MSYM

amplitudes
in the
high-energy limit

Vittorio Del Duca
INFN LNF

Gauge theory and String theory Zurich 2 July 2008




In principio erat Bern-Dixon-Smirnov ansatz ...

an ansatz for MHV amplitudes in N=4 SUSY Bern Dixon Smirnov 05

mn, = m 1+ZaLM£L)(e)}

L=1

m% exp Z (f(l) (e) MV (le) + Const') + EW (e ))}

A =g>N. ‘t Hooft parameter

E}(€) = O(e)

cusp anomalous dimension, known to all orders of a Korchemsky Radyuskin 86
Beisert Eden Staudacher 06

IR function, known through O(a*) Bern Dixon Smirnov 05
Cachazo Spradlin Volovich 07




Brief history of BDS ansatz

BDS ansatz checked through 3-loop 4-pt amplitude Bern Dixon Smirnov 05

2'IOOP S'Pt amPIItUde Cachazo Spradlin Volovich 06
Bern Czakon Kosower Roiban Smirnov 06

BDS ansatz shown to fail on 2-loop 6-pt amplitude

Bern Dixon Kosower Roiban Spradlin Vergu Volovich 08

Hints of break-up also from strong-coupling expansion  Alday Maldacena 07

hexagon Wilson loop  Drummond Henn Korchemsky Sokatchev 07
multi-Regge limit Bartels Lipatov Sabio-Vera 08




BDS ansatz and Regge limit

4-pt amplitude PaPb = Pa’Pb’ in the Regge limit s> —1

S a(t)
ma =519 Clonp) 3 () loxClonw)

a(t) Regge trajectory C(pa,par)  coefficient function
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Because the Regge limit |§ exponential in the Regge trajec.tory, Naculich Schnitzer 07
one can use (the logarithm of) the BDS ansatz to obtain Bartels Lipatov Sabio-Vera 08
the Regge trajectory to all loops Glover VDD 08

I-loop Regge trajectory

N
o (e) = 217 1aM (l¢) < > + O(e)




the BDS ansatz can also be used to compute
(or to derive relations between) the coefficient functions

High-energy factorisation is valid also for amplitudes with 5 or more points
in generalised Regge limits.
The general strategy is to use the modular form
of the amplitudes dictated by high-energy factorisation,

to obtain information on n-point amplitudes in terms of building blocks derived
from m-point amplitudes, with m <n
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Because high-energy factorisation is used in the derivation
in QCD of the BFKL equation at LL and NLL accuracy,
| will start from there
with a few slides of a few years ago ...




‘ FORWARD I
‘ PARTON-PARTON SCATTERING I In the c.m. frame, t = —s(1 —cos@)/2,

with 0 the scattering angle. s > |{|:

W f{orward, i.c. small angle, scattering: do/dt ~ 1/t

- ihe scattering process is dominated by sub-processes with gluon exchange

in the t channel: ¢ ) — ¢ 0,99 —qg,99g—qgg
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‘ PARTON-PARTON SCATTERING I In the c.m. frame, t = —s(1 —cos@)/2,

with 0 the scattering angle. s > |{|:

W f{orward, i.c. small angle, scattering: do/dt ~ 1/t

W :he scattering process is dominated by sub-processes with oluon exchange
in the f channel: ¢ 0 — ¢ ,99—qg9,99g—9gg

g g — q g scattering amplitude in the s > |{| limit:
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- (o (C?9): gluon (quark) high energy effective vertices

W 1ioh enercy factorisation: to obtain ¢ Q — ¢ Q or g g — g g replace
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\ BFKL RESUNIMATIONI

in any scattering process with s > || gluon exchange in the ¢ channel

dominates
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BFKL is a resummation of multiple gluon radia-
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for s > |t| BFKL resums the Leading Log (and Next-to-Leading Log)

contributions, in , of the radiative corrections to the gluon

propagator in the ¢ channel, to all orders in o -

the LL terms are obtained in the approximation of strong rapidity

ordering and no k; ordering of the emitted gluons
the NLL terms are

the resummation yields a integral equation for the evolution of the

oluon propagator in the ¢ channel




\ LL BFKL RESUMMATIONI

¥ the universal building blocks of the LLL BFKL resummation are:

*® the real term: the emission of a gluon along the gluon ladder

! )
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- (q1,k,q2) is the gluon emission (Lipatov) vertex




\ LL BFKL RESUMMATIONI

¥ the universal building blocks of the LLL BFKL resummation are:

*® the real term: the emission of a gluon along the gluon ladder

/ --
Pa G - Pa G A;rgeisg(pa ,pa/|k|Pb’a])b)

— 3 |:igfaa,C Cg-g(pa:pa/)]
X3 |ig fe Cg(ql,k,qQ)]
X o |19 f*7€ C9°9(pb:pbf)]

