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These notes offer an introduction to the functorial and algebraic
description of 2-dimensional topological quantum field theories ‘with
defects’, assuming only superficial familiarity with closed TQFTs in
terms of commutative Frobenius algebras. The generalisation of this
relation is a construction of pivotal 2-categories from defect TQFTs.
We review this construction in detail, flanked by a range of examples.
Furthermore we explain how open/closed TQFTs are equivalent to
Calabi-Yau categories and the Cardy condition, and how to extract
such data from pivotal 2-categories.
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1 Introduction

Defects in field theories describe various interesting phenomena in physics, and
their conceptual significance is becoming increasingly apparent in mathematics.
In particular, it is just as natural and useful to consider defects in topological
quantum field theories as it is to consider morphisms in categories.

In physics, topological defects are lower-dimensional regions in spacetime where
something special is going on. They are ‘defective’ in the sense that they are dif-
ferent in nature and/or substance from their surroundings. They are ‘topological’
because geometric details like metrics are not necessary to characterise them; typ-
ically this goes hand in hand with a high degree of stability. This loose description
of topological defects captures the common denominator of various phenomena in
cosmology (cosmic strings), fluid dynamics (hydrodynamic solitons), condensed
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matter (domain walls in ferromagnets), protein folding (topological frustration),
and topological quantum computing.

In mathematical physics and pure mathematics, topological defects take on a
more conceptual role. They relate and compare different quantum field theories,
and they provide a unifying perspective. In particular, symmetries of a given QFT
and dualities between distinct theories (such as mirror symmetry) are special
examples of topological defects.

The purpose of these notes is to give an introduction to topological defects
in 2-dimensional topological quantum field theory. Such ‘defect TQFTs’ are
defined in the spirit of Atiyah and Segal, as functors on certain decorated bordism
categories. Recall that a 2-dimensional closed TQFT is a symmetric monoidal
functor Zc : Bord2 → Vectk, where Bord2 has oriented circles S1 as objects and
oriented bordism classes as morphisms.1 As we will discuss in detail in the next
section, a defect TQFT is obtained by enlarging the bordism category: both
objects and morphisms may have submanifolds of codimension 1, decorated by
certain data. An example of such a ‘defect bordism’ is the decorated surface

+ −

+

+

−

−
+

+

α1

α2

α3

α4

x1
x2x3

x4
x5

(1.1)

Closed TQFTs are recovered as special cases of defect TQFTs by restricting
to trivial decorations only. For instance, if we forget all decorations in (1.1) we
obtain the familiar pair-of-pants

= .

More generally, open/closed TQFTs Zoc can also be subsumed under the um-
brella of defect TQFTs. As we will review independently in Section 3.2, by
definition Zoc does not only act on S1, but also on intervals Iab with endpoints
labelled by elements a, b of some chosen set B of ‘boundary conditions’. We will

1Throughout these notes we assume that every manifold comes with an orientation.
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also see in which precise way open/closed TQFTs are the special cases of defect
TQFTs whose only defect lines are boundaries. Hence defect TQFTs reside on
top of the sequence

closed TQFTs & open/closed TQFTs & defect TQFTs. (1.2)

It is well-known that 2-dimensional closed TQFTs Zc are equivalently de-
scribed by commutative Frobenius algebras, namely the vector space Zc(S1)
with (co)multiplication coming from the (co)pair-of-pants. Similarly, open/closed
TQFTs Zoc naturally give rise to a category whose objects are the boundary
conditions a, b, . . . ∈ B, and whose morphism spaces are what Zoc assigns to
the decorated intervals Iab, cf. Section 3.2. As a generalisation of these facts we
will explain how every 2-dimensional defect TQFT Z naturally gives rise to a
certain 2-category BZ [DKR]. Its objects are to be thought of as closed TQFTs,
its 1-morphisms correspond to line defects, and its 2-morphisms are operators
associated to intersection points of defect lines. Thus in a nutshell:

closed TQFT =⇒ algebra

open/closed TQFT =⇒ category

defect TQFT =⇒ 2-category

One motivation to consider the 2-category BZ is the following simple motto:

Correlators of the theory Z are string diagrams in the 2-category BZ .

Indeed, we will explain how topological correlators rigorously translate into the
algebraic setting of BZ , where they can be easily manipulated and computed. As
specific examples we will discuss sphere and disc correlators in detail.

Another reason to adopt a higher-categorical language to study defect TQFTs
is that the conceptual clarity and bird’s eye view make known symmetries and
dualities appear more natural. Even better, the algebraic framework of BZ paves
the way to new dualities and new equivalences of categories [FFRS, CR, CRCR,
CQV].

The remainder of these notes is organised as follows. In Section 2.1 we in-
troduce the 2-dimensional defect bordism category Borddef

2 (D). Then we define
TQFTs as symmetric monoidal functors Z : Borddef

2 (D) → Vectk and explain
how closed and open/closed TQFTs are special cases. (An independent intro-
duction to open/closed TQFT is given in Section 3.2.) In Section 2.2 we review
the basic notions for 2-categories which are needed for the construction of a ‘piv-
otal’ 2-category BZ for every defect TQFT Z in Section 2.3. Then in Section 2.4
we discuss various examples.

Section 3 takes pivotal 2-categories as the starting point and shows how to
construct open/closed TQFTs from them, under two natural assumptions. The
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purely closed case is discussed in Section 3.1, where for every object in a 2-
category satisfying Assumption 3.1 we construct a commutative Frobenius alge-
bra. In the parenthetic Section 3.2 we review open/closed TQFTs and discuss
how they are algebraically encoded in terms of Calabi-Yau categories and the
Cardy condition. Finally in Section 3.3 we extract such algebraic data from ev-
ery object in a 2-category satisfying Assumption 3.1 and 3.7. Thus we make sense
of the purely algebraic version of (1.2):

Frobenius algebras & Calabi-Yau categories & pivotal 2-categories.
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2 Defect TQFT

2.1 Functorial definition

To describe an open/closed TQFT one has to specify the set of boundary con-
ditions. Similarly, to describe an n-dimensional defect TQFT we need sets Dj

whose elements label the j-dimensional defects in bordisms for j ∈ {1, 2, . . . , n}.
Note that for topological theories we do not require a set D0 as input data to
label points; we will see how the defect TQFT itself computes the set D0.

In addition to the defect label sets Dj, we also need a set of maps D be-
tween them to encode how defects of different dimensions are allowed to meet
– e. g. which labels in Dn−1 may occur on domain walls between two given n-
dimensional regions, or what the neighbourhood around a D1-labelled defect line
can look like. We collectively refer to the sets Dj and maps D as defect data D.
We will momentarily describe D in detail for the case n = 2.

An n-dimensional defect TQFT naturally gives rise to an (n+1)-layered struc-
ture: The basic layer (‘objects’) is formed by the set Dn. The next layer (‘1-
morphisms’) mediates between elements of Dn (via the maps D), and is com-
prised of lists of elements of Dn−1. Then there is a layer (‘2-morphisms’) made
of elements in Dn−2, which is between 1-morphisms. This goes on until we have
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(n − 1)-morphisms built from D1, and finally there are n-morphisms which are
computed from the TQFT itself. Unsurprisingly, this (n + 1)-layered structure
turns out to be an ‘n-category’. The case n = 2 was first worked out in [DKR],
and we will now review it in detail.2

We assume the reader is familiar with Atiyah’s definition of 2-dimensional
closed TQFTs as symmetric monoidal functors Bord2 → Vectk as reviewed in
[Koc]. Furthermore, we will exclusively consider oriented TQFTs; hence all the
circles and bordisms below implicitly come with an orientation. A 2-dimensional
defect TQFT is a generalisation where the bordism category Bord2 is enlarged:
by definition a defect TQFT is a symmetric monoidal functor

Z : Borddef
2 (D1, D2, s, t) −→ Vectk .

What is Borddef
2 (D1, D2, s, t)? First of all, D1 and D2 are any two chosen

sets, which will label 1-dimensional lines and 2-dimensional regions on bordisms,
respectively. The source and target maps

s, t : D1 −→ D2

tell us how D2-labelled regions may meet at D1-labelled lines. To wit, in the
defect bordisms introduced below, the region to the right of a line labelled by
x ∈ D1 must be labelled by s(x) ∈ D2, and the label on the left is t(x) ∈ D2:

t(x) s(x)

x

We now use the chosen defect data

D := (D1, D2, s, t)

to decorate the objects and morphisms in Borddef
2 (D). An object in Borddef

2 (D) is
a disjoint union of circles S1 with finitely many points p ∈ S1 \ {−1} labelled by
pairs (x, ε) with x ∈ D1 and ε ∈ {±}, and line segments between such points p
are labelled by elements in D2. Such decorated circles are called defect circles.
An example of an object in Borddef

2 (D) is the disjoint union

(x1,+)

(x2,+)

(x3,−)

α1

α2

α3

β

2The case n = 3 was worked out in [BMS]. The details for n > 3 have not been worked out.
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where the second defect circle has no marked point and is decorated with β ∈ D2.
A morphism in Borddef

2 (D) is either a permutation of the labels on a given defect
circle, or a defect bordism class. A defect bordism is an ordinary bordism Σ in
Bord2 together with an oriented 1-dimensional submanifold Σ1. This submanifold
may have nonempty boundary ∂Σ1, but we require ∂Σ1 to lie in the boundary
of the bordism: ∂Σ1 ⊂ ∂Σ. Each connected component (‘defect line’) of Σ1

is labelled by an element in D1, while the components (‘phases’) of Σ \ Σ1 are
labelled by elements in D2 such that the phase to the right (respectively left)
of an x-labelled defect line is decorated by s(x) (respectively t(x)). Defect lines
may meet the boundary of Σ only transversally, and only at marked points p of
the associated defect circle. If p is decorated by (x, ε) and sits on the ingoing
boundary, then the defect line touching p must also be labelled by x, and it must
be oriented away from (respectively towards) the boundary if ε = + (respectively
ε = −). If p sits on the outgoing boundary then the role of the sign ε is reversed.
Finally, the D2-labels of line segments in objects in Borddef

2 (D) must coincide
with those of their adjacent phases in Σ \ Σ1.

Two defect bordisms belong to the same class if there exists an isotopy between
them whose restriction to defect lines is a bijection, and if the defect labels are the
same. The condition that marked points on defect circles cannot sit at −1 ∈ S1

ensures that rotating all marked points by 2π is disallowed and hence cannot give
rise to non-trivial endomorphisms.

An example of a defect bordism is the decorated surface

+ −

+

+

−

−
+

+

α1

α2

α3

α4

x1
x2x3

x4
x5

(2.1)

where we choose to view the two inner circles as incoming boundaries, and the
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outer circle as outgoing. Hence this ‘pair-of-pants’ represents a morphism

(x3,−)

(x2,+)

(x1,+)

α2

α1

α1 t (x2,−)

(x3,+)

α1

α2

−→

(x1,+)
(x4,−)

(x4,+)

α1

α1

α3

.

As in (2.1), we sometimes do not decorate boundaries with D1, D2 when drawing
bordisms, as these decorations can be inferred from those of the interior.

2.1.1 Open/closed TQFTs as defect TQFTs

A closed TQFT is the special case of a ‘defect TQFT without defects’. More
precisely, if we choose D1 = ∅ (‘no defect lines’) and D2 = {•} (‘only a single
phase’) then s, t are trivial, and forgetting the label • attached to every bordism
is an equivalence Borddef

2 (∅, {•})→ Bord2.
Another special case are open/closed TQFTs Bordoc

2 (B) → Vectk, where ob-
jects in the bordism category may also involve intervals with endpoints labelled
by elements of a set (of ‘boundary conditions’) B, cf. Section 3.2. Indeed, let us
choose

D1 = B , D2 = {•, ◦} with s(D1) = {◦} , t(D1) = {•} ,

where we interpret ◦ as the label for the ‘trivial theory’ (whose associated Frobe-
nius algebra is k). Then there is a forgetful functor U : Borddef

2 (B, {•, ◦}, s, t)→
Bordoc

2 (B) which erases all line segments and phases labelled by ◦, and which
forgets the label • for the remaining line segments and phases. For example, a
flat pair-of-pants in Bordoc

2 (B) is obtained as

x

y

y

z

x

z

x

z

y = U


x

z

y •◦


where the ◦-labelled phase may close to any bordism, e. g. the sphere.

A 2-dimensional closed TQFT Zc is equivalently described by a commutative
Frobenius algebra [Koc]. Similarly, an open/closed TQFT Zoc is equivalent to a
commutative Frobenius algebra (what Zoc assigns to a circle) and a Calabi-Yau
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category (whose set of objects is B, and whose Hom spaces are what Zoc assigns to
intervals), together with certain maps [Laz, AN, MS, LP1]. Below in Section 3.2
we will review this in more detail, and in Section 3.3 we will explain how all these
algebraic structures are naturally obtained from the general perspective of defect
TQFT. However, we first need to bring the process

closed

TQFT ≈ Frobenius algebra
open/closed

TQFT ≈ Calabi-Yau category
add boundary

structure

to its logical conclusion and show how the expectation

defect

TQFT ≈ pivotal 2-category

can be made rigorous.

2.2 Pivotal 2-categories

We start with a brief review of 2-categories and their graphical calculus; for
a more detailed account we refer to [Ben, KS, Lau2]. Let us first recall that
every k-algebra A can be viewed as the endomorphism space End(∗) of a k-linear
category with a single object ∗. In this sense a category generalises the idea of
‘many algebras together’.

A 2-category is ‘many monoidal categories together’. The precise definition is
that a 2-category is a category enriched over the category of small categories.
This means that for any two objects α, β of a 2-category B, there is a category
B(α, β) whose objects are called 1-morphisms from α to β, and whose morphisms
are called 2-morphisms. The composition of two 2-morphisms in B(α, β) is called
vertical composition. Since 1-morphisms can also be composed (being morphisms
in B) there are functors

⊗ : B(β, γ)× B(α, β) −→ B(α, γ)

which we refer to as horizontal composition. A good example of a 2-category is
that whose objects, 1- and 2-morphisms are small categories, functors and natural
transformations, respectively.

The attributes ‘vertical’ and ‘horizontal’ for the two types of composition in
a 2-category B derive from the graphical calculus, which allows to perform com-
putations in B in terms of so-called string diagrams, according to the following
rules:

• Objects in B label 2-dimensional regions in the plane.

• 1-morphisms X : α → β label smooth lines with α to the right and β to
the left. The lines must be progressive, i. e. at no point on the line may
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the tangent vector have zero component in upward direction, cf. [BMS,
Def. 2.8]. For example:

β α

X

Such an X-line is also identified with the unit 2-morphism 1X ∈ End(X).

• 2-morphisms Φ : X → Y label vertices on a line with label X below and
label Y above the vertex, respectively:

β α

X

Y

Φ .

This diagram is identified with Φ.

• Vertical composition of Φ : X → Y and Ψ : Y → Z really is vertical, read
from bottom to top:

X

Y

Z

Φ

Ψ

=

X

Z

ΨΦ .

Note that as above we sometimes suppress labels for 2-dimensional regions.

• Horizontal composition really is horizontal, read from right to left:

γ β α

X

Y

X ′

Y ′

ΦΨ = γ α

X ′ ⊗X

Y ′ ⊗ Y

Ψ⊗ Φ ≡ γ

β

β

α

X

Y

X ′

Y ′

Ψ⊗ Φ

Here we used the additional rule that elements in the set of 2-morphisms
Hom(X1 ⊗ · · · ⊗ Xm, Y1 ⊗ · · · ⊗ Yn) may be depicted as vertices with m
incoming Xi-lines and n outgoing Yj-lines. Consistency with X = X ⊗ 1α
then demands that the unit 1-morphisms 1α can be represented by invisible
lines.

Hence every progressive string diagram represents a 2-morphism by reading it
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from bottom to top and from right to left. For example

X1 X2 X3 X4

Y1 Y2

Φ1 Φ2

Ψ

= Ψ◦(Φ1⊗Φ2) : X1⊗X2⊗X3⊗X4 −→ Y1⊗Y2 . (2.2)

But what if the loci of the lines or vertices vary a little? Does

X1 X2 X3 X4

Y1 Y2

Φ1
Φ2

Ψ

represent the same 2-morphism as (2.2)? It better should, and this is guaranteed
by the following rule:

• String diagrams which are related by progressive isotopies represent the
same 2-morphism [BMS, Sect. 2.2].

This in particular implies the interchange law

(1⊗ Φ) ◦ (Ψ⊗ 1) =

Ψ

Φ

=

Ψ

Φ

= (Ψ⊗ 1) ◦ (1⊗ Φ) (2.3)

which is a consequence of the functoriality of ⊗.

String diagrams for 2-categories are already reminiscent of local patches on de-
fect bordisms. To make this relation precise we need to enlarge the type of string
diagrams we consider, by giving an orientation to every line, and by allowing
them to make ‘U-turns’. In order to continue to have a 1-to-1 relation between
isotopy classes of string diagrams and 2-morphisms, we need however to consider
2-categories with additional structure: 2-categories ‘with adjoints’.

Given a 1-morphism X : α → β in a 2-category B, we say that X has a left
adjoint if there is †X ∈ B(β, α) together with 2-morphisms

evX : †X ⊗X −→ 1α , coevX : 1β :−→ X ⊗ †X
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subject to the conditions(
1X ⊗ evX

)
◦
(

coevX ⊗1X
)

= 1X ,
(

evX ⊗1†X
)
◦
(
1†X ⊗ coevX

)
= 1†X . (2.4)

Since the adjunction maps evX , coevX are something special, they deserve spe-
cial diagrammatic notation:

evX =

X†X

, coevX =
X †X

. (2.5)

Here we are using our final rule for string diagrams:

• Lines for objects X with an adjoint come with an orientation. Such lines
need not be progressive, but the only non-progressive parts must be dia-
grams for adjunction maps as in (2.5) or (2.6). Upward-oriented line seg-
ments are labelled X, downward-oriented segments are labelled †X or X†.

In diagrammatic language the conditions (2.4) are easy to remember: they are
called Zorro moves and state that ‘lines may be straightened out’:

X

X

=

X

X

,

†X

†X

=

†X

†X

.

Similarly, the right adjoint of X ∈ B(α, β) is X† ∈ B(β, α) together with
adjunction maps

ẽvX =

X†X

: X ⊗X† −→ 1β , c̃oevX =
X† X

: 1α −→ X† ⊗X (2.6)

that satisfy the Zorro moves

X

X

=

X

X

,

X†

X†

=

X†

X†

.

If every 1-morphism in B has a left and a right adjoint, we say that B has adjoints.
While it is not difficult to prove that left and right adjoints are unique up to

isomorphism, †X need not be isomorphic to X† in general. However, since from
the perspective of TQFT taking the adjoint corresponds to orientation reversal
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on defect lines, we expect †X = X† in the 2-categories we will construct from
defect TQFTs. More precisely, we will encounter pivotal 2-categories, which
by definition have adjoints with †X = X† for all 1-morphisms X, and where
both adjoints for 2-morphisms are identified as well. This means we require the
identities

Z†

X†

Φ =

†Z

†X

Φ ,

Y †X†

(Y ⊗X)†

=

†Y†X

†(Y ⊗X)

(2.7)
whenever these diagrams make sense.

If the left and right adjoints of a 1-morphism X ∈ B(α, β) coincide, we can
compose c̃oevX with evX , and coevX with ẽvX . These composites are called the
left and right quantum dimensions:

diml(X) =

α

β

X

∈ End(1α) , dimr(X) =

β

α

X

∈ End(1β) .

(2.8)
More generally, in a pivotal 2-category the left and right traces of an endomor-
phism Ψ ∈ End(X) are defined to be

trl(Ψ) =

α
β

X

Ψ ∈ End(1α) , trr(Ψ) =

β
α

X

Ψ ∈ End(1β) . (2.9)

It follows from the first identity in (2.7) that traces have the expected cyclic
property, i. e. trl(ΦΨ) = trl(ΨΦ) and trr(ΦΨ) = trr(ΨΦ) for any anti-parallel pair
of 2-morphisms Φ,Ψ.

The above notions of adjoints, quantum dimensions and traces generalise the
case of finite-dimensional vector spaces V ∈ Vectk. Indeed, †V and V † are given
by the dual vector space V ∗, and evV really is the evaluation V ∗ ⊗k V → k,
ϕ ⊗ v 7→ ϕ(v). Choosing a basis {ei} of V , we set coevV (λ) = λ

∑
i ei ⊗ e∗i for

all λ ∈ k, and analogously for ẽvV and c̃oevV . Then one easily verifies the Zorro
moves, and (2.9) reduces to the ordinary traces of linear operators (under the
canonical identification V ∗∗ ∼= V ). In particular we have diml(V ) = dimr(V ) =
dimk(V ).
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2.3 Pivotal 2-categories from defect TQFTs

With the above preparations we can now construct, following [DKR], the pivotal
2-category BZ associated to a defect TQFT

Z : Borddef
2 (D) −→ Vectk

for any set of defect data D = (D1, D2, s, t). It will be convenient to switch
between source and target maps depending on orientations, for which we define

s(x,+) = s(x) , t(x,+) = t(x) and s(x,−) = t(x) , t(x,−) = s(x)

for all x ∈ D1.
Before we start with the construction of BZ , let us lead with its interpretation:

objects =̂ closed TQFTs

1-morphisms =̂ line defects

2-morphisms =̂ ‘local’ operators inserted at defect junctions

vertical composition =̂ operator product (2.10)

horizontal composition =̂ fusion product

unit 1-morphisms =̂ invisible defects

adjunction =̂ orientation reversal

With this in mind it is no surprise that we define the objects of BZ to be the
label set for 2-dimensional phases on defect bordisms:

Obj(BZ) = D2 .

Later in Section 3.1 we will extract a commutative Frobenius algebra from BZ
for every α ∈ D2, so objects really are closed TQFTs.

The set of 1-morphisms α→ β is defined to be{(
(x1, ε1), . . . , (xn, εn)

)
∈ (D1 × {±})n

∣∣∣ n > 0 , s(xn, εn) = α , t(x1, ε1) = β ,

s(xi, εi) = t(xi+1, εi+1) for i ∈ {1, 2, . . . , n− 1}
}
. (2.11)

Why? Clearly we want a defect line labelled by x ∈ D1 to be a 1-morphism
between the objects s(x) and t(x):

x

s(x)t(x) . (2.12)
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But if this defect line is ‘fused’ with another one labelled y ∈ D1 whose source
coincides with the target of x,

y

s(y)= t(x)t(y) , (2.13)

there is a priori no element ‘y ⊗ x’ in D1 to label the fusion product of y and x.
However, we can compose (2.12) and (2.13) to obtain

xy

s(x)s(y)= t(x)t(y) . (2.14)

This picture should be thought of as the composite 1-morphism of y and x.
And in general, any list of composable defect line labels with orientations X =
((x1, ε1), . . . , (xn, εn)) as in (2.11) is a 1-morphism from α to β:

xnxn−1xn−2x1

s(xn) = αt(xn)= t(xn−1)s(xn−1)= t(xn−2). . .β = t(x1)

(2.15)

For X = ((x1, ε1), . . . , (xn, εn)) : α→ β and X̃ = ((x̃1, ε̃1), . . . , (x̃m, ε̃m)) : β →
γ we define horizontal composition to be concatenation of lists,

X̃ ⊗X =
(
(x̃1, ε̃1), . . . , (x̃m, ε̃m), (x1, ε1), . . . , (xn, εn)

)
: α −→ γ .

In particular, (2.14) really is the tensor product of (2.12) and (2.13). It is clear
that horizontal composition in BZ is associative, and the unit 1-morphism 1α is
simply the empty sequence (n = 0).

The vector space(!) of 2-morphisms Hom(X, Y ) forX = ((x1, ε1), . . . , (xn, εn)) :
α→ β and Y = ((y1, ν1), . . . , (ym, νm)) : α→ β is defined to be

Hom(X, Y ) = Z


(y1, ν1)

(y2, ν2)

. . .

(ym−1, νm−1)

(ym, νm)

(x1,−ε1)
(x2,−ε2)

. . .

(xn−1,−εn−1)
(xn,−εn)


. (2.16)

Why? First we note that it is only at this point that we make use of the functor Z.
(Objects and 1-morphisms in BZ are built only from the defect data D1, D2, s, t.)
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Secondly, according to our interpretation (2.10), 2-morphisms should correspond
to junction points such as

αβ

x1 x2 xn

y1 y2 ym
. . .

. . .

, (2.17)

but we were not provided with a set D0 to label such points. However, we can
use Z to build such a set; in fact it is precisely given by (2.16)! To see this, we
cut a little hole around the vertex in (2.17) and keep track of orientations by
assigning + to intersection points of lines pointing away from the hole, and − to
those pointing in the opposite direction:

x1 x2 xn

y1 y2 ym
. . .

. . .

− − +

− + −

αβ

Note that we have not lost any information. But now the boundary of the hole
is an object in Borddef

2 (D). Applying Z as in (2.16) to it produces the label set
for vertices allowed by the TQFT.

Next we define vertical composition in BZ . As in the familiar case of closed
TQFT, this product is obtained by applying Z to a pair-of-pants. In detail, let
us consider a 2-morphism Φ ∈ Hom(X, Y ) as above, and another 2-morphism
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Ψ ∈ Hom(Y, Z) where Z = ((z1, µ1), . . . , (zk, µk)) : α→ β. Then we define

Ψ ◦ Φ = Z



(z1, µ1)

(z2, µ2)

(zk, µk)

(x1,−ε1)

(x2,−ε2)

(xn,−εn)

(z1, µ1) (zk, µk)

(y1,−ν1) (ym,−νm)

(y1, ν1) (ym, νm)

(x1,−ε1) (xn,−εn)

αβ

. . .

. . .

. . .



(
Ψ⊗k Φ

)
∈ Hom(X,Z)

where the two inner boundary circles are incoming, and the outer circle is out-
going, and the orientations of defect lines can be inferred from those of their
endpoints. Functoriality of Z implies that this composition is associative, and it
is unital with respect to the identity

1X = Z


(x1, ε1)

(x2, ε2)

(xn, εn)

(x1,−ε1)
(x2,−ε2)

(xn,−εn)

αβ . . .


(1) .

Here the disc is viewed as a bordism from the empty set to the boundary circle,
so applying Z gives a linear map k→ End(X).

To complete the construction of BZ as a 2-category, we need to define horizontal
composition of 2-morphisms. Again this involves a pair-of-pants, but this time
the defect decoration is different: for Φ ∈ Hom(X, Y ) and Φ̃ ∈ Hom(X̃, Ỹ ) where
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X, Y : α→ β and X̃, Ỹ : β → γ, we set

Φ̃⊗ Φ = Z



(ỹ1, ν̃1)

(ỹ2, ν̃2)

(ỹm̃, ν̃m̃) (y1, ν1)

(y2, ν2)

(ym, νm)

(x̃1, ε̃1)

(x̃2, ε̃2)

(x̃ñ, ε̃ñ) (x1, ε1)

(x2, ε2)

(xn, εn)

αβγ

. . .

. . . . . .

. . .



(
Φ̃⊗k Φ

)
.

It remains to give BZ adjoints and show that it is pivotal. Since adjoints
correspond to orientation reversal, adjoints are defined to have opposite signs ε
and reversed order:

BZ(α, β) 3 X =
(
(x1, ε1), . . . , (xn, εn)

)
=⇒ †X ≡ X† =

(
(xn,−εn), . . . , (x1,−ε1)

)
∈ BZ(β, α) .

Note that this was already implicitly used in the definition (2.16), so we have
Hom(X, Y ) = Hom(1β, Y ⊗X†).

To exhibit †X as the left adjoint to X we define the adjunction maps

evX =

X†X

= Z


(x1, ε1) (x1,−ε1)

(x2, ε2) (x2,−ε2)

(xn, εn) (xn,−εn)

α

β

...


(1) : †X ⊗X −→ 1α (2.18)

and

coevX =
X †X

= Z


(xn,−εn)(xn, εn)

(x2,−ε2)(x2, ε2)
(x1,−ε1)(x1, ε1)

β

α
...

(1) : 1β −→ X⊗†X . (2.19)
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The maps ẽvX , c̃oevX exhibiting X† as a right adjoint are defined analogously,
by reversing all orientations and orders in (2.18) and (2.19). Proving that the
Zorro moves hold is straighforward, for example

X

X

= Z



β α

X

X

†X



(coevX ⊗k evX)

= Z



β α

X

X

†X



(1)

= Z


αβ

X


(1) =

X

X

,

where in the second step we used functoriality of Z, and in the third step we
used isotopy invariance in Borddef

2 (D). The pivotality conditions (2.7) are proved
similarly, and we have arrived at the following result:

19



Theorem 2.1. Every 2-dimensional defect TQFT Z gives rise to a k-linear piv-
otal 2-category BZ as constructed above.

By construction, string diagrams in BZ are correlators of Z. More precisely,
a priori the 2-morphisms in BZ only capture the action of Z on defect bordisms
that can be embedded into the plane. But what about the other bordisms for
which this in not possible, such as the sphere S2? Below in Section 3.1 we
will see how sphere correlators can be evaluated in BZ – under one additional
assumption. Namely, in order to get from arbitrary defect bordisms Σ to string
diagrams, one can project Σ onto a fixed plane, and generically this leads to a
string diagram.3 If this projection is not injective, then patches of different phases
of Σ will overlap on the plane. Hence one is led to a multiplicative structure
on the set D2 labelling phases, i. e. the objects of BZ . More precisely, for the
general procedure to consistently express defect correlators as string diagrams in
BZ , i. e. to produce the same result for every generic projection, BZ should be
monoidal. This is in fact true of all the examples associated to defect TQFTs
I know of, and it is natural to conjecture that 2-dimensional defect TQFTs are
equivalent to k-linear monoidal pivotal 2-categories.

It is still an open problem to classify defect TQFTs, by proving a theorem
along the lines of the above conjecture. Thus the situation is different from that
of closed TQFTs (which are equivalent to commutative Frobenius algebras), and
that of open/closed TQFTs. The latter are basically equivalent to Calabi-Yau
categories and the ‘Cardy condition’, the details of which we review in Section 3.2.

Before moving on to examples, we mention that the classification question is
already settled for another, related type of ‘enhanced’ TQFTs. This however
comes at the price of defining such TQFTs as higher functors between higher
categories, contrary to the approach discussed above where a higher category is
constructed from an ordinary functor. Indeed, a 2-1-0-extended TQFT is a sym-
metric monoidal 2-functor Bord2,1,0 → Algk, where roughly Bord2,1,0 has points,
lines, and 2-manifolds with corners (all oriented) as objects, 1-, and 2-morphisms,
respectively, while Algk consists of finite-dimensional k-algebras, bimodules, and
bimodule maps. It was shown in [SP] that such extended oriented TQFTs are
equivalent to separable symmetric Frobenius algebras in Algk. This is precisely
as predicted by the cobordism hypothesis, as homotopy fixed points of the trivial
SO(2)-action on fully dualisable objects in Algk are separable symmetric Frobe-
nius algebras [HSV].

2.4 Examples

In this section we sketch a number of pivotal 2-categories which are known (those
in Sections 2.4.1, 2.4.7, and 2.4.8) or believed (those in Sections 2.4.2–2.4.6) to

3The situation here is similar to that of knots in R3 and their knot diagrams.
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arise from defect TQFTs as described above. Presenting all details and the
necessary background would inflate the length of the exposition exponentially.
Hence we content ourselves with a rough account which mainly aims to subsume
all examples under the common heading of defect TQFT, and to showcase the
broad spectrum of interesting pivotal 2-categories.

In fact most of the examples are not strict 2-categories, but their weak cousins
called bicategories for which horizontal composition is associative and unital only
up to coherent isomorphisms [Ben]. Luckily, every (pivotal) bicategory is equiva-
lent to a (pivotal) 2-category,4 so we just as well may work with the bicategories
that ‘occur in nature’.

2.4.1 State sum models

Separable symmetric Frobenius k-algebras also appear as special cases in defect
TQFT. Indeed, they are the objects of a bicategory ssFrobk, whose 1-morphisms
from A to B are finite-dimensional B-A-bimodules, and 2-morphisms are bimod-
ule maps. Horizontal composition of M : A → B and N : B → C is the
tensor product N ⊗BM over the intermediate algebra, and the unit 1-morphism
1A is A viewed as a bimodule over itself.5 The left and right adjoints of a 1-
morphism M are given by the dual bimodule M∗. Thanks to the natural isomor-
phism M∗∗ ∼= M , the k-linear bicategory ssFrobk is also pivotal.

It was shown in [DKR, Sect. 3] that ssFrobk is equivalent to the 2-category BZss

associated to a special defect TQFT Zss. To wit,

Zss : Borddef
2

(
Dss

1 , D
ss
2 , s, t

)
−→ Vectk

is a state sum model, generalising the state sum constructions of closed [FHK] and
open/closed [LP2] 2-dimensional TQFTs. Here the defect data consist of the set
Dss

2 of separable symmetric Frobenius algebras, the set Dss
1 of B-A-bimodules M

for all A,B ∈ Dss
2 , and we have s(M) = A and t(M) = B.

As in the closed and open/closed case, the construction of Zss involves a choice
of triangulation for objects and bordisms in Borddef

2 (Dss), a decoration of every
triangulation with algebraic data, and a projection procedure that ensures that
the construction is independent of the choice of triangulation. In the case of Zss,
additional technicalities arise from the compatibility of triangulation and defect
lines. We refer to [DKR] for all details and only note that on objects, Zss is

4An analogous maximal ‘strictification’ result does not hold for tricategories, which explains
part of the richness of 3-dimensional TQFT.

5It follows that invertible 1-morphisms in ssFrobk are precisely Morita equivalences.
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defined by

Zss



(Mn, εn)
(Mn−1, εn−1)

(M1, ε1)

...

(M2, ε2)A1

An−1

An


= 	An

(
M εn

n ⊗An−1 M
εn−1

n−1 ⊗An−2 · · · ⊗A1 M
ε1
1

)

where M+ = M and M− = M∗, and for an A-A-bimodule M , the vector space
	AM is defined to be the cokernel of the map A⊗M →M , a⊗m 7→ am−ma.
It follows that Zss( A ) = A/[A,A] is the 0-th Hochschild homology.

Finally we note that ssFrobk naturally has a monoidal structure, given by
tensoring over the field k. The trivial Frobenius algebra k is the unit object.
Invertible objects are those algebras A ∈ ssFrobk for which there exist algebras
B,B′ ∈ ssFrobk such that A ⊗k B and B′ ⊗k A are Morita equivalent to k. It
follows that isomorphism classes of invertible objects in ssFrobk precisely form
the Brauer group of k.

2.4.2 Algebraic geometry

Next we consider a more geometric example, the bicategory Var. It has smooth
and proper varieties as objects, 1-morphisms are Fourier-Mukai kernels, and 2-
morphisms are their maps up to quasi-isomorphism. Hence for U, V ∈ Var, we
have that

Var(U, V ) = Db(coh(U × V )) =: D(U × V )

is the bounded derived category of coherent sheaves on the product space. Hor-
izontal composition of kernels E ,F is the convolution E ◦ F , and the unit 1U is
the structure sheaf O∆U

of the diagonal ∆U ⊂ U × U .
Adjunctions in Var were studied in detail in [CW]. The ‘naive’ adjoint of
E ∈ Var(U, V ) is E∨ := HomD(U×V )(E , U × V ), but by Grothendieck duality the
true adjoints are obtained by ‘twisting with the Serre kernel’: we have

†E = E∨ ◦ ΣV , E† = ΣU ◦ E∨ ,

where ΣU is obtained from the canonical line bundle ωU as ΣU = (∆U)∗ωU [dimU ].
It follows that Var is not pivotal ‘on the nose’, but only has polite dualities as
explained in [CW].

One way to look at the failure of Var being strictly pivotal is via its interpre-
tation in terms of B-twisted sigma models, whose defects were also studied in
[Sar, AS]. Indeed, in theoretical physics to every object U in Var one associates
a field theory called an ‘N = (2, 2) supersymmetric sigma model’. There is a
procedure called ‘topological B-twist’ [HKK+, Ch. 16] that produces a closed 2-
dimensional TQFT from U if it is a Calabi-Yau variety, i. e. ωU is trivial. Indeed,
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in this case Hochschild homology and cohomology coincide up to shift and are
isomorphic to Dolbeault cohomology H∂̄(U). Then together with the Mukai pair-
ing H∂̄(U) is a commutative Frobenius algebra in the category of graded vector
spaces Vectgr

C . Hence H∂̄(U) describes a closed TQFT Bord2 → Vectgr
C . The fact

that H∂̄(U) is only graded commutative can be traced back to the supersymmetry
of the original sigma model.

To Var one can associate the defect data DB given by DB
2 = Obj(Var), DB

1 =
{Obj(Var(U, V ))}U,V ∈DB

2
and obvious source and target maps. Then it is natural

to conjecture that there is a defect TQFT ZB : Borddef
2 (DB) → Vectgr

C whose
associated 2-category BZB is equivalent to Var. Furthermore, taking products of
varieties gives Var a monoidal structure.

2.4.3 Symplectic geometry

Another geometric example is the pivotal bicategory Symp, which is “dual” to
Var in the sense that it is believed to arise from a defect TQFT that collects
all A-twisted sigma models. (For the subbicategories of Calabi-Yau varieties this
relation is expected to be a generalisation of mirror symmetry.) The bicategory
Symp is discussed in detail in the review article [Weh, Sect. 3.5]. Objects are
symplectic manifoldsM ≡ (M,ω), and one writesM− = (M,−ω) for the reversed
symplectic structure. 1-morphisms M → N are Lagrangian correspondences L,
i. e. chains of Lagrangian submanifolds Li,j ⊂M−

i ×Mj of the form

L1,2 L2,3 Lk−1,k

M = M1 M2 M3 · · · Mk−1 Mk = N

while 2-morphisms form the quilted Floer homology groups Hom(L,L′) =
HF (L,L′). Hence the categories of 1-morphisms in Symp are Donaldson-Fukaya
categories.

The left and right adjoint of L = (L1,2, L2,3, . . . , Lk−1,k) is the reversed corre-
spondence LT = (LTk−1,k, L

T
k−2,k−1, . . . , L

T
1,2), where LTi,j ⊂ M−

j ×Mi is the image
of Li,j under the transposition Mi ×Mj → Mj ×Mi. Taking products of sym-
plectic manifolds makes Symp a monoidal 2-category.

2.4.4 Landau-Ginzburg models

That left and right adjoints agree only up to a certain twist is a common phe-
nomenon, which was formalised and called ‘graded pivotal’ in [CM2, Def. 7.1].
An example of such a graded pivotal bicategory is that of (affine) Landau-
Ginzburg models LG. Its objects are isolated singularities, i. e. polynomials
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W ∈ C[x1, . . . , xn] for some n ∈ N such that the Jacobi ring

JacW := C[x1, . . . , xn]/(∂x1W, . . . , ∂xnW )

is finite-dimensional over C.6 A 1-morphism from W ∈ C[x1, . . . , xn] ≡ C[x] to
V ∈ C[z1, . . . , zm] ≡ C[z] is a matrix factorisation X of V − W . This means
that X is a free finite-rank Z2-graded C[z, x]-module X = X0⊕X1 together with
an odd map dX ∈ End1

C[z,x](X) such that d2
X = (V −W ) · 1X . A 2-morphism

between X, Y ∈ LG(W,V ) is an even C[z, x]-linear map Φ : X → Y up to
homotopy with respect to the twisted differentials dX and dY . If one chooses
bases of X and Y , then dX , dY and Φ are represented by odd and even matrices,
respectively.

Horizontal composition in LG is given by tensoring over the intermediate
polynomial ring.7 The unit 1W is a deformation of the Koszul complex of
(∂x1W, . . . , ∂xnW ), which in the simplest case of W = xd means that d1W

is represented by the matrix ( 0 x−x′
(xd−x′d)/(x−x′) 0 ). In general one finds that

End(1W ) ∼= JacW .
Not only horizontal composition, but also adjunctions in LG are under very

good control. Up to a shift, †X and X† are simply given by HomC[z,x](X,C[z, x]),
but also the adjunction maps evX , coevX etc. were computed explicitly in terms
of Atiyah classes in [CM2]. In this way we could show that LG is graded piv-
otal. Furthermore, one obtains neat formulas for quantum dimension and traces
(recall (2.8) and (2.9)), for example

dimr(X) = (−1)(
m+1

2 ) ResC[x,z]/C[z]

[
str
(
∂x1dX . . . ∂xndX ∂z1dX . . . ∂zmdX

)
dx

∂x1W . . . ∂xnW

]

where X ∈ LG(W,V ) is as above.
Using the construction of [Shu] one may verify that LG is a monoidal bicategory,

where the tensor product of W ∈ C[x] with V ∈ C[z] is W + V ∈ C[z, x], and
0 ∈ C is the monoidal unit. It is expected (but not proven) that there exists a
defect TQFT ZLG : Borddef

2 (DLG) → VectZ2
k such that LGk is equivalent to the

2-category BZLG associated to ZLG.

2.4.5 Differential graded categories

Twisted sigma models and Landau-Ginzburg models fit into a larger framework of
differential graded (dg) categories [Toë]. Indeed, there is a bicategoryDGsat

k whose
objects are ‘saturated’ dg categories, and whose 1- and 2-morphisms are certain

6In fact there is a graded pivotal bicategory LGk for any commutative ring k as explained in
[CM2], but the finiteness condition on its objects is more involved for k 6= C.

7This can be algorithmically computed by splitting an idempotent [DM], which was used in
[CM1] to compute the homological knot invariants of Khovanov and Rozansky [KR].
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resolutions of dg functors and natural transformations, respectively. Every object
U ∈ Var, M ∈ Symp, or W ∈ LG can be viewed as an object in DGsat

k by taking
the unique dg enhancemens of D(U), Symp(pt,M), or LG(0,W ), respectively.
Then the bicategories Var, Symp and LG are quasi-equivalent to the (distinct)
corresponding full subbicategories of DGsat

k . More generally, one might think of
DGsat

k as the bicategory of TQFTs arising from topologically twisting N = (2, 2)
supersymmetric quantum field theories.

Working in the enlarged framework of DGsat
k also has the advantage of com-

paring sigma models and Landau-Ginzburg models in a more natural context. In
particular, homological mirror symmetry is a statement internal to DGsat

k , and
it is tempting to speculate that there is a truly 2-categorical generalisation of
mirror symmetry, taking place in a suitable enlargement of DGsat

k .8

As shown in [BFK, App. A.2], DGsat
k is equivalent to the more manageable

bicategory DGsp
k of smooth and proper dg algebras. The 1-morphisms M : A→ B

in DGsp
k are perfect dg (Aop⊗kB)-bimodules, i. e. HomD(Aop⊗kB)(M,−) commutes

with arbitrary coproducts, and 2-morphisms are maps of dg bimodules up to
quasi-isomorphisms. Horizontal composition is the left-derived tensor product
over the intermediate algebra. It follows from the discussion in [BFK] that DGsp

k
is graded pivotal, and analogously to the situation in Sections 2.4.2 and 2.4.4,
adjoints are given by the naive dual together with a twist by Serre functors.

Tensoring over the field k gives the bicategories DGsat
k and DGsp

k a natural
monoidal structure [Toë].

