Non-planar on-shell diagrams in $\mathcal{N} = 4$ Super Yang-Mills

- Amplitudes 2015 -ETH Zürich

based on:

hep-th/1502.02034 - Franco, Galloni, BP, Wen

Brenda Penante Queen Mary University of London

09/07/15

Outline

1. Introduction

2. Grassmannian formulation

3. On-shell diagrams

Planar vs Non-planar

4. Conclusions

Introduction

Scattering amps in $\mathcal{N} = 4$ SYM SU(N)

- Maximally supersymmetricConformal to all loops
- Integrable $(\mathbb{N} \to \infty)$
- AdS/CFT

Planar limit: $N \to \infty$, with $\lambda = g_{\rm YM}^2 N$ fixed

$$\mathcal{A}_n = \sum_{\sigma \in S_n / \mathbb{Z}_n} \operatorname{Tr}(t^{a_{\sigma(1)}} t^{a_{\sigma(2)}} \dots t^{a_{\sigma(n)}}) A_n(\sigma(1), \sigma(2), \dots, \sigma(n))$$

Partial amplitude (colour ordered)

(Finite N corrections \propto multiple traces)

State of the art in the planar limit

Tree level:

- * $N^{k-2}MHV$ tree amplitudes with any k, n can be found recursively via the *BCFW recursion relation* [[Britto, Cachazo, Feng, Witten 2005]]
- Tree-level amplitudes enjoy Yangian symmetry [[Drummond, Henn, Plefka - 2009]]
 [[Yangian = Superconformal + Dual Superconformal]]
 [[Drummond, Henn, Korchemsky, Sokatchev - 2008]]

Loop level:

- * Yangian symmetry broken due to IR divergences
- * Loop integrand

 $\int d^4 \ell_1 \dots d^4 \ell_L \times \begin{pmatrix} \text{Rational function of} \\ \text{external and loop momenta} \end{pmatrix}$

State of the art in the planar limit

Ambiguities:

$$\int d^{4}\ell \frac{1}{\ell^{2}(\ell+p_{1})^{2}(\ell+p_{1}+p_{2})^{2}(\ell-p_{4})^{2}}$$

$$\int d^{4}\ell \frac{1}{\ell^{2}(\ell+p_{4})^{2}(\ell+p_{1}+p_{4})^{2}(\ell-p_{3})^{2}}$$

 \ast Planar loop integrand well defined: dual variables x_i

State of the art in the planar limit

All-loop integrand determined by the all-loop recursion relation [[Arkani-Hamed, Bourjaily, Cachazo, Caron-Huot, Trnka - 2010]]

* Dual variables x_i allow different terms in recursion relation to be combined in a non-ambiguous way

Unavailable for non-planar integrands

Non-planar integrand not well-defined

Consider instead Leading Singularities [[Eden, Landshoff, Olive, Polkinghorne - 1966, Britto, Cachazo, Feng - 2004]]

Planar

Non-Planar

In the planar limit ∃ basis of dual conformal integrands with "unit leading singularity" [[Arkani-Hamed, Bourjaily, Cachazo, Trnka - 2010]]

LS are sufficient to determine the all-loop integrand!

All planar LS are residues of a (positive) Grassmannian integral

Positive Grassmannian parametrised by planar on-shell diagrams

Non-planar integrand not well defined Consider non-planar LS Residues of a Grassmannian integral Parametrised by non-planar on-shell diagrams **OBS:** Results for complete 4-pt integrands up to 5-loops using max. cuts! [Bern, Carrasco, Johansson, Roiban - 2012, + Dixon - 2010]]

Grassmannian Formulation

[[Arkani-Hamed, Cachazo, Cheung, Kaplan - 2009]] [[Mason, Skinner - 2009]]

Grassmannian formulation

[[Arkani-Hamed, Cachazo, Cheung, Kaplan - 2009]]

