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• Calculation of one-loop dilatation operator from       
two-point correlators with on-shell methods              
(Brandhuber, Penante, GT,  Young)

‣ from MHV diagrams 

‣ from generalised unitarity applied to two-point functions

- single-scale problem, unitarity particularly simple

• Derive the action of the Yangian on the dilatation 
operator from the Yangian symmetry of amplitudes   
(Brandhuber, Heslop, GT,  Young)

‣ substantiate the idea that there exists a Yangian symmetry in 
N=4 SYM with different manifestations 

          Two themes



• General form of two-point functions of primary 
operators in a conformal theory:

‣      = classical dimension,      = anomalous dimension                 
(assume momentarily no mixing)

‣ expanding in g: 

‣ anomalous dimension extracted from log divergence

‣ pole in 1/𝜖 in dimensional regularisation

• Definition of the dilatation operator

‣ ZAB = renormalisation constants for the operators {OA} 
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• Scalar operators:  

- A1, …, BL  = 1,…, 4 fundamental R-symmetry indices

‣ This sector is closed at one loop

‣ calculation of anomalous dimension mapped to that of 
the eigenvalues of an integrable Hamiltonian (Minahan & Zarembo)

• Perturbative calculation

‣ at one loop in the planar limit only nearest neighbours 
interact. Effectively the calculation is equivalent to that of 
the two-point correlator

             The SO(6) sector
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• General structure of

‣ from Minahan & Zarembo:  AUV = 1/2,  BUV = -1,   CUV  = 1 
(more accurately:                                                                              )
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• In x space, prototypical UV divergence from

‣ for later applications, go to momentum space: 
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where x12 := x1 � x2 and
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is the scalar propagator in D dimensions. Note that I(x12) has UV divergences arising
from the regions z ! x1 and z ! x2.

Because the MHV diagram method is formulated in momentum space, it is useful to
recast I(x12) as an integral in momentum space. Doing so one finds that
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where L := L1 + L2. The integral over L1 and L3 is the product of two bubble integrals
with momenta as in Figure 2, which are separately UV divergent.

Figure 2: The double-bubble integral relevant for the computation of I(x12).

These divergences arise from the region L1, L3 ! 1. The leading UV divergence of (2.7)
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3 The one-loop dilatation operator from MHV rules

In this section we compute the UV-divergent part of the coe�cients A, B, C defined in
(2.2), representing the trace, permutation and identity flavour structures, respectively. In
order to compute these three coe�cients, it is su�cient to consider one representative
configuration for each one. We will choose the following helicity (or SU(4)) assignments:

ABCD A0B0C 0D0

Tr 1234 2413
P 1213 3424
1l 1213 2434

(3.1)

There is a single MHV diagram to compute, represented in Figure 3. It consists of one
supersymmetric four-point MHV vertex,
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• Back to 2004!

‣ MHV diagrams: new perturbative expansion of Yang-Mills 
theory  (Cachazo, Svrcek, Witten 2004)

- vertices are off-shell continuation of the MHV amplitudes, to 
each internal leg with momentum L one associates the spinor

- connect vertices using scalar propagators

- derivation from lightcone quantisation of  YM + change of 
variables in the path integral with Jacobian = 1 (Mansfield; Gorsky, Rosly)

‣ also works for loops, and without supersymmetry        
(cut-constructible parts) (Brandhuber, Spence, GT 2004)

      Calculation from MHV diagrams

�↵ ! L↵↵̇ ⇠↵̇  = reference spinor ⇠↵̇

(Brandhuber, Penante, GT,  Young)



• Only one MHV diagram!

‣ choose three R-symmetry assignments contributing to 
one structure at a time
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is the scalar propagator in D dimensions. Note that I(x12) has UV divergences arising
from the regions z ! x1 and z ! x2.

Because the MHV diagram method is formulated in momentum space, it is useful to
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where L := L1 + L2. The integral over L1 and L3 is the product of two bubble integrals
with momenta as in Figure 2, which are separately UV divergent.

Figure 2: The double-bubble integral relevant for the computation of I(x12).
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• New integral to compute: 

‣ Double bubble x one MHV vertex

• Work out the integrands: 

‣ for P: nothing to be done!  (-1 x double bubble, or -1)

‣ for I:

‣ next using CSW prescription and momentum 
conservation: 

UV divergent manifestly finite
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• Summary:    AUV = 1/2,  BUV = -1,  CUV  = 1     
(after similar manipulations on Tr)

• Comments:

‣ ξ-dependence: drops out at the end of the calculation

- similar to lightcone gauge…

- explicitly: by Lorentz invariance, final result can depend only on 
the combination 

- note that the result cannot depend on           as we have NOT 
introduced a spinor ξα  ! 

