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Two themes

e Calculation of one-loop dilatation operator from

two-point correlators with on-shell methods
(Brandhuber, Penante, GT, Young)

» from MHYV diagrams

» from generalised unitarity applied to two-point functions

— single-scale problem, unitarity particularly simple

e Derive the action of the Yangian on the dilatation
operator from the Yangian symmetry of amplitudes
(Brandhuber, Heslop, GT, Young)

» substantiate the idea that there exists a Yangian symmetry in
N=4 SYM with different manifestations



Dilatation operator

e General form of two-point functions of primary
operators in a conformal theory:
1

<O|O(x1)@($2)|> ~ ((z12)2)20+7 2=

» Ay = classical dimension, 7Y =anomalous dimension
(assume momentarily no mixing)

> expanding in g (0] 0()0(2)[0) ~ 7 1)2)A (1 — 7 log(22,A2))
12 0
» anomalous dimension extracted from log divergence

» polein I/e in dimensional regularisation

e Definition of the dilatation operator |Hap = u—=1log Z4n

» Zap= renormalisation constants for the operators {Ox}



The SO(6) sector

e Scalar operators:

OA131,A232,---,ALBL (CU) — Tr(¢AlBl ¢A2B2 T QSALBL)(:U)

- Ai,....,Br =1,...,4 fundamental R-symmetry indices
» This sector is closed at one loop

» calculation of anomalous dimension mapped to that of
the eigenvalues of an integrable Hamiltonian (Minahan & Zarembo)

e Perturbative calculation

» at one loop in the planar limit only nearest neighbours
interact. Effectively the calculation is equivalent to that of

the two-point correlator ((papdcp)(z1)(Ppa s dcrp)(22))



® General structure of  {((dapdcep)(w1)(Parp dcrp)(z2))

= Aeapcpeapc'pr + Beapapecrpep + Ceaporp€arpop

xl ¢AB ¢CD ¢AB ¢CD ¢AB ¢CD
xz ¢C‘D‘ ¢A'B' ¢C‘D' ¢A'B' ¢C'D' ¢A'B‘
Trace Permutation |dentity

» from Minahan & Zarembo: Ayv =1/2, Buyv=-1, Cyv =1
(more accurately: 4 = Ayy x [A/(87%)] x (1/(47r2:1;§2))2 x (1/€) + finite )

L

1
H = Z(H — P+ §T)@'7;+1 Hamiltonian of an integrable spin chain



A 1 o2 S
= Hew) = [ e~ s

» for later applications, go to momentum space:

dPL i1m., [ AP Ly 1 dP Lg 1
I(z12) = D¢ D 72 —T\2 D T2 2
(27) (2m)P L3(Ly — L)% J (2m)P L5(Ls+ L)

L—-Ly L+ Ls

L L 1 1 1 )
FT of Double bubble = 5 -+ finite

€ 872 (4m222)




Calculation from MHYV diagrams

(Brandhuber, Penante, GT, Young)

e Back to 2004!

» MHYV diagrams: new perturbative expansion of Yang-Mills
theo 'Y (Cachazo, Svrcek, Witten 2004)

- vertices are off-shell continuation of the MHV amplitudes, to
each internal leg with momentum /. one associates the spinor

[)\oz — Lge géz §d= reference spinoa

- connect vertices using scalar propagators

- derivation from lightcone quantisation of YM + change of
variables in the path integral with Jacobian = 1 (Mansfield; Gorsky, Rosly)

» also works for loops, and without supersymmetry
(cut-constructible parts) (grandhuber, Spence, GT 2004)



» choose three R-symmetry assignments contributing to
one structure at a time
: ABCD A'B'C'D
Tr | 1234 2413
P | 1213 3424

1 1213 2434
o (13) (24
(12)(34)
AMHV(lquB?2¢CD73¢A/B/74¢C/D/) — IP: —1
_ (13)(24)
I (23)(14)

Aeapopeapcpr + Beapapecpep + Ceapepeapop

O,



e New integral to compute:

dP’L . dP L, 1 dP L4 1
I = [ et A Loans 200ms 3 4 .,
) = [ e | G T2 | G s 7 A Lo 2o B o)

» Double bubble x one MHYV vertex

e Work out the integrands: *

» for P:nothing to be done! (-1 x double bubble, o

. (13)(24) . (12)(34)
> forl 23)(14) T (23)(14)
» next using CSWV prescription and momentum

conservation:
(11 L2 |€]|§| L3 L4|E]

Ll Ll N\ T el (Tl
UV divergent manifestly finite
DROP!