DEF: Grassmannian $Gr_{k,n}$ is the space of k-planes in \mathbb{C}^n

- * Element of $Gr_{k,n}$: choose k n-vectors: $C_{\alpha a} = \begin{pmatrix} C_{11} & C_{12} & \dots & C_{1n} \\ C_{21} & C_{22} & \dots & C_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ C_{k1} & C_{k2} & \dots & C_{kn} \end{pmatrix}$
- * GL(k) gauge redundancy $\longrightarrow \dim(Gr_{k,n}) = nk k^2$
- * Coordinates in $Gr_{k,n} \longrightarrow$ Maximal minors (Plücker coords.)

$$\Delta_{i_1,i_2,\ldots,i_k} = (i_1 i_2 \cdots i_k) = \det \begin{pmatrix} C_{1i_1} & C_{1i_2} & \cdots & C_{1i_k} \\ C_{2i_1} & C_{2i_2} & \cdots & C_{2i_k} \\ \vdots & & & \vdots \\ C_{ki_1} & C_{ki_2} & \cdots & C_{ki_k} \end{pmatrix}$$

Plücker relations: Ex: $Gr_{2,4} \rightarrow \Delta_{1,2}\Delta_{3,4} + \Delta_{1,3}\Delta_{4,2} + \Delta_{1,4}\Delta_{2,3} = 0$ Positive Grassmannian $Gr_{k,n}^+ \rightarrow \Delta_{i_1,i_2,...,i_k} > 0 \begin{cases} \forall C_{\alpha a} > 0 \\ i_1 < i_2 < \cdots < i_k \end{cases}$

Grassmannian formulation

[[Arkani-Hamed, Cachazo, Cheung, Kaplan - 2009]]

Planar LS are residues of the following integral over $Gr_{k,n}^+$

Grassmannian formulation

[[Arkani-Hamed, Cachazo, Cheung, Kaplan - 2009]]

$$\mathcal{L}_{n,k} = \frac{1}{\operatorname{Vol}(GL(k))} \int d^{k \times n} C_{\alpha a} \frac{\delta(C \cdot \tilde{\lambda}) \, \delta(C^{\perp} \cdot \lambda) \, \delta(C \cdot \eta)}{(1 \dots k)(2 \dots k + 1) \dots (n \dots k - 1)}$$

$$\overset{\text{Non-planar}}{\underset{\text{[[Galloni, Franco, BP, Wen - 2015]]}}{\underset{\text{Vol}}{\underset{\text{Non-planar}}{\underset{\text{Non-planar}}{\underset{\text{Non-planar}}{\underset{\text{I}}{\underset{\text{Non-planar}}}}}} \xrightarrow{\delta(C \cdot \tilde{\lambda}) \, \delta(C^{\perp} \cdot \lambda) \, \delta(C \cdot \eta)} \times \mathcal{F}$$

$$\mathcal{L}_{n,k} = \frac{1}{\operatorname{Vol}(GL(k))} \int d^{k \times n} C_{\alpha a} \frac{\delta(C \cdot \tilde{\lambda}) \, \delta(C^{\perp} \cdot \lambda) \, \delta(C \cdot \eta)}{(1 \dots k)(2 \dots k + 1) \dots (n \dots k - 1)} \times \mathcal{F}$$

$$\overset{\text{To be discussed}}{\underset{\text{further soon!}}{\underset{\text{Ex: }}{\underset{\text{K}=3}}}} \mathcal{F} = \frac{(123)(245)}{(124)(235)}}$$
No notion of ordering or positivity in non-planar case $\longrightarrow \mathcal{G}_{k,n}$

On-shell diagrams

[[Arkani-Hamed, Bourjaily, Cachazo, Goncharov, Postnikov, Trnka - 2012]]

On-shell formulation

[[Arkani-Hamed, Bourjaily, Cachazo, Goncharov, Postnikov, Trnka - 2012]]

Trivalent bi-coloured graphs made of the building blocks:

Constructing on-shell diagrams

To connect two nodes, integrate over on-shell phase space of edge in common:

- Can construct more complicated diagrams
- * Nodes of the same colour can be merged

Constructing on-shell diagrams

Examples:

Fusing Grassmannians

* An on-shell diagram with n_B black nodes, n_W white nodes and n_I internal edges is associated to $Gr_{k,n}$, where:

$$k = 2n_B + n_W - n_I$$

Bipartite technology

Perfect matching

Choice of edges such that every internal node is the endpoint of only one edge

Perfect orientation

Orient edges in the perfect matching from Black to White. Black nodes have only one outgoing arrow, white nodes have only one incoming arrow

Boundary measurement

Boundary measurement

Parametrising on-shell diagrams

Planar:

- On-shell dlog form: variables unfixed by delta-functions mapped to loop integration variables.
- st # degrees of freedom of a planar on-shell diagram is d=F-1
- * Bases for expressing flows: Edges and Faces

3 4 # faces 3 4 faces4 faces4 faces4 faces5 f_{3} 5 f_{4} 5 f_{1} 5 f_{2} 5 f_{1} 5 f_{1} 5 f_{1} 5 f_{2} 5 f_{1} 5 f_{2} 5 f_{1} 5 f_{2} 5 f_{2} 5 f_{2} 5 f_{2} 5 f_{3} 5 f_{3} 5 f_{2} 5 f_{2} 5 f_{3} 5 f_{3} 5 f_{2} 5 f_{2} 5 f_{3} 5 f_{2} 5 f_{3} 5 f_{2} 5 f_{3} 5 f_{3} 5 f_{2} 5 f_{3} 5 $f_{$

Generalised face variables

 \boldsymbol{F}

[[Galloni, Franco, BP, Wen - 2015]]

$$d = \underbrace{(F-1)}_{f_i} + \underbrace{(B-1)}_{b_a} + \underbrace{2g}_{\{\alpha_m, \beta_m\}} = F - a$$

F = # faces B = # boundaries g = genus

$$f_i, i = 1, \dots, F$$
 $\prod_{i=1}^{r} f_i = 1$

$$b_a, a=1,\ldots,B-1$$

Paths connecting different boundaries

$$\{\alpha_m, \beta_m\}, m = 1, \dots g$$

Fundamental cycles

в

Faces

Ex: Genus 1

Generalised face variables

[[Galloni, Franco, BP, Wen - 2015]]

$$d = \underbrace{(F-1)}_{f_i} + \underbrace{(B-1)}_{b_a} + \underbrace{2g}_{\{\alpha_m, \beta_m\}} = F - \xi \qquad \begin{array}{c} F = \# \text{ faces} \\ B = \# \text{ boundaries} \\ g = \text{ genus} \end{array}$$

$$f_i, i = 1, \dots, F \qquad \prod_{i=1}^F f_i = 1 \qquad \text{Faces} \\ b_a, a = 1, \dots, B - 1 \qquad \text{Paths connecting different boundaries} \\ \{\alpha_m, \beta_m\}, m = 1, \dots, g \qquad \text{Fundamental cycles} \\ \hline \text{dlog on-shell form:} \\ \hline \frac{dX_1}{X_1} \frac{dX_2}{X_2} \cdots \frac{dX_d}{X_d} \qquad \longleftrightarrow \qquad \prod_{i=1}^{F-1} \frac{df_i}{f_i} \prod_{a=1}^{B-1} \frac{db_a}{b_a} \prod_{m=1}^g \frac{d\alpha_m}{\alpha_m} \frac{d\beta_m}{\beta_m} \\ \hline \end{array}$$

Reducibility & Equivalence: Planar

[[Arkani-Hamed, Bourjaily, Cachazo, Goncharov, Postnikov, Trnka - 2012]]

* Two on-shell diagrams that span the same region in the Grassmannian and have the same number of d.o.f are *equivalent*.

If it is possible to remove an edge of a graph without sending any Plücker coord to zero, the graph is *reducible*.

