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© hyperlogarithms & iterated integrals
@ multiple polylogarithms

© functional equations, symbols

@ parameter integrals

© other stuff

@ coaction (Brown, Goncharov)



Some Fl/amplitudes are expressible via multiple polylogarithms (MPL)
ky kd
. Zl e Z
Llnl’m’nd(Z]J...,Zd): Z knlikdnd, |Z,'"'Zd‘ < 1
0<hky<--<kg 1 d

and their special values, e.g. multiple zeta values (MZV)

Cnl,...,nd = Linl,.‘,,nd(l, ey 1)

Example (p? = 1, p§ = |2|°, p§ = |1 — z*)

o <.V> _ 4ilm [Li2(2) tligi(l — z) log|z|]

o <<Z>> = 252(3(5 + %Cs,s - %Cﬁ

“expressible” means each term of the e-expansion is a rational/algebraic
linear combination of MPL whose arguments are rational/algebraic
functions




iterated integrals (Chen 1973)

Take a manifold X and differential forms wy,...,w, € QY(X). Integrating
these along a path v € C1([0, 1], X), we can construct functions (on 7):

to
/Wn ‘w1 :/ Wn tn / / wl tl

Q Ifw=df isexact, [ w = f(y(1)) — f(v(0)) is boring.
@ Not all iterated integrals are homotopy invariant.

Take w = ydx € Q(RR?), then f w is the area between v and the x-axis.

.y (2,y
u u
(0,0) (0,0)

= integrability condition (Chen), simplest case:

/ w homotopy invariant & dw =0
Y



Hyperlogarithms (Poincaré 1884, Lappo-Danilevsky 1927)

Let X = C\ X for a finite set of points . The regular, non-exact forms
dz

w, =dlog(z — o) =
z—o0o

generate homotopy invariant iterated integrals, called hyperlogarithms.

fywo=log 28, [Fwr=—Li(2), J& wowr = — Lia(2)
All MPL can be written this way:
V4
-1 -1 dy: 02 od Z
/0 w(’)’d Woy* .w(’)’l Wy, = (—1) Lin,....ng (0-1’ e, P O-d>

Notation and some special cases:
® [§ Woy Wy =1(0;01,...,0n2) = G(0op,...,01;2) [Goncharov]
e ¥ ={-1,0,1} harmonic polylogarithms (HPL) [Remiddi & Vermaseren|
e Y ={0,1,1—y,—y} 2 dimensional HPL [Gehrmann & Remiddi



Path concatenation

Let %7 denote the concatenation of v and 7 at (1) = n(0) = (y*n)(2):

¥
1\

to

To decompose

/ W1 :/WQW1+/L02/W1+/6020J1,
v*N ol n Y n

split the interval
(h<tl={t<b<u{un<i<nlu{i<u<t}
——

f W1 f wow1 f wzf w1 f wow1
TN el n ¥ n

More generally, the path concatenation formula reads

n
/ wn---wl=Z/wn---wk+1/wk---w1.
N k—=0""N v




Path concatenation

G(7; z) is analytic in z=(1) on €\ X, but multivalued.

Remember

Even though ~ is suppressed in the notation G(&;z) and [ w, these
functions still depend on the homotopy class of ~.

If 7 is a closed loop with 7(0) = n(1) = 0, analytic continuation M,, gives

z n z
Mn/ wn...wIZZ/ wn"°wk+1/wk~-u)1-
0 k=0 0 n

Note: This only adds lower weight functions (corresponding to prefixes).

Similar: change of basepoint

z w z 0
/wn...wlzz/ wn...wk+1/ Wi
b 1 b




Shuffle product

The shuffle product of two words
Wpnim: ** Wpel W wp - wp = Z Wo(n+m) " Wo(1)
ag

is the sum of all their shuffles o, i.e. permutations which preserve the
relative order of letters in both factors:

o)< - <o Hn) and o Hn+1)< <o Hn+m).

For arbitrary words u and v, we find that ([ is linearly extended)

([4) () fro

/w3 : /UJ2UJ1 = /(W3w2w1 + wawswi + wawiws)
Y Y Y

{B}x{ti<tl={t1 <t <BlU{ti <ts<t}U{ts <t < B}




Singularities

Singularities when {7(0),v(1)} > z — 7 € {0} UX are logarithmic: There
exist (uniquely determined) functions f; ,,(z), analytic at z = 7, such that

/ w = Z log“(z — 7)fic.w(2).
v k

Definition (logarithmic regularization)

The regularized limit is Reg,_, [, w := fo,u(7).