‣ self-energies: vanish with MHV diagrams (Brandhuber, Spence, GT 04)

- in lightcone gauge self-energies are finite and do not contribute 
to anomalous dimension (Belitsky, Derkachov, Korchemsky, Manashov)

‣ nice derivation from MHV rules in twistor space                
(Koster, Mitev, Staudacher)

[⇠|L2|⇠] = 0

L · ⇠



• Compute correlator from cuts

‣ Earlier applications (Engelund & Roiban)

‣ Ingredients:    

- on-shell amplitudes (no off-shell continuations) & cut propagators

‣ Quickly reconstruct the nontrivial cases:    

- for I:

- second term: 

- Kite integral, UV finite in four dimensions 

- Keep just the 1, drop the rest, or  CUV  = 1.

- Similarly for the Tr structure

 Once again, with generalised unitarity

Figure 2: The single cut diagram contributing to the dilatation operator at one loop.

1l : A(1�12 , 4�34 , 3�24 , 2�13) =
h13ih24i
h23ih14i . (2.10)

Three observations are in order here. First, we note that the same integrands as in the
approach of [1] have appeared, with the important di↵erence that, in that paper, the spinors
associated with the on-shell momenta are given by the appropriate o↵-shell continuation
for MHV diagrams. Here the spinors for the cut loop momenta do not need any o↵-shell
continuation. Furthermore, for the case of the P integrand there is obviously no di↵erence
between the two approaches, and the resulting integral is given by a double bubble where
all the four propagators are cut. In the other two cases, this integral is dressed by the
appropriate amplitude. Finally, we note that the colour factor associated with all diagrams
is obtained from the contraction
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· · ·
from the operators (and we indicate only generators corresponding to the fields being con-
tracted). We now proceed to construct the relevant integrands.

The trace integrand

In this case the relevant amplitude (which multiplies four cut propagators) can be rewritten
as2
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where we have used `1 + `2 = �(`3 + `4) := L. Having rewritten the amplitude in terms
of products of momenta, we lift the four cut momenta o↵ shell. The resulting integral has
the structure of a product of two linear bubbles,
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we find that (2.13) is equal to 1/2 times a double bubble. Using (1.4) we finally arrive
at AUV = 1/2. Note that in the definitions of AUV, BUV, and CUV, a factor of �/(8⇡2) ⇥
�

1/(4⇡2x2
12)

�2 ⇥ (1/✏) will always be understood, with � := g2YMN .

The P integrand

No calculation is needed in this case, and the result is simply given by minus a cut double-
bubble integral. Lifting the cut integral to a full loop integral we get BUV = �1.

The 1l integrand

The relevant amplitude in this case is

h13i h24i
h23i h14i = 1 +
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Thus the first term in (2.16) gives the cut double-bubble integral, whereas we can use
on-shell identities to rewrite the second term as
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Lifting the cut propagators of the second integral to full propagators, it is immediate to
see that this term produces the integral represented in Figure 3. This integral is finite in
four dimensions and thus does not contribute to CUV. We then conclude that CUV = 1.

Figure 3: The finite integral corresponding to the term in (2.17). This integral is irrelevant for
the calculation of the dilatation operator.

For later convenience, we explicitly write down the form of the UV-divergent part of the
correlator (2.4),
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In terms of a spin-chain Hamiltonian, this can be represented as [9]
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(Brandhuber, Penante, GT,  Young)



• Several generalisation/extensions possible

‣ SU(2|3) sector, higher loops….



• Yangian symmetry is thought to be a fundamental 
property of N=4 super Yang-Mills

• Two slightly different manifestations on 

‣ amplitudes

‣ dilatation operator

• Goal: derive the action of the Yangian on the dilatation 
operator from the Yangian of amplitudes

Amplitude Yangian &
Dilatation Operator Yangian

(Brandhuber, Heslop, GT,  Young, to appear)



• Fact 1:   Tree-level amplitudes in N=4 SYM are Yangian 
invariant (covariant)  (Drummond, Henn, Plefka)

‣ level-zero generators JA ⟶ ordinary superconformal group

‣ level-one generators 

-                              are non-local densities acting on particles i and j

‣ level-one generators ⟶ dual superconformal group     

- level-one generator p(1) associated to momentum p is (related to) 
dual conformal K

- level-one generator q(1) associated to q-supersymmetry is (related 
to) dual superconformal generator S

‣ amplitudes are covariant under dual superconformal 
transformations (Drummond, Henn, Korchemsky, Sokatchev)

QA
ij := fA

CBJ
B
i JC

j

QA =
X

i<j

QA
ij

Amplitude Yangian



• Fact 2:   The complete one-loop dilatation operator is 
Yangian invariant up to boundary terms (Dolan, Nappi, Witten)