Bubble deletion

* If it is impossible to remove an edge of a graph without sending some Plücker coord to zero, the graph is *reduced*. \Rightarrow (Positroid stratification of $Gr_{k,n}^+$)

Reducibility & Equivalence: Non-planar

[[Arkani-Hamed, Bourjaily, Cachazo, Postnikov, Trnka - 2014, Galloni, Franco, BP, Wen - 2015]]

A non-planar novelty:

* It is possible to remove an edge of a reduced graph without sending any Plücker coord to zero!

Recall: Deformation from planar Grassmannian integrand

 $=\frac{(346)^2(356)(123)(612)}{(136)(236)[(124)(346)(365) - (456)(234)(136)]}$

Removal of an edge does not set any $\Delta_{i,j,k}$ to zero, but gives rise to the relation

$$\Delta_{1,2,4}\Delta_{3,4,6}\Delta_{3,6,5} = \Delta_{4,5,6}\Delta_{2,3,4}\Delta_{1,3,6}$$

Polytopes

[[Postnikov, Speyer, William - 2009, Franco, Galloni, Mariotti - 2013]]

Notions of equivalence/reduction can be rephrased in terms of polytopes:

Matching polytope:

Perfect matching

 \leftrightarrow Flow \leftrightarrow Point in matching polytope

 \leftrightarrow Point in matroid polytope \leftrightarrow Plücker coord.

Matroid polytope:

Perfect matchings with same source set

Flow:
$$\mathfrak{p}_{\mu} = \prod_{i=1}^{F-1} f_i^{x_{i,\mu}} \prod_{j=1}^{B-1} b_j^{y_{j,\mu}} \prod_{m=1}^g \alpha_m^{z_{m,\mu}} \beta_m^{w_{m,\mu}}$$

Coord. in matching polytope:

 $(x_{1,\mu},\ldots,x_{F-1,\mu},y_{1,\mu},\ldots,y_{B-1,\mu},z_{1,\mu},\ldots,z_{g,\mu},w_{1,\mu},\ldots,w_{g,\mu})$

Coord. in matroid polytope:

 $(x_{1,\mu},\ldots,x_{F_e,\mu})$ (just external faces)

Polytopes [[Postnikov, Speyer, William - 2009, Franco, Galloni, Mariotti - 2013]]

Matroid polytope:

 $\begin{array}{c} \text{Perfect matchings with} \\ \text{same source set} \end{array} \xrightarrow{} \text{Point in matroid polytope} \xrightarrow{} \text{Plücker coord.} \end{array}$

Sign prescription in generalised boundary measurement must be consistent with

 $\Delta_{i_1,i_2,...,i_k} \leftrightarrow$ Sum of flows with source set $\{i_1,i_2,\ldots,i_k\}$ with coefficients ± 1

Characterisation of on-shell diagrams

For **planar reduced** on-shell diagrams one can associate a permutation of external nodes that characterises equivalence classes.

Non-planar diagrams without extra constraints on Plücker coordinates

Two graphs are **equivalent** if they have the same matroid polytope and number of degrees of freedom.

An on-shell diagram "B" is a **reduction** of another diagram "A" if it is obtaind from "A" by deleting edges and it has the same matroid polytope.

A graph is **reduced** if it is impossible to remove edges while preserving the matroid polytope.

Constraints and polytopes

[[Galloni, Franco, BP, Wen - 2015]]

Before removal: 40 perfect matchings

$\Delta_{1,2,4}$	p_7, p_{35}	$\Delta_{4,5,6}$	p_{32}
$\Delta_{3,4,6}$	p_{23}	$\Delta_{2,3,4}$	p_{24}
$\Delta_{3,5,6}$	p_{37}	$\Delta_{1,3,6}$	p_{38}

After removal: 33 perfect matchings

Before and after removal: $p_{35}p_{23}p_{37} = p_{24}p_{32}p_{38}$

After removal p_7 disappears

 $\Delta_{1,2,4}\Delta_{3,4,6}\Delta_{3,6,5} = \Delta_{4,5,6}\Delta_{2,3,4}\Delta_{1,3,6}$

Finding
$$\mathcal{F}$$
 $(\mathcal{L}_{n,k} = \text{Planar} \times \mathcal{F})$

MHV non-planar leading singularities:

[[Arkani-Hamed, Bourjaily, Cachazo, Postnikov, Trnka - 2014]]

- Every black node is connected to 3 external nodes either directly or via a white node
- * $\exists n-2$ black nodes

Strategy for higher MHV degree

[[Galloni, Franco, BP, Wen - 2015]]

Desired properties:

- * Every black node is connected to k+1 external nodes either directly or via a white node
- * $\exists n-k$ black nodes

$$\begin{array}{c}
1 & 1 & 6 & 4 & 2 \\
3 & 2 & 4 & 6 \\
5 & 4 & 2 & 6
\end{array} M = \begin{pmatrix}
(642) & (164) & 0 & (216) & 0 & (421) \\
0 & (463) & (246) & (632) & 0 & (324) \\
0 & (654) & 0 & (265) & (426) & (542)
\end{array}\right)$$

$$\Omega = \frac{d^{k \times n}C}{\operatorname{Vol}(\operatorname{GL}(k))} \left(\frac{\det(\widehat{M}_{a_1,\dots,a_k})}{(a_1,\dots,a_k)}\right)^k \frac{1}{\operatorname{PT}^{(1)}\operatorname{PT}^{(2)}\cdots\operatorname{PT}^{(n_B)}}{\left(\operatorname{PT}^{(1)}\operatorname{PT}^{(2)}\cdots\operatorname{PT}^{(n_B)}\right)}$$

$$\begin{array}{c}
\Omega = \frac{d^{3 \times 6}C}{\operatorname{Vol}(\operatorname{GL}(3))} \frac{(246)^3}{(164)(421)(216)(324)(463)(632)(542)(265)(654))}
\end{array}$$

Desired properties:

- * Every black node is connected to k+1 external nodes either directly or via a white node
- * \exists n-k black nodes
 - a) Valency v > k+1

X

Desired properties:

- * Every black node is connected to k+1 external nodes either directly or via a white node
- * $\exists n-k$ black nodes

Desired properties:

* Every black node is connected to k+1 external nodes either directly or via a white node

* $\exists n-k$ black nodes X

ightarrow # white nodes surrounded by black nodes ($lpha=0,1,\ldots$)

$$2$$

$$2$$

$$4$$

$$3$$

$$65$$

$$7$$

$$4$$

$$a = 0$$

$$d = 10$$

Summary

Non-planar on-shell diagrams

- * Generalised face variables
- Boundary measurement for higher genus

* Equivalence and reductions in terms of polytopes

 Found diagrams that parametrise regions of the Grassmannian with extra constraints beyond Plücker relations

Concluding remarks & Outlook

1) Physical interpretation:

[[Arkani-Hamed, Bourjaily, Cachazo, Goncharov, Postnikov, Trnka - 2012]]

Non planar: Leading singularities of the loop integrand

? Non-planar loop integrand

? Non-planar Grassmannian formulation

[[Arkani-Hamed, Bourjaily, Cachazo, Trnka - 2014]] ·

[[Bern, Herrmannn, Litsey, Stankowicz, Trnka - 2014]]

Conjecture: Non-planar amps have only log singularities and no poles at infinity.

Concluding remarks & Outlook

Non-planar diagrams parametrise regions of $Gr_{k,n}$ with 2) hidden relations between Plücker coordinates. \square ? Method for finding representative graph given a constraint

3) MHV non-planar leading singularities are sums of planar ones. [[Arkani-Hamed, Bourjaily, Cachazo, Postnikov, Trnka - 2014]]

Same not true for non-MHV, however similar method can be used to find the deformation of the integrand ${\mathcal F}$.

Positive Grassmannian $Gr_{k,n}^+ \rightarrow Amplituhedron$ 4) ? Non-planar generalisation

[[Arkani-Hamed, Trnka - 2013]]

5) ? Possible application for form-factors on-shell diagrams [[Frassek, Meidinger, Nandan, Wilhelm (2015) - see Matthias Wilhelm's poster]]