz+z\}
```

Linearly reducible families (fixed loop order)

ullet all \leq 4 loop massless propagators (Panzer)

② all ≤ 3 loop massless off-shell 3-point (Chavez & Duhr, Panzer) also in position space; give conformal 4-point integrals

all ≤ 2 loop massless on-shell 4-point (Lüders)

Linearly reducible massive graphs (some examples)

Linearly reducible families (infinite)

• 3-constructible graphs (3-point functions) [Brown, Schnetz, Panzer]

Theorem (Panzer)

All ε -coefficients of these graphs (off-shell) are MPL over the alphabet $\{z, \overline{z}, 1-z, 1-\overline{z}, z-\overline{z}, 1-z\overline{z}, 1-z-\overline{z}, z\overline{z}-z-\overline{z}\}.$

• minors of ladder-boxes (up to 2 legs off-shell)

Theorem (Panzer)

All ε -coefficients of these graphs are MPL. For the massless case, the alphabet is just $\{x, 1+x\}$ for x=s/t.

4-point recursions

Start with the box or (double box) and repeat, in any order:

