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Introduction

Multiple M2 branes . N = 6 Chern-Simons Theory

AdSy x S /7, SU(N) x SU(N) at level k
Aharony, Bergman, Jafferis and Maldacena, hep-th/0806.1218

Parameters of Chern-Simons theory NV and & or

N  and A=21"N/k < 't Hooft coupling

't Hooft limit N — oo, A finite

Type IIA Strings . N = 6 Chern-Simons Theory

AdS, x CP? planar, perturbative in \



The goal is to understand the
dynamics of

Type lIA Strings on
AdS4 X CPS
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Sigma Model on the Coset Space

OSP(2, 2/6)
SO(3,1) x U(3)

OSP(2,2|6) has a bosonic subgroup USP(2,2) x SO(6)

USP(2,2)  SO(6)

— AdS, x CP?
SO(3,1) ~ U(3) 1

The coset superspace contains 24 fermions — too little for Type IIA!



Superalgebra osp(2, 2(6)

0sp(2,2|6) can be realized by 10 x 10 supermatrices

The matrix A must satisfy two conditions

C 0 C 0 .
Ast 4 + 4 A=0 = At —=_CAC]
0 ]I6><6 0 H6><6
; o0 0 o 0
A -+
0 — Igx6 0 — lgx6

v Cy is real skew-symmetric matrix, C% = —I
v' T'* represent the Clifford algebra for SO(3, 1)
v Cy is charge conjugation matrix: (T*)t = —C,T*C; !

A=0 = AT =_TAr1!



Automorphism of order 4

Z.4-automorphism with a stationary algebra SO(3,1) x U(3)

Introduce

( 0
1

Ky=-T'T17?% =

o = O O

o o O
o O O O
o O O ©O o =

These matrices obey K7 = —T and KZ = —I and also
([ = K,OP K

for all gamma-matrices

?

o O O = O O

o o o o O

SO = O O O O




Automorphism of order 4

o ((Fovre )
—KehtKy KeY'Kg
For any two supermatrices A and B
Q(AB) = —Q(B)Q2(A)

.e. it is an automorphism of osp(2, 2|6)

Q([A, B]) = =[Q(B),Q(A)] = [(A),Q(B)].



Automorphism of order 4

The algebra relations imply

~1
Q(4) = ( fae 0 ) ( - ) ( faCo 0 ) = TAY!
6 n 6

e Since (K4C,)? =Tand Kz = —I one finds T =T
e K,C, coincides with I'® given by I'® = —iT°T1?13

e T takes values in the complexified OSP(2, 2|6),
i.e. it is orthosymplectic but not unitary: YITYT ' = —1I



Z.4~grading of osp(2,2|6)
As the vector space A = osp(2,2|6) can be decomposed as

A=A AL AP ¢ AB)

such that [A(®), A(™)] C A+™) modulo Zj.

Each A(®) is an eigenspace of
QAR =k AR)
A projection A(¥) of a generic element A € osp(2,2/6) is
1
A = - (A + iR Q(A) + 2*Q2(A) + z’kQ?’(A)) < 0sp(2,2(6)
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Stationary subalgebra of (2
The stationary subalgebra of €2 is determined by
I, X]=0, [KsY]=0
and it coincides with so(3,1) x u(3).
e X is generated by 5 [I'*,I']

e Y can be parametrized as follows

( 0 Y12 Y24  —Y23 Y26 —Y25 \
—Y12 0 Y23 Y24 Y25 Y26
y — —Y24  —Y23 0 Y34 Ya6  —Yas
Y23  —Y24  —Y34 0 Y45 Y46
—Y26 —Y25 —Ya6  —Y45 0 Y56
K Y25  —Y26 Y45  —Y46  —Ys56 0)

This 9-parametric matrix describes an embedding u(3) C so(6).
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The space A® — bosonic coset AdS, x CP?

The space A®?) is spanned by matrices

QA) =TAY P =-A

Any such matrix satisfies the remarkable identity

A = Lstr(TA%) A+ Lstr(A%) A
or
A% = L(trAR 4 + trAZp) A+ £ (trARgs — trAfp) TA

Here X is a diagonal matrix ¥ = T2 = (I, —1I)
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The Lagrangian

Let g be a coset representative. Construct the one-form
A=—¢g'dg=A0 4 A®) 4 AD 4 4G)
It has zero curvature
OaAp — 03Aq — [An, Ap] =0

The sigma model action

2
S = i /dadmﬁf

Ao

with the Lagrangian density
L = ~*Bstr (Ag)A(;)) + keWstr (A&DA(;’))
Here v*° = hoP\/—h with dety = —1
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Equations of motion
e Bosons

0(v*PAGY) =714, AP+ gre? ([AD, 4G — (4D, A]) = 0

e Fermions
PIALD), AFY) =0,
Po1AD, AP =0
The tensors PG = 2(v*0 + keP)

For k = +1 the tensors P_. are orthogonal projectors:

P+ P = PYPI=PY, PP =0

14



The Lagrangian must be invariant under a
local fermionic symmetry (x-symmetry) which
should be capable to remove 8 out of 24

fermions

How to exhibit this symmetry?
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Local Fermionic Symmetry

e The action of the global symmetry group OSP(2,2|6) is realized
on a coset element by multiplication from the left

e x-Symmetry transformations can be understood as the right
local action of a fermionic element G = expe € OSP(2,2/6) on
a coset representative g

gG(€) = g'gc,

where ¢ = ¢(0) is a local fermionic parameter. Here g. is a
compensating element from SO(3,1) x U(3)
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Local Fermionic Symmetry