2.4.6 Categorified quantum groups

Pivotal 2-categories also feature prominently in higher representation theory (see
e. g. [Lau2, Sect. 1] for a gentle introduction), which in turn plays a unifying role
in the theory of homological link invariants. A key idea behind ‘2-Kac-Moody
algebras’ [Rou] and ‘categorified quantum groups’ [Lau1, KL] is to represent
them not on vector spaces, but on linear categories. This leads one to replace
the (quantum) Serre relations, which are equalities between expressions involving
the generators Ei, Fj, by natural transformations ηk between the corresponding
expressions of functors Ei,Fj. This theory is considerably richer than its classical
counterpart, partly because of nontrivial relations which have to be imposed on
the ηk.

Associated to any Kac-Moody algebra g there is a k-linear pivotal 2-category
UQ(g). The precise definition fills several pages (cf. the above references), but
here is a sketch: First one picks a ‘Cartan datum and choice of scalars Q’; this
in particular gives a weight lattice X with simple roots αi, and a symmetrisable
generalised Cartan matrix. Objects of UQ(g) are simply weights λ ∈ X, and

8The process of orbifold completion discussed in Section 2.4.8 below may play a role here.
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1-morphisms are formal polynomials in expressions of the form

1λ , 1λ+αiEi = 1λ+αiEi1λ = Ei1λ , 1λ−αiFi = 1λ−αiFi1λ = Fi1λ .

2-morphisms are k-spans of compositions of certain string diagrams which encode
the categorification of the Serre relations for g, subject to a list of relations. These
relations in particular describe biadjunctions (again up to shifts) between Ei1λ
and Fi1λ. As explained in [BHLW], the parameters Q can be chosen such that
these adjunctions become a strictly pivotal structure on UQ(g). It is an open
problem to determine whether there is a natural monoidal structure on UQ(g).

2.4.7 Surface defects in 3-dimensional TQFT

One generally expects n-dimensional TQFTs to appear as defects of codimen-
sion 1 in (n+ 1)-dimensional TQFTs. At least for n = 2 this is a rigorous result
also from the algebraic perspective: In [CMS] we introduced 3-dimensional defect
TQFTs Z, from which we went on to construct a certain type of 3-category TZ .
More precisely, TZ is a k-linear ‘Gray category with duals’ – categorifying the
construction of Section 2.3. This implies in particular that TZ(u, v) is a k-linear
pivotal 2-category for all u, v ∈ TZ . And since the objects (interpreted as ‘sur-
face defects’) of TZ(u, v) are the 1-morphisms of a 3-category, TZ(u, v) is monoidal
whenever u = v.

2.4.8 Orbifold completion

As a final source of pivotal 2-categories we point to the procedure of ‘orbifold
completion’ of [CR]. Inspired by the orbifold construction from finite group
actions and their generalisation in rational conformal field theory [FFRS], orbifold
completion takes a pivotal bicategory B as input and produces a new pivotal
bicategory Borb, into which B fully embeds. It is a completion because there is
an equivalence (Borb)orb

∼= Borb.
Objects of Borb are pairs (α,A) where α ∈ B and A is a separable symmetric

Frobenius algebra – not necessarily in Vectk, but in the category B(α, α). A
1-morphism (α,A) → (β,B) in Borb is a 1-morphism X ∈ B(α, β) together
with the structure of a B-A-bimodule, and 2-morphisms are those in B which
are also bimodule maps. Horizontal composition is the tensor product over the
intermediate algebra, and 1(α,A) = A viewed as an A-A-bimodule.

The simplest case of orbifold completion reproduces state sum models. Here
as the input bicategory B one takes the ‘trivial’ bicategory BVectk which has a
single object with Vectk as its endomorphism category. Then by construction
and in the notation of Section 2.4.1 we have

ssFrobk ∼= (BVectk)orb .

26



Examples of separable Frobenius algebras which do not live in Vectk are pro-
vided by group actions. For a finite group G and some pivotal bicategory B, let
Dg ∈ B(α, α) for all g ∈ G such that Dg ⊗Dh

∼= Dgh coherently, and let B(α, α)
have finite sums. Then there are as many inequivalent separable Frobenius alge-
bras structures on AG :=

⊕
g∈GDg as there are elements in H2(G,k×) [BCP2],

and AG is symmetric if its Nakayama automorphism is the identity. Interestingly,
not all separable Frobenius algebras come from group actions, cf. [CRCR].

The adjoint of X ∈ Borb((α,A), (β,B)) is †X = X† ∈ B(β, α) together with the
adjunction maps

evX =

A

X†X

◦ ξ , coevX = ϑ ◦

B

X †X

where ξ : †X ⊗B X → †X ⊗ X and ϑ : X ⊗ †X → X ⊗A †X are the splitting
and projection maps (which we require to exist, cf. [CR, Lem. 2.3]). In fact, this
continues to hold if A and B are not required to be symmetric, but then their
actions on †X and X† are twisted by Nakayama automorphisms as explained in
[CR, Sec. 4.3], generalising the situation with Serre functors in Sections 2.4.2,
2.4.4 and 2.4.5, see [BCP1, CQV].

If B is monoidal then Borb is expected to be monoidal as well. One may either
argue along the lines of [Shu], or via a universal property for the operation (−)orb.

3 Open/closed TQFTs from pivotal 2-categories

In Section 2.1.1 we easily obtained closed and open/closed TQFTs from defect
TQFTs, simply by forgetting part of the structure of the defect bordism category
Borddef

2 (D). In the present section we elucidate this relation by constructing an
open/closed TQFT from any object in a k-linear pivotal bicategory (satisfying
two natural assumptions). We treat the purely closed case in Section 3.1, and the
fully open/closed case in Section 3.3. The algebraic description of open/closed
TQFTs in terms of Calabi-Yau categories is reviewed in Section 3.2.

3.1 Closed TQFTs from pivotal 2-categories

For completeness, we briefly recall how closed TQFTs Zc : Bord2 → Vectk are
equivalent to commutative Frobenius algebras in Vectk. By a classical result
[Koc], the bordism category Bord2 is generated by

, , , , (3.1)
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where from now on incoming/outgoing boundaries are placed at the bottom/top
of pictures of bordisms. The relations between the generators (3.1) precisely say
that the vector space Zc(S1) together with multiplication Zc( ), unit Zc( )(1)

and pairing Zc( ) ◦ Zc( ) is a commutative Frobenius algebra.
Given a k-linear pivotal bicategory B, we would now like to construct a com-

mutative Frobenius algebra Aα naturally associated to every object α ∈ B. Our
interpretation (2.10) of such bicategories in the context of defect TQFT suggests
that the underlying vector space of Aα should be the space of endomorphisms of
the unit 1α:

Aα = End(1α) .

Indeed, we interpret 1α as the invisible defect, and elements φ ∈ End(1α) corre-
spond to operators living on an invisible line with no further ‘defect conditions’:

α

φ ∈ End(1α) .

Hence in standard jargon, φ is a field ‘inserted in the bulk’ of the ‘theory’ α.
As the 2-endomorphism space in a k-linear bicategory, Aα is manifestly an

associative unital k-algebra. Furthermore, using the interchange law (2.3) one
can show that in any monoidal category the endomorphisms of the unit form a
commutative monoid [EGNO, Prop. 2.2.10].

It remains to endow Aα with a nondegenerate pairing which is compatible with
multiplication. There are various ways to ensure the existence of such a pairing.
We will see how it follows from

Assumption 3.1. The k-linear pivotal bicategory B is monoidal9 with duals
such that B(O,O) ∼= Vectk, where O ∈ B is the unit object.

We observe that all our examples in Section 2.4 are known or expected to
satisfy this condition. Further we recall that as noted after Theorem 2.1 it is
natural to expect the bicategories arising from defect TQFTs to come with a
monoidal structure: for α, β ∈ B their tensor product α � β corresponds to the
‘tensor product theory’ attached to the fusion of two bordism patches labelled α
and β. The unit O ∈ B corresponds to the ‘trivial theory’. This is consistent
with AO = End(1O) ∼= k being the trivial commutative Frobenius algebras in
Vectk ∼= B(O,O). Finally, the dual α# of an object α ∈ B is interpreted as a
label for a bordism patch with opposite orientation.

9Monoidal bicategories are defined for example in [SP] or [Shu]. By a ‘monoidal bicategory
with duals’ we mean a ‘Gray category with duals and only a single object’ as defined e. g. in
[BMS, Sect. 3.3] or [CMS, Sect. 3.2.2].
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How can we endow Aα = End(1α) with a nondegenerate pairing using Assump-
tion 3.1? Recall that the pairing of the Frobenius algebra associated to a closed
TQFT Zc is the ‘sphere correlator’

Zc
( )

◦ Zc

( )
= Zc

( )
: Zc(S1)⊗k Zc(S1) −→ k .