‣ Equivalent to showing    

- H =        Hii+1 ,  where  H12  acts on sites 1 and 2

‣ proof is based on acting on irreps of PSU(2,2|4)

‣ LHS ~ one loop,  RHS ~ tree level. Proof relies on identity

• Next: derive Fact 2 from Fact 1 

Dilatation operator  Yangian

LX

i=1

⇥
h(j)� h(j � 1)

⇤
/j = 1 h (j) =  jth  harmonic number 

[QA , H] ⇠ JA
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L

[QA
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2



• Main tool: an intriguing formula relating the dilatation 
operator to four-point superamplitudes found by Zwiebel       
(+ unpublished work of Beisert)

•  Building blocks of this formula:

‣ tree-level four-point superamplitude

- recall: at one-loop, only two fields interact, 2 →2 structure

‣ tree-level minimal form factors

- represent the states on which the dilatation operator acts

‣ effectively computes two-particle cuts of one-loop minimal form 
factors of (non-protected) operators (Wilhelm) 

• Idea: use known action of  Yangian generators on 
amplitudes to derive action on the dilatation operator

⌦
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↵



• States & single-trace operators

‣ A state corresponds to a single-trace operator                             

‣ The letters      :                                                            
(and symmetrised covariant derivatives D acting on them)

‣ oscillator representation of the states (Gunaydin & Marcus)

- a, b  bosonic oscillators,  d  fermionic oscillators

‣ map to the states: 

• Spinor-helicity translation:
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�i F↵� ,  ↵ABC , �[AB],  ̄↵̇A, F̄ ↵̇�̇

F̄ $ b†b† ,  ̄ $ b†d† , �$ d†d† ,  $ a†d†d†d† , F $ a†a†d†d†d†d† , D $ a†b†

a†↵ $ �↵ , b†↵̇ $ �̃↵̇, d†A $ ⌘A

a↵ $ @↵ , b↵̇ $ @↵̇, dA $ @A

[a↵, a
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†�̇ ] = ��̇↵̇ , {dA, d†B} = �BA , ↵,� = 1, 2, ↵̇, �̇ = 1, 2, A = 1, . . . , 4



• States in spinor-helicity language: 

‣ combine 

‣ a state is a polynomial                      in the    ’s satisfying the 
physical state condition (vanishing central charge)

• Examples: 

‣ half-BPS

‣ Konishi    

•                     = tree-level minimal form factor of the  
corresponding operator (Wilhelm)

‣ E.g. half-BPS     
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• Zwiebel’s formula: (second term slightly rewritten) 

‣ phase-space measure                               (mod little group)   

‣ superamplitude 

‣ P(1,2)   represents the operator/state  

• Connection to dilatation operator

‣ integrating out the momentum delta function one gets: (Zwiebel)

‣                                                                  (similarly for       ) 

‣ Neatly reproduces Beisert’s harmonic action form of the 
complete dilatation operator at one loop
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• Connection to form factors (Wilhelm)

‣ first term is the two-particle cut of the one-loop form 
factor of the operator represented by P

- contains IR divergences (triangle) and also UV divergences  (bubbles)

‣ second term subtracts the IR divergence of the same cut

‣ Leftover = discontinuity of a (UV-divergent) bubble, whose 
coefficient is ~ the dilatation operator

- note: the discontinuity of a bubble if finite  

H12|1, 2i =

Z
d⇤3d⇤4 A(1, 2, 3, 4)

h
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q
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(a) (b)

p1
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q

Figure 1: In Figure (a) we show the diagram calculating the cut in the q2-channel of
the Sudakov form factor (2.3). The cross denotes a form factor insertion. A second
diagram with legs 1 and 2 swapped has to be added and doubles up the result of the first
diagram. The result of this cut is given by (twice) a cut one-mass triangle function,
depicted in Figure (b).

The q2-cut of the form factor (i.e. its discontinuity in the q2-channel) is obtained
from the diagram on the left-hand side of Figure 1, whose expression is3
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∣

∣

q2−cut
= 2

∫

dLIPS(l1, l2; q) F
(0)(l1, l2; q)A

(0)
(

φ12(p1),φ12(p2),φ34(l1),φ34(l2)
)

,

(2.5)
where the Lorentz invariant phase space measure is

dLIPS(l1, l2; q) := dDl1 d
Dl2 δ

+(l21)δ
+(l22)δ

D(l1 + l2 + q) , (2.6)

and q is given in (2.4). The tree-level component amplitude appearing in (2.5),
A(0)

(

φ12(p1),φ12(p2),φ34(l1),φ34(l2)
)

, can be extracted from Nair’s superamplitude
[18]