(Summarising: Buv =-1, Cyuyv =1 )




e Summary: Auv=1/2, Buv=-1, Cuv =1

(after similar manipulations on Tr)

e Comments:

» E-dependence: drops out at the end of the calculation
- similar to lightcone gauge...

- explicitly: by Lorentz invariance, final result can depend only on
the combination  [¢|L*|¢] = 0

- note that the result cannot depend on L - £ as we have NOT
introduced a spinor & !

» self-energies: vanish with MHYV diagrams (erandhuber, spence, GT 04)

- in lightcone gauge self-energies are finite and do not contribute
to anomalous dimension (Belitsky, Derkachov, Korchemsky, Manashov)

» nice derivation from MHYV rules in twistor space
(Koster, Mitev, Staudacher)



Once again, with generalised unitarity

(Brandhuber, Penante, GT, Young)

® Compute correlator from cuts

» Earlier applications (engelund & Roiban)

» Ingredients:
- on-shell amplitudes (no off-shell continuations) & cut propagators

» Quickly reconstruct the nontrivial cases:

(13)(24) (12)(34) (12)(34) [34]

- : =1 =1
for b ogyiay = ' @i T e Bl L .

- d term: - & \ - .
secon . 2001 - Ly) Ly Ly

- Kite integral, UV finite in four dimensions
- Keep just the 1,drop the rest,or Cuyy =1.

- Similarly for the Tr structure



® Several generalisation/extensions possible

» SU(2|3) sector, higher loops....



Amplitude Yangian &
Dilatation Operator Yangian

(Brandhuber, Heslop, GT, Young, to appear)

® Yangian symmetry is thought to be a fundamental
property of N=4 super Yang-Mills

® Two slightly different manifestations on
» amplitudes
» dilatation operator

® Goal: derive the action of the Yangian on the dilatation
operator from the Yangian of amplitudes



Amplitude Yangian

® Fact |: Tree-level amplitudes in N=4 SYM are Yangian
inva I”iant (Cova I”iant) (Drummond, Henn, Plefka)

>

level-zero generators /4 — ordinary superconformal group

level-one generators Q% = > Q7]

A A B C Z<J o o . . . .
- Q= f&pd; Jj are non-local densities acting on particles i and j

level-one generators — dual superconformal group

- level-one generator p(1) associated to momentum p is (related to)
dual conformal K

- level-one generator g1 associated to g-supersymmetry is (related
to) dual superconformal generator §

amplitudes are covariant under dual superconformal
transformations (Drummond, Henn, Korchemsky, Sokatchev)



Dilatation operator Yangian

® Fact 2: The complete one-loop dilatation operator is
Yangian invariant up to boundary terms (otan, Nappi,witen)

QY H) ~ Jit — Jf!

» Equivalent to showing [Qi5, His] ~ Ji* — J3'
- H= i Hii+1, where Hi acts on sites 1 and 2
» proof is based on acting on irreps of PSU(2,2|4)
» LHS ~ one loop, RHS ~ tree level. Proof relies on identity

h(G)—h(G-1)/j=1 h (j) = jM harmonic number

® Next: derive Fact 2 from Fact |



® Main tool: an intriguing formula relating the dilatation

operator to four-point superamplitudes found by Zwiebel
(+ unpublished work of Beisert)

® Building blocks of this formula:

» tree-level four-point superamplitude
- recall: at one-loop, only two fields interact,2 —2 structure

» tree-level minimal form factors <0| (@1 - ®p)(0) [Py - (I)L>

- represent the states on which the dilatation operator acts

» effectively computes two-particle cuts of one-loop minimal form
factors of (non-protected) operators (wikheim)

® |dea: use known action of Yangian generators on
amplitudes to derive action on the dilatation operator



® States & single-trace operators

» A state corresponds to a single-trace operator Tr(®;--- @ )(z)

» The letters &, : FoB8, oABC  glAB] jad  [ab
(and symmetrised covariant derivatives D acting on them)

» oscillator representation of the states (Gunaydin & Marcus)
(o, at?] =68, (b, b1 =07, {da,diBy =068, a,f=1,2 o&,B=12 A=1,...4
- a, b bosonic oscillators, d fermionic oscillators
» map to the states:
Fobv', vodd, ¢odd, vodddd, Fodddddd, Do abd

® Spinor-helicity translation:

a’® o N, b o N, A o
Qo <> Oy , bg <> Oy, da <> 04




® States in spinor-helicity language:
» combine A% := (A*,\Y n?)