From a bicategory B as in Assumption 3.1 we can build such pairings by mim-
icking the above construction as follows. We consider a sphere S2 labelled by
α ∈ B. Then we project the sphere onto some plane, producing a disc:

α −→ α� α#

The disc is labelled by the product α � α# because the rear part of the sphere
has opposite orientation with respect to the plane.

We now interpret the disc as a string diagram in B! The preimage of the disc’s
boundary is simply the great circle on the sphere which is parallel to the chosen
projection plane. Since any plane will do, this great circle is nothing special –
in fact it is invisible on the sphere. Hence we label it with the ‘invisible defect’
1α ∈ B(α, α).

Labelling the inside and outside of the sphere with the trivial object O, the
boundary of the disc is labelled by the 1-morphism

1̃α ∈ B
(
O, α� α#

)
corresponding to 1α under duality in B. So finally the ‘sphere correlator’ for
Aα = End(1α) is defined to be

〈
−,−

〉
α

: Aα⊗kAα −→ k , φ1⊗φ2 7−→ α� α#

1̃α

φ̃1φ̃2 ∈ End(1O) ∼= k (3.2)

where the string diagram represents the map ev1̃α
◦ (11̃α

⊗ φ̃1φ̃2)◦ c̃oev1̃α
: k→ k,

i. e. the trace trl(φ̃1φ̃2). Thus the pairing 〈−,−〉α is manifestly compatible with
multiplication, and it follows from Theorem 3.6 below that 〈−,−〉α is nondegen-
erate. Hence we have arrived at a closed TQFT:

Theorem 3.2. Let B be a bicategory satisfying Assumption 3.1. Then for every
α ∈ B, the vector space End(1α) naturally has the structure of a commutative
Frobenius algebra.
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3.2 Open/closed TQFTs and Calabi-Yau categories

An open/closed TQFT [Laz, MS, LP1] is a symmetric monoidal functor

Zoc : Bordoc
2 (B) −→ Vectk (3.3)

where B is some set, whose elements are referred to as boundary conditions. The
objects of the bordism category Bordoc

2 (B) are disjoint unions of circles S1 and
unit intervals Iab whose endpoints are labelled by a, b ∈ B:

Iab =
b a

.

Morphisms in Bordoc
2 (B) are bordism classes generated by the list (3.1) together

with the classes of the following decorated manifolds with corners for all a, b, c, d ∈
B:

c b b a

ac

,

cbba

a c

,
a a

,
aa
,

a b c d

c d a b

,

a a

,

aa

(3.4)

subject to the relations (3.5)–(3.12) below as well as the relations for which

state that together with the twist , the category Bordoc
2 (B) has a symmetric

monoidal structure. It follows that Bord2 is a non-full subcategory of Bordoc
2 (B).

The relations on the generators (3.4) are the intuitively clear equalities

= , = , (3.5)

= = , = = , (3.6)

= = , (3.7)

= , (3.8)
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= , = , (3.9)

= , (3.10)

= , (3.11)

as well as
bb

aa

=

b b

a a

, (3.12)

which can be understood as the sequence of diffeomorphisms

bb

aa

=

bb

aa

=

a a

b b

=

bb

aa

=

bb

aa

=

b b

a a

. (3.13)

With the bordism category Bordoc
2 (B) under explicit control, we now review

how to equivalently encode the functor (3.3) in algebraic terms.

3.2.1 Closed sector

Restricting an open/closed TQFT Zoc as in (3.3) to the subcategory Bord2 ⊂
Bordoc

2 (B) produces a closed TQFT. Hence Zoc(S1) has the structure of a com-
mutative Frobenius algebra Ac. We write〈

−,−
〉c

: Ac ⊗k A
c −→ k (3.14)

for its nondegenerate pairing.
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3.2.2 Open sector

Let Bordo
2(B) be the subcategory of Bordoc

2 (B) whose objects are only labelled
intervals (and no circles), and whose morphisms are generated by the first five
bordisms in (3.4), subject to (3.5)–(3.8) and the twist relations. By definition an
open TQFT is a symmetric monoidal functor Bordo

2(B)→ Vectk.
We construct a category Co from Zoc restricted to Bordo

2(B) as follows. The
set of objects is the set of boundary conditions,

Obj(Co) = B ,

and Hom spaces are what Zoc assigns to labelled intervals,

Hom(a, b) = Zoc
(
b a

)
.

Composition is defined to be

Zoc

(
c b b a

ac )
: Hom(b, c)× Hom(a, b) −→ Hom(a, c) .

It is associative by relation (3.5) and unital thanks to (3.6). This establishes that
Co is a k-linear category.

The relations (3.7) and (3.8) endow Co with additional structure. For all a, b ∈
B there are k-linear pairings

〈
−,−

〉
ab

= Zoc

(
a b b a

)
: Hom(b, a)⊗k Hom(a, b) −→ k . (3.15)

By relation (3.8) these pairings are symmetric in the sense that 〈Φ,Ψ〉ab =
〈Ψ,Φ〉ba, and they are nondegenerate since

=

according to (3.6) and (3.7). Finally, the pairings are compatible with multipli-
cation, 〈Φ1,Φ2Φ3〉ab = 〈Φ1Φ2,Φ3〉ac, by definition of the pairing and associativ-
ity (3.5).

It follows from the above that the vector spaces End(a) have the structure
of a symmetric Frobenius algebra. Hence one can think of Co as ‘many Frobe-
nius algebras glued together’. Unfortunately, the name ‘Frobenius category’ was
already taken,10 and instead the term ‘Calabi-Yau’ category is used.

10A Frobenius category is a Quillen exact category with enough injectives and enough projec-
tives, such that injectives and projectives coincide.
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To give the definition we first broaden the context. A Serre functor on a
k-linear category C is a functor Σ : C → C together with isomorphisms

ηab : Hom
(
a, b
) ∼=−→ Hom

(
b,Σ(a)

)∗
which are natural in a, b ∈ C. From this one obtains the nondegenerate Serre
pairings〈

−,−
〉
ab

: Hom
(
b,Σ(a)

)
⊗k Hom

(
a, b
)
−→ k , Ψ⊗ Φ 7−→ ηaa(1a)(ΨΦ)

by duality. By definition a Calabi-Yau category is a k-linear category C together
with a trivial Serre functor Σ = 1C. (If C is a triangulated category, then the
Serre functor may be the identity only up to a shift.)

The eponymous example of a (triangulated) Calabi-Yau category is the
bounded derived category of coherent sheaves on a Calabi-Yau variety. Indeed,
as was noted in Section 2.4.2, the Serre functor on Db(coh(U)) for any smooth
and proper variety U is ΣU

∼= ωU [dimC U ] ⊗C (−). But U is Calabi-Yau iff the
canonical line bundle ωU is trivial. In light of the results of Section 3.3 below,
Section 2.4 provides many further examples of Calabi-Yau categories.

It follows that the category Co we constructed from the open TQFT Zoc|Bordo
2(B)

is Calabi-Yau with Serre pairings (3.15). It was shown in [Laz, MS, LP1] that
the converse is also true:

Theorem 3.3. The above construction is an equivalence of groupoids between
open TQFTs and Calabi-Yau categories.

3.2.3 Open/closed sector

It remains to work out the algebraic meaning of the last two generators in (3.4)
as well as their relations (3.9)–(3.12). For this, we first define the bulk-boundary
maps to be

βa := Zoc

( a a )
: Ac −→ End(a)

for all a ∈ B. It maps the closed sector (or ‘bulk theory’) to the open sector
(with ‘boundary condition’ a).

Due to relations (3.9) and (3.10), βa is a map of algebras into the centre of
End(a), i. e.

βa(φ) Ψ = Ψ βa(φ)

for all φ ∈ Ac and Ψ ∈ End(a). Furthermore, the boundary-bulk map (which
need not be a map of algebras)

βa := Zoc

(
aa

)
: End(a) −→ Ac
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is adjoint to βa with respect to the Frobenius pairings by (3.11):〈
βa(Ψ), φ

〉c

=
〈

Ψ, βa(φ)
〉
aa
.

The most interesting condition on the maps βa derives from (3.12). For Φ ∈
End(a) and Ψ ∈ End(b) let us consider the map

ΨmΦ : Hom(a, b) −→ Hom(a, b) , Ω 7−→ ΨΩΦ .

Note that for Φ = Ψ = 1a ∈ End(a), the map 1am1a is simply the identity
operator on End(a). Then for any open/closed TQFT Zoc as above we have:

Theorem 3.4 (Cardy condition). Let Φ ∈ End(a) and Ψ ∈ End(b). Then

tr
(

ΨmΦ

)
=
〈
βb(Ψ), βa(Φ)

〉c

. (3.16)

The significance of the Cardy condition is that a trace in the open sector can be
computed from a pairing in the closed sector. The qualifier ‘theorem’ is more than
appropriate: as shown in [CW], in the special case of the Calabi-Yau category
being of the form Db(coh(U)), the Cardy condition is the Hirzebruch-Riemann-
Roch theorem!