Example

wo = log —— GO;z:/zw:: Re /wzloz
Jwo=tos 5 602 = [Cuni= Reg [ wo=log(z

These expansions and limits can be computed algorithmically using
shuffles and rescalings like G(\&', Az) = G(7; z) (01 # 0).

|
A,




Differentials

By definition, 9,G(0s, 5 2) = = ). But now consider the ¢ as
variables themselves. Differentiating under the integral sign in

o( ) /Z dt, /tn dtp—1 /fz dty
Ony...,01,Z2) =
" ’ 0 th—onJo th-1—0p-1 o t1—o1

one finds

dG(&’;z):ZG(-~-,¢f,-,-~-;z)dlogw 00 ' =2,0n+1 =0

i Oi = 0it+1
Equivalently, in the sum representation of MPL we see

dLiz(Z) = ZL.n 2 ( 7) 4%
Zy

and can replace any occurring zeros (resulting from n, = 1 say) by

dz dzy

zk(1— z4)

Liﬁ/(...,zkzk_l,...) —Li,—,*/(...,Zka+1,...)

1— 2z



Functional equations

Remember
Proving functional relations between MPL is easy - just differentiate!

Can we write Liz(1 — x) as a hyperlogarithm with argument x?

© Take a derivative:
O Lin(1 — x) = X%l Lis(1 — x)
@ Express all MPL in the integrand as hyperlogs (recursion):
Li1(1 — x) = —log(x) = — G(0; x)
© integrate back:
Lio(1 —x) = C—G(1,0;x) = C — log(1 — x) log(x) — Lia(x)

, 2 . -
Q Fix constant C = % = (, via some limit, for example x — 1

10/32



Products of hyperlogarithms basis

The representation in terms of hyperlogarithms is free of relations:

All hyperlogarithms G(&; z) are linearly independent functions of z (even
with algebraic coefficients).

The recursive algorithm (differentiation & integration & limits) solves

Given some MPL G(&(X), z(X)) or Liz(Z(X)) whose arguments (&, z or Z)
are rational functions of variables xi, ..., x,, write it in the basis

Zﬂ G(F1(x2, -, %n)i x1)G(T2(X3, - - - s Xn); X2) = - - G(Tp; Xn)-

e completely algebraic (no numerics), programmed (HyperInt)
@ in general not the shortest or “simplest” representation
@ dependence on order of the variables xi, ..., x,
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Higher dimensions: multiple polylogarithms

Idea: treat all variables equally; via higher dimensional iterated integrals

d21 . d21
L -
1-— Z1 |1(22) 21(]. — )

dz /22 dz ( dz dz d21 )/(zlsz)dlo (1 )
_ _ - — 21z
l1—-zn1Jo 1—2 1—2 71 1—-2z/) Jo & 122

_ /(21122) { dzy d=zo (E dz _ dz ) z1dz + zzdzl}
(0,0) 1-— V4 1-— Vi)

. dz
dLii(z1, ) = Li1(z122) + L|1(2122)

V4 ].721 1722 ].72122

¢

Corollary (MPL as iterated integrals)

Every Liz(Z) of d arguments is an iterated integral on C?\ V (Sc’}/’PL> for
the singularities (alphabet)

SYPE={z1,...,zg}U{l —z---2z: 1<i<j<d}

[Brown & Bogner|
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Higher dimensions & simplification

Every subset S C Q[z1, ..., z4] of polynomials determines a manifold
X=C\V(S)=C\ |J{f=0}
fes

which defines a space of iterated integrals. We consider homotopy
invariant (Chen condition on w!) integrals [, w of forms dlog(f), f € S.

Theorem (Kummer 1840)

Every iterated integral of at most three rational forms can be expressed as
a sum of products of log, Lio and Lis.

v

Conjecture (Duhr, Gangl & Rhodes)

To express every MPL up to weight 4, it suffices to add the functions
Lig, Liz 2. At weight 5 it suffices to add Lis and Li> 3.

Method: basis Ansatz, fit coefficients via symbol (differentiation) or

motivic coaction
13 /32



Remember

The symbol w determines the function [; w completely if one fixes a
choice b for the basepoint.

@ when b is forgotten, then the symbol w only captures the highest
weight

o with b fixed, w — [ w is injective

@ the motivic coaction is not necessary

o different basepoints can make expressions simpler

@ physics can sometimes hint a good basepoint

Programs

Symbol techniques are standard now, many people have programs which
can do at least some of the work in an automatized way. Ask around;
public: HyperInt, ...7...yours here!
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Motivic coaction

Idea: abstract from the integral /function and define algebraic objects
(motivic periods) which have more structure. The construction is
complicated. [Brown,Dupont,Goncharov,. . .|

In recent lectures at the IHES (available online), Brown constructed
motivic Feynman periods in very general cases. Thus, a coaction is defined
under very mild assumptions (in particular not restricted to
polylogarithmic integrals).