Under the local multiplication from the right the connection A
transforms

0 A =—de+ [A, €

The Z4-decomposition of this equation gives

5 AV = —del) + [AD) W] 4 [AD) B)]
5.A® = _de® 1[40 B 1 14@ )
5 A® = [AD, ] 4 [AD )

where we have assumed that € = (1) 4 ¢®)
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Local Fermionic Symmetry

k-Symmetry variation of the Lagrangian
6 = 07 Pstr (AP AP ~4str(PY[AS), AD)D 4P AT, AD))
Vanishes on-shell due to the Virasoro constraints

str(AD AG)) = Frasnstr(AP A5 = 0

and ’yag(S’yaB =0

Take k = £1 and for any vector VV* introduce the projections V{
Ve =PV

so that the variation of the Lagrangian acquires the form

6% = 67y Pstr (AP AD) —4str([AT, AP 14 [a® AP 1)
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Local Fermionic Symmetry

Some technicalities:

e The condition P}’ 45 - = 0 the components A, . and A, . are
proportional

AT,:I: — _’7 il /{Aa,j:

fYTT

As the result, tensorial structures
2 2 2
AR A AP
do not depend on the order of indices

e To simplify the treatment, we put ¢(3) = 0
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Local Fermionic Symmetry

Ansatz for the k-symmetry variation

2 (2) « o 2) (2 2)  « 2 1 2) ((2) \ «
(W = AP AP k5 + n§5AD A+ AP kAT — S str(2A AP )

. a3

Requirements on "
o lﬁ)?fﬁ_ € 0sp(2,2(6)
o /{jé_i c AW

Thus, generically mj‘_ﬁ depends on 12 fermionic variables
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Local Fermionic Symmetry

Consider now the commutator

AP W] = AP AR AP P A WP AR AP A AR k0 A
- APLAP AL A AR A A A A2
1 2) ((2)\ 42 pBs , 1 2) ((2)\.B8 4(2
- oste(RAR AP AL R+ 2 ste(BAG AR R AT

Most of the terms are cancelled out

A2 (O] = (4D AD AP 1(mA® AD)A®) 5
Due to the remarkable identity
2 1 2) (2 2 5
AP M) = gstr(A(B,)_Ag’l)[ZAEX,)_ K
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Local Fermionic Symmetry

The k-symmetry variation of the action
0..F = 5*}/0‘581:1‘(14&2)14(52)) — 4str([A$)’a, A((f,)_]em)
implies the following transformation law for the metric
oy P = %Stl‘ (EA((S?E [&3‘_&, A$>’5]>
The condition ~,50v*° is automatically obeyed as
%ég(wo‘ﬁ = fyo‘ﬁP;(SP;?/{é” =0
Full variation of the metric

" 1 o 8 1 D o« 3).6
o~ P = §str(EAg’21 [/@ﬁ,Ag}) ]) + istr(ZAgH)r[%_[i,A(_) ])
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Local Fermionic Symmetry

Rank of x-symmetry transformations on-shell?

0 yle

The constraint str(AffLA(;,)_) = (0 then demands that x = +y
Computing €M) one gets

0 €
oo 7).
—& C4 0

where ¢ is the following matrix

0 0 i(ik13 — k16) i(ik1a — k15) tk1a — k15 k13 — K16
. 0 0 i(ika3 — ka2g) 1(tkoa — kog) tkos — kas 1k23 — kog
0 0 — t(—ik33 — kse6) — i(—ik3a — k35) — tk3sa — k35 — 1k33z — k36
0 0 — i(—ikq3 — kag) — i(—ikgqa — kas) — tkaa — kas — ika3z — kue
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Integrability: The Lax Connection

No difference in construction of the Lagrangian AdSs x S°, the Lax
connection found by Bena, Polchinski and Roiban is applicable to
our model as well

Lo = loAY) + 6 A + loyape® AY) + L5 ALD + 0, AL

e [, is flat due to e.0.m and this determines all ¢, in terms of one
parameter z

e L, isflat provided k = £1
e k-Symmetry variation of L, is a gauge transformation on-shell

e L.(z)is used to build infinite sets of integrals of motion
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Plane-wave Limit

Let z; be homogenious coordinates on CP”.

Parametrize
—ig)2 ib/2 1 1
24 =€ , z3=(1—mx4)e ., 21 = —=Y1, Z2= ——=1

V2 V2

¢ Is a parameter along the geodesics and the complex v, y» and
the real x4 denote the five physical fluctuations in CP*

The AdS, x CP* background metric admits the following expansion
1
2

ds’ = —dt*(1+a7) + da? + do* (1 — a3 — 29,y,) + dad + dyrdy, + -

AdS, 4 xCP3

4

Plugging in the point-like string solution witht =7, ¢ = 7 in the
string Lagrangian one gets four fields of mass 1/2 and four fields of
mass 1.The field =, from CP? joins three fields from AdS..
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Plane-wave Limit
The bosonic action around particle trajectory t =7, ¢ = 7 is

R2

Ao

S =

1
/deT (8O‘xk8aa:k — ZE% + 0°YrO00Yr — Zgryr)

Develop now the whole quadratic action (including fermions)
starting from the coset representative
g=¢€*gp
Gauge-fixing x-symmetry we find that
the sum of the quadratic bosonic and fermionic actions coincides

with the light-cone Green-Schwarz action for Type IIA superstrings
on the pp-wave background with 24 supersymmetries!
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Conclusions

Green-Schwarz superstring on AdS, x CP? with k-symmetry
partially fixed is the coset sigma model

OSP(2, 2/6)
SO(3,1) x U(3)

The coset sigma model has k-symmetry of rank 8
The coset sigma model is classically integrable
Is it a quantum integrable model?

What is the light-cone S-matrix?
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