To prove Theorem 3.4 we use duality to rewrite (3.13) as

b b a a

=

b b aa

. (3.17)

Let us choose bases {ei} and {ẽi} of Hom(a, b) and Hom(b, a), respectively, such
that we have Zoc( )(1) =

∑
i ẽi ⊗ ei for the copairing. Then thanks to (3.6)

and (3.7) the basis {e∗i = 〈ẽi,−〉ab} is dual to {ei}, and we compute

tr
(

ΨmΦ

)
=
∑
i

e∗i
(
ΨeiΦ

)
=
∑
i

〈
ẽi,ΨeiΦ

〉
ab

= Zoc
(

LHS of (3.17)
)

(Ψ⊗ Φ)

= Zoc
(

RHS of (3.17)
)

(Ψ⊗ Φ)

=
〈
βb(Ψ), βa(Φ)

〉c

.

In summary, a 2-dimensional open/closed TQFT has the following algebraic
description, generalising the fact that closed TQFTs are equivalent to commuta-
tive Frobenius algebras:
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Theorem 3.5. The construction reviewed in this section gives an equivalence
between open/closed TQFTs and the following data:

• a commutative Frobenius algebra Ac with nondegenerate pairing 〈−,−〉c,

• a Calabi-Yau category Co,

• k-linear maps βa : Ac � End(a) : βa for all a ∈ Co,

such that

(i) βa are algebra maps with image in the centre,

(ii) βa and βa are adjoint with respect to the Frobenius pairings,

(iii) the Cardy condition

tr
(

ΨmΦ

)
=
〈
βb(Ψ), βa(Φ)

〉c

holds for all Φ ∈ End(a) and Ψ ∈ End(b) in Co.

3.3 Open/closed TQFTs from pivotal 2-categories

In Section 3.1 we constructed a closed TQFT for every object α in a bicategory B
satisfying Assumption 3.1. Now we complete the construction by assigning an
open/closed TQFT to every α ∈ B.

3.3.1 Open sector

The natural starting point for the open sector is the category

Cα = B(O, α) (3.18)

of 1-morphisms between α and the ‘trivial theory’, i. e. the monoidal unit O ∈ B.
In the interpretation of 1-morphisms as defect lines it is immediate to view them
as boundary conditions:

α O

We claim that (3.18) comes with the structure of a Calabi-Yau category. It
certainly is k-linear, but where are the nondegenerate pairings? They are encoded
in the duality structure of B together with the assumption B(O,O) ∼= Vectk.
Indeed, for X, Y ∈ B(O, α) we have

X† ⊗ Y ∈ Vectk ,
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hence the Zorro moves for X† ⊗ Y tell us that

(X† ⊗ Y )†X† ⊗ Y
:
(
X† ⊗ Y

)
⊗k
(
X† ⊗ Y

)† −→ k

is a nondegenerate pairing. Precomposing with the isomorphism

Y † X

(X† ⊗ Y )†

: Y † ⊗X −→
(
X† ⊗ Y

)†

and using the Zorro move for X†⊗Y again, we obtain the nondegenerate pairing

Y †Y XX†
:
(
X† ⊗ Y

)
⊗k
(
Y † ⊗X

)
−→ k . (3.19)

To translate the above into a pairing in Cα, we use the isomorphism of vector
spaces

Hom(X, Y )
∼=−→ X† ⊗ Y , 7−→ (3.20)

with inverse

7−→ .

Precomposing (3.19) with (3.20) we obtain the Serre pairing〈
−,−

〉α
Y X

: Hom(X, Y )⊗k Hom(Y,X) −→ k

with

〈
Φ,Ψ

〉α
Y X

=
α X

Φ Ψ = α

X

ΨΦ = α

Y

ΦΨ .

Since this is the left trace (recall (2.9)) of ΨΦ ∈ End(X), the pairings 〈−,−〉αY X
are symmetric: 〈Φ,Ψ〉αY X = 〈Ψ,Φ〉αXY .

In summary, we have proved
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Theorem 3.6. Let B be a bicategory satisfying Assumption 3.1. Then for every
α ∈ B, the category B(O, α) naturally has the structure of a Calabi-Yau category
with pairing

〈
−,−

〉α
Y X

: Hom(X, Y )⊗k Hom(Y,X) −→ k ,
〈
Φ,Ψ

〉α
Y X

= α

Y

ΦΨ .

Recall that for the closed sector Aα = End(1α) in Section 3.1, the nondegener-
ate pairing (3.2) was the ‘sphere correlator projected to a disc’. But in the open
sector the role of the sphere correlator is played by the disc correlator – so we
could have guessed the result of Theorem 3.6 from the start!

3.3.2 Open/closed sector

We continue to work with a bicategory B satisfying Assumption 3.1. For every
α ∈ B we have already obtained a commutative Frobenius algebra Aα = End(1α)
and a Calabi-Yau category Cα = B(O, α). According to Theorem 3.5, we also
need maps

βX : Aα End(X) : βX

for all X ∈ Cα in order to associate an open/closed TQFT to α. In the graphical
calculus, intuition about these maps becomes a rigorous definition: we set the
bulk-boundary map to be

βX : End(1α) −→ End(X) ,

α

φ 7−→
α

φ

X

, (3.21)

and the boundary-bulk map is

βX : End(X) −→ End(1α) ,

α

Ψ

X

X

7−→
X

Ψ

α

. (3.22)

We have to check that the maps βX , β
X satisfy the three conditions (i)–(iii)

in Theorem 3.5. The first one is easy: βX is manifestly an algebra map into the
centre, thanks to the coherence theorem behind the graphical calculus.

To prove conditions (ii) and (iii), we make one additional assumption. For
motivation, recall that we obtained the nondegenerate pairing 〈−,−〉α on Aα
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in (3.2) by projecting an α-decorated sphere onto a plane. Now we consider a
sphere with two incoming boundary circles cut out, together with a D-decorated
defect line which separates two phases labelled α and β as follows:

β αD

By isotopically deforming the defect line we obtain the identity

=

in the defect bordism category. Hence we expect the following property for the
bicategory B = BZ associated to a defect TQFT:

Assumption 3.7. For every D ∈ B(α, β) and Ψ ∈ End(D), the pairings 〈−,−〉α
on End(1α) satisfy

〈
βα

D

Ψ

〉
α

=

〈
α β

D

Ψ

〉
β

, (3.23)

where we write 〈φ〉α for 〈φ, 1〉α.

Under this assumption we can verify condition (ii) of Theorem 3.5 in just one
line. Let φ ∈ End(1α), X ∈ B(O, α) and Ψ ∈ End(X). Then

〈
βX(φ),Ψ

〉
XX

=

X

βX(φ)Ψ =

〈
X

βX(φ)Ψ

〉
O

=

〈
X

Ψ
φ

〉
α

=
〈
φ, βX(Ψ)

〉c

so indeed βX and βX are adjoint with respect to one another.

At last we prove the Cardy condition. Let X, Y ∈ B(O, α), Φ ∈ End(X) and
Ψ ∈ End(Y ). Then

〈
βX(Φ), βY (Ψ)

〉
α

(3.22)
=

〈
X

Φ

Y

Ψ

〉
α
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(3.23)
=

〈
Y

Ψ

X

Φ

〉
O

=

Y

Ψ

X

Φ

Zorro
= X

Y

X†⊗Y

Ψ
Φ†

(2.7)
= X

Y

X†⊗Y

Ψ
Φ†

Zorro
= Φ† ⊗Ψ = tr

(
ΨmΦ

)
.

To understand the last step, pick a basis {ei} of X† ⊗ Y ∈ Vectk, and write
{e∗i } for the dual basis. The canonical isomorphisms X† ⊗ Y ∼= Hom(X, Y ) and
(X† ⊗ Y )∗ ∼= Hom(X, Y )∗ act as

ei

7−→
ei

=: ai ,
e∗i

7−→ −

e∗i

=: a∗i ,

respectively. The Zorro move tells us that a∗j(ai) = δij, so {a∗i } is dual to the
basis {ai} of Hom(X, Y ). Hence we compute

Φ† ⊗Ψ =
∑
i

e∗i

((
Φ† ⊗Ψ

)
ei

)
=
∑
i

e∗i

ei

Φ† Ψ =
∑
i

e∗i

ei

Ψ

Φ

=
∑
i

a∗i

(
ΨaiΦ

)
= tr

(
ΨmΦ

)
.

This completes our construction of an open/closed TQFT from α:
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Theorem 3.8. Let B be a bicategory satisfying Assumptions 3.1 and 3.7. Then
by the above construction for every α ∈ B we have that

• End(1α) has the structure of a commutative Frobenius algebra,

• B(O, α) has the structure of a Calabi-Yau category,

• for every X ∈ B(O, α), the maps βX : End(1α) � End(X) : βX of (3.21)
and (3.22) satisfy the conditions in Theorem 3.5.
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