Upshot: There exist algebraically/geometrically defined objects /Z(5) for a
wide class of Feynman graphs G and kinematics 5. These are elements of
some algebra H™ with a period map

per: H™ — C

sending /Z(S) to the actual Feynman integral (number) /5(5).
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However, there is more structure: A coaction

A:H™ — HEQH™

which is very powerful to obtain relations, in particular for multiple
polylogarithms (where differentiation does not buy us anything!).

A =10 +35301+2F G+ &

Note ¢3* = 0 and that {¢%, (¢} is a basis of motivic MZV in weight 5,
therefore we conclude (3’5 = 2¢3'(3' + c(g', with ¢ undetermined.

An explicit formula for the coproduct/coaction for MPL is due to
Goncharov/Brown.

If people speak about a coproduct A — H® ® H®, they necessarily work
with de Rham periods, which have no associated real period (¢3* = 0). For
multiple polylogarithms, this means that multiples of i7 are dropped.
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Motivic coaction

The similarity of both sides, #° and H™ in the case of MPL is rather
misleading. In fact, by construction both sides are very different.

In the case of Feynman integrals, the m-side corresponds to Feynman
integrals again, whereas the 0t-side, at least empirically, relates to cuts of
integrals, i.e. residues. [talk by Abreu]

17 /32



Further points

o elliptic MZV and integrals [talk by Bogner,Schlotterer]

numeric evaluation of MPL, e.g. Ginac, but also optimizations
[Manteuffel, Tancredi]

algebraic functions in the forms (root-valued letters)
single-valued MPL

cluster polylogarithms

special values (number theory): relations between MZV, MPL at
roots of unity,. ..
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Feynman integrals — polylogarithms

@ differential equations in normal form [talk by Henn,von Manteuffel]

df(e,x) =¢ | D_dlog(s)As | f(c,%)
seS

© summation: extremely powerful computer algebra tools for sums
[Ablinger, Raab, Schneider, Weinzierl. . .]
© bootstrap, Ansatze, recursions [talk by Drummond, von Hippel]

@ integration of parameter integrals

19/32



Definite parameter integrals

They are everywhere [talk by Borowkal:
e hypergeometric functions ,Fq(--- ; 2)

oF (a’ b ‘z) = r(b)ll:i?— B) /01 tP71(1 — £)° b1 — zt)"%de

C

o Appell's functions Fi1, Fp, F3, Fa
r)

5 (5 bl) = G
x/ol /01 vuﬁ_lvﬁl_l(l—u—v)V_'g_ﬁ,_l(l—ux)_a(l—vy)_a/dudv

@ Feynman integrals in Schwinger parameters
@ Phase-space integrals [talk by Dulat]
° ...

Idea: If the representation is simple enough (linearly reducible), there is an
order of integration for the parameters such that each intermediate partial

integral is a MPL of rational arguments.
20/32



Schwinger parameters

With the superficial degree of divergence sdd = |E(G)| — D/2 - loops(G),

[(sdd) 1 /% sat
®(G) = TREe )/ooo)EwDﬂ () 5(1—a,\,)1:[ae doe

Graph polynomials:

U:ZHae F = Zq (T1) Hae+UZmae

T eéT F=T1UT>» egF
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Example: massless triangle
® :/ das dag
(1+ a2 + a3)(acaz + zzaz + (1 — z)(1 — z)az)

1 /< dao dao )I (a2 + 1)(a2 + 22)

- o
z—z a+zZ ax+z g(l—z)(l—?)ag
Singularities of the original integrand: S = {1, ¢}, i.e. at a3 = o for

_042(1 —-2z)(1-2)
o + zZ

0'1:—1—Oéz and 0o =

After integrating a; from 0 to oo, the integrand has singularities

Ss={l+m,mml-2z1-Zzam+zz,z+mm,z2+az}
—_— T

01=0 02=0 02=00 o1=07 (pinch)
With the same logic, predict the possible singularities after [ dao:
S30={2,2,1-2,1-2,z—2,zz—-1}

22 /32



Polynomial reduction [F. Brown]

Definition
Let S denote a set of polynomials, then S, are the irreducible factors of

{leade(f), fl,,—o De(f): €S} and {[f.gle: f,g €S}

Lemma

| A

If the singularities of F are cointained in S, then the singularities of
Jo* Fdae are contained in Se.