» astate is a polynomial P(Ay,...,Az)in the A'’s satisfying the
physical state condition (vanishing central charge)

® Examples:

—R-symmetry
» half-BPS @ 0o (D) (mmE) o eniion
» Konishi - €aBcpd™Po P - eapepin’)(nSnd)

© I’(A,....AL) = tree-level minimal form factor of the
corresponding operator (wikheim)

» E.g. half-BPS
e (mm) () - =0+ @ ) (0)] - 9B )



® /wiebel’s formula: (second term slightly rewritten)

[H121,2> = /dAgdA4A(1,2,3,4) [p(_47 _3) — (gi;fp(l’z)ﬂ “un-integrated

form’

» phase-space measure dA; := d°\;d°\;d'n; (mod little group)

o ( D )‘ij‘i)(s@) ( D i )‘mé)

» superamplitude A(1,2,3,4) = (12)(23)(34) (41)

» P(1,2) represents the operator/state |---1,2,---)

® Connection to dilatation operator

» integrating out the momentum delta function one gets: zwiebel)

I Bl |
0 0

P N =A1cosf — ePhgsind, Ny, = A1sin€ + e“®Xycos6 (similarly for N.n)

» Neatly reproduces Beisert’s harmonic action form of the
complete dilatation operator at one loop



Matthias Wilhelm’s

® Connection to form factors winem) seminar

H1[1,2) = /dAgdA4A(1,2,3,4)[P(—4,—3) —~ Q;—z)zpu,z)} =

P 4 1
' 3 )

» first term is the two-particle cut of the one-loop form
factor of the operator represented by P

- contains IR divergences (triangle) and also UV divergences (bubbles)
» second term subtracts the IR divergence of the same cut

» Leftover = discontinuity of a (UV-divergent) bubble, whose
coefficient is ~ the dilatation operator

- note: the discontinuity of a bubble if finite



® Summarising:

» Unintegrated form:
[H12|1,2> _ / dAzdAg A(1,2,3,4) [P(—4, _3) — (@)21)(1,2)}}

» integrated form:

[]—hzl,?) = —% /27Td¢ /%de {e2i¢P(1’,2’) _ P(l,Q)ﬂ

® |t is not at all obvious to see how the relation

[Qfm H12] ™ J{4 - J§4

s realised when acting on the integrated form

Amplitudes to the rescue!
o _




® Act with level-one generator p() on un-integrated form:

[Q127H12]|1) 2> = ng /dAgdA4 A(l, 2,3,4) [P(—4, —3) — TP(l, 2)] - <<12>)2
- \(349)

— /dAgdA4 A(1,2,3,4)[Q_a,—3P(—4,-3) — r Q12P(1,2)]

b Qs = (m] 0L +m)40h — d0%6L )ping + Giacdl — (i > j)  from DHP
® Preliminary check: half-BPS operators, e.g. Tr (¢p1% ¢1?)

» First line vanishes since P¢ ¢ (—4,-3) = rP? ¢ (1,2)
(Brandhuber, Spence, GT, Yang)

» Second line: only constant part of d survives

[Q12, Hyo)|0'29™2) = P#797(1,2) /dASdA4 A(1,2,3,4) -7 [ps — pa — (p1 — p2)]

® Result of explicit integration of RHS:

(@ HizllL2) = 20~ pa)[1.2)




® Ingredients of the general proof (for arbitrary states):

» after IBP, combination of generators acting on amplitude is

Q12+ Q34 = Z Qij — (Q13 + Q14 + Q23 + Q24)
i<j
> ZQU related to dual conformal K, which annihilates amplitude
i<j

» (Q13+ Qia+ 023+ (Q24) A =0 since

(Q13 + Qua + Q23 + Q20)* = fEp(J1 + J2)PJC — %féBfgC(Jl + Jo)”

- JCis a symmetry of the amplitude

- [Esfn¢ proportional to the (vanishing) dual Coxeter number of PSU(2,2(4)

- alternative proof: use thatYangian on amplitudes is compatible with cyclicity!
» thus [Qi2, Hi2]|1,2) = P(1,2) /dAgdA4 A(1,2,3,4) -7 |ps — pa — (p1 — p2)]

- remaining term already computed in half-BPS case...



® Result:

HQ12,H12]|1,2> — 2(1?1—202)\1,29

e Comments:

1. very simple extension to show that a similar formula holds if
Q is the level-one generator associated to supersymmetry g:

EQ12,H12H1,2> — 2(Q1—Q2)|1,28

2. not obvious to see this result on the “integrated form” of
Zwiebel’s formula (without amplitudes)!

3. RHS looks like a tree-level quantity!

4. can check other commutators