AMHV := gn−2 (2π)4δ(4)
(

n
∑

i=1

λiλ̃i

)

δ(8)
(

n
∑

i=1

λiηi
)

n
∏

i=1

1

⟨ii+ 1⟩ , (2.7)

where λn+1 ≡ λ1. The result is

A(0)
(

φ12(p1),φ12(p2),φ34(l1),φ34(l2)
)

=
⟨l1l2⟩⟨12⟩
⟨l21⟩⟨2l1⟩

. (2.8)

The other quantity appearing in (2.5), F (0) is the tree-level expression for the form
factor (2.3), which is trivially equal to 1. Thus, we get

F (1)(q2)
∣

∣

q2−cut
= 2

∫

dLIPS(l1, l2; q)
⟨12⟩⟨l1l2⟩
⟨2l1⟩⟨l21⟩

= −2 q2
∫

dLIPS(l1, l2; q)
1

(l2 + p1)2
.

(2.9)

3In this and the following formulae we omit a power of the ’t Hooft coupling, defined as a :=
(g2N)/(16π2)(4πe−γ)ϵ. Note that this is 1/2 the ’t Hooft coupling defined in [12].
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• Summarising: 

‣ Unintegrated form: 

‣ integrated form: 

• It is not at all obvious to see how the relation 

H12|1, 2i =

Z
d⇤3d⇤4 A(1, 2, 3, 4)

h
P (�4,�3) �

✓
h12i
h34i

◆2

P (1, 2)
i

H12|1, 2i = � 1

⇡

Z 2⇡

0
d�

Z ⇡
2

0
d✓

h
e2i�P (10, 20)� P (1, 2)

i

[QA
12 , H12] ⇠ JA

1 � JA
2

is realised when acting on the integrated form

Amplitudes to the rescue!



• Act with level-one generator p(1) on un-integrated form:

‣                                                                            from DHP

• Preliminary check: half-BPS operators, e.g. Tr (𝜙12 𝜙12)

‣ First line vanishes since                                                  
(Brandhuber, Spence, GT,  Yang)

‣ Second line: only constant part of d survives                                     

• Result of explicit integration of  RHS: 

P�12�12

(�4,�3) = r P�12�12

(1, 2)

r :=

✓
h12i
h34i

◆2

Qij =
⇣
m �

j ↵�
�̇
↵̇ + m̄ �̇

j ↵̇�
�
↵ � dj�

�
↵�

�̇
↵̇

⌘
pi ��̇ + q̄j↵̇Cq

C
i↵ � (i $ j)

[Q12, H12]|1, 2i = Q12

Z
d⇤3d⇤4 A(1, 2, 3, 4)

⇥
P (�4,�3)� r P (1, 2)

⇤

�
Z

d⇤3d⇤4 A(1, 2, 3, 4)
⇥
Q�4,�3P (�4,�3)� r Q12P (1, 2)

⇤

[Q12, H12]|�12�12i = P�12�12

(1, 2)

Z
d⇤3d⇤4 A(1, 2, 3, 4) · r

⇥
p3 � p4 � (p1 � p2)

⇤

[Q12, H12]|1, 2i = 2(p1 � p2)|1, 2i



• Ingredients of the general proof (for arbitrary states): 

‣ after IBP, combination of generators acting on amplitude is                                                                 

‣             related to dual conformal K, which annihilates amplitude

‣ (Q13 +   Q14 + Q23 + Q24) A = 0 since

- JC is a symmetry of the amplitude

-               proportional to the (vanishing) dual Coxeter number of PSU(2,2|4)

- alternative proof:  use that Yangian on amplitudes is compatible with cyclicity!

‣ thus 

- remaining term already computed in half-BPS case…

X

i<j

Qij

Q12 +Q34 =
X

i<j

Qij � (Q13 +Q14 +Q23 +Q24)

(Q13 +Q14 +Q23 +Q24)
A = fA

CB(J1 + J2)
BJC � 1

2
fA
CBf

BC
D (J1 + J2)

D

fA
CBf

BC
D

[Q12, H12]|1, 2i = P (1, 2)

Z
d⇤3d⇤4 A(1, 2, 3, 4) · r

⇥
p3 � p4 � (p1 � p2)

⇤



• Result:

• Comments: 

1. very simple extension to show that a similar formula holds if   
Q is the level-one generator associated to supersymmetry q: 

2. not obvious to see this result on the “integrated form” of 
Zwiebel’s   formula (without amplitudes)!

3. RHS looks like a tree-level quantity!

4. can check other commutators

[Q12, H12]|1, 2i = 2(p1 � p2)|1, 2i

[Q12, H12]|1, 2i = 2(q1 � q2)|1, 2i