| A\,

Improvements
@ Fubini: intersect over different orders

o Compatibility graphs
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HyperInt: massive triangle

Graph polynomials:

> E:=[[2,3],[1,3],[1,2]]:

> M:=[[1,Sl] 3 [2,52] s [3353]] s [m1A2’m2A2’m3A3] :
> psi:=graphPolynomial (E):

> phi:=secondPolynomial(E,M):

Polynomial reduction:

> L[{}]:=[{psi,phi}, {{psi,phil}}]:

> cgReduction(L, {s1,s2,s3,m1,m2,m3}, 2):

> LI{x[1],x[2]1}]1[1];

{s, mjimk Zs Zs,-sj}

,- i

U {515253 = os7mi+ Y si(m? = m?)(m? — mi) + > sis(m? + mf)}
i i

i<j
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Linear reducibility

Definition

If for some order of variables (edges), all 51 x are linear in ayy1, then S
(the Feynman graph G with S = {4, ¢}) is called linearly reducible.

If S is linearly reducible, the integral []. [5° dee f of any rational function
f with singularities in S is a MPL with symbol letters in Sy .

Integration of linearly reducible integrands in terms of MPL can be
automatized via hyperlogarithms.

25 /32



HyperlInt

@ open source Maple program
@ integration of hyperlogarithms
e transformations of MPL to G(-- - ; z)
Note: No further simplification (e.g. rewrite as Lip ») provided!
@ polynomial reduction
@ graph polynomials
@ symbolic computation of constants (no numerics)

Example

> read "HyperInt.mpl":

> hyperInt(polylog(2,-x)*polylog(3,-1/x)/x,x=0..infinity):
> fibrationBasis(%);

8 3
762

computes [5° Lio(—x) Liz(—1/x)dx = gé
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HyperInt: propagator

E := [[2,1],[2,3],[2,5],(5,1],[5,31,[5,4],[4,1],[4,3]1]:
psi := graphPolynomial(E):

phi := secondPolynomial(E, [[1,1], [3,1]1]1):
add((epsilon*log(psi~5/phi~4)) “n/n!,n=0..2)/psi”2:
hyperInt(eval(%,x[8]=1), [seq(x[n],n=1..7)]1):
collect(fibrationBasis(%), epsilon);

vV VVYVYVYV

168
(254(7 + 7805 — 200,Cs — 196¢2 + 805 — 54§<3> g2

80
+ (—28c32 + 140(; + 7<23> £ +20¢s
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HyperInt: triangle

Graph polynomials:
> E:=[[1,2],[2,3],[3,1]1]:
> M:=[[3,1],[1,z*zz],[2, (1-2)*(1-z=z)]]:
> psi:=graphPolynomial (E):
> phi:=secondPolynomial(E,M):
Integration:
> hyperInt(eval(1/psi/phi,x[3]=1), [x[1],x[2]]):
> factor(fibrationBasis (%, [z,zz]));
(G(z;1)G(22;0) — G(z;0)G(2z;1) + G (2z;0,1)
—G(2z;1,0)+ G(z,1,0) — G(z,0,1))/(z — zz)
Polynomial reduction:
> L[{}]:=[{psi,phi}, {{psi,phil}}]:
> cgReduction(L):
> L[{x[1],x[2]1}]1[1];
{-1+z,-1+zz,—zz+z}
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Linearly reducible families (fixed loop order)

@ all <4 loop massless propagators (Panzer)

0 <) 0 G

@ all <3 loop massless off-shell 3-point (Chavez & Duhr, Panzer)
also in position space; give conformal 4-point integrals

T XN N

@ all <2 loop massless on-shell 4-point (Liiders)
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Linearly reducible massive graphs (some examples)

oL L0

AT
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Linearly reducible families (infinite)

@ 3-constructible graphs (3-point functions) [Brown, Schnetz, Panzer]

o O\U ) o
o — o —> —o0

o (e] o o

Theorem (Panzer)

All e-coefficients of these graphs (off-shell) are MPL over the alphabet
{z,z,1-2,1-2,z—2,1—22,1—z—2,zz—z— z}.

@ minors of ladder-boxes (up to 2 legs off-shell)

Theorem (Panzer)

All e-coefficients of these graphs are MPL. For the massless case, the
alphabet is just {x,1+ x} for x = s/t.
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4-point recursions

Start with the box or (double box) and repeat, in any order:

U1 V4 U1 V4 U1 V4 v} U1 V4
(@] (@] (@] (@] [e) —eo (@]
— or or e
e
—_—0,/
UQO OUS Uzo U3 Us UQO ng Uzo 3
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