- (q1,k,q2) is the gluon emission (Lipatov) vertex

*® the virtual term: the regoeisation of the gluon exchanged in the ¢ channel

(here in d = 4 — 2¢ dimensional regularisation)
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- g*(t)a v(1) is the 1-loop gluon Regse trajectory (Cs = N¢)
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\ NLL BFKL RESUMMATIONI

¥ the building blocks of the NLL BFKL resummation are:

*® corrections to the Lipatov vertex

Fadin, Lipatov 1989-96
VDD 1996

Fadin, Lipatov 1993
Fadin, Fiore, Quartarolo 1994
Fadin, Fiore, Kotsky 1996

Bern, Schmidt, VDD 1998

Fadin, Fiore, Kotsky 1995-96
Fadin, Fiore, Quartarolo 1995

Glover, VDD 2001




\ GLUON I

ANSATZ || in HEL the gluon-gluon scattering amplitude for the exchange of a

colour octet of negative sighature in the ¢ channel is

Ag 9— g g\ Pa> Pa’ |Pb”Pb)

. aa’c g/ g1 ) ) : ‘c ‘g
- S[ng C""'gkpa:pa’)]? ( [ngbb C99(pv: P )

¥ the effective vertex (/99 and the gluon Regge trajectory have the
perturbative expansion

Cg:g _ Cvgg(Ol(l _I_g'.?.(t)(“vgg(ll_l_g-i(t)cgg(z')_'_c)(g(s)
a(t) = g(H)a'V +g' (1) +0(3°)

¥ the 2-loop gluon Regege trajectory is

maximal trascendentality  Kotikov Lipatov 02



‘ IMPACT FACTORS I

\LO IMPACT FACTOR |

@ 5t LO the impact factors are known for all the processes of interest
(see next Table)

\NLO IMPACT FACTOR |

@ ot NLO the impact factors are known for gg* — ¢, gg* — g and v*¢" — qq
Bartels, Colferai, Gieseke, Vacca 2001-02




More tree coefficient functions ...

Pa @ Vg, Pa’ ll., Vg

N00000gL00000,

contributes to NNLL BFKL kernel

Frizzo MaltoniVDD 99

Antonov Lipatov Kuraev Cherednikov 05

000000000000

Py by py b vy




More tree coefficient functions ...

Pa @ Vg, Pa’ ll., Vgyr
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q,c ‘ C
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contributes to NNLL BFKL kernel

Frizzo MaltoniVDD 99

Antonov Lipatov Kuraev Cherednikov 05

contributes to NNLO impact factor
(boundary condition to NNLL kernel)

Frizzo MaltoniVDD 99




More tree coefficient functions ...

Pa GV, Pa’ llv, Vgr
N00000gL00000,
q,c ‘ C

contributes to NNLL BFKL kernel

Frizzo MaltoniVDD 99

Antonov Lipatov Kuraev Cherednikov 05
BOOO00@0C0000°

I)f/ 1' I'/h I)h" ]', Vh'

contributes to NNLO impact factor
(boundary condition to NNLL kernel)

Frizzo MaltoniVDD 99

1”/ [) Iy 1"/' b, Vy

used to compute DGLAP splitting amplitudes for all parton species
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Tree 4-gluon coefficient function

contributes to NNNLO impact factor
(boundary condition to NNNLL kernel)
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Tree 4-gluon coefficient function

contributes to NNNLO impact factor
(boundary condition to NNNLL kernel)

Frizzo MaltoniVDD 99

one may check several kinematic limits
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Unknown |-loop coefficient functions, which could be also computed ...

\‘QQ—QQQ_Q_QQQ/ W
Y1 = Y2 > Y3 BTO0000000"
boundary condition
) to NNLL kernel
%\ R,




Unknown |-loop coefficient functions, which could be also computed ...

\‘QQ—QQQ_Q_QQQ/ W
Y1 = Y2 > Y3 BTO0000000"
boundary condition
) to NNLL kernel
%\ R,

boundary condition
to NNNLL kernel

ZO: 5

Y1 > Yo >~ Yz > Ya contributes to

NNLL kernel

In MSYM Bartels Lipatov Sabio-Vera 08 S



as well as 2-loop coefficient functions ...

U1 > Yo A5HTO000000
O00000000" boundary condition
to NNLL kernel
" 0000000

0000000t




as well as 2-loop coefficient functions ...

U1 > Yo ASTO0000000
O00000000" boundary condition
to NNLL kernel
" 0000000

%

The |-loop and 2-loop coefficient functions | showed

in the last two slides have never been computed in QCD.
Why ? They are

Q building blocks of BFKL kernels or of their boundaries,
which, as of now, are unlikely to be built




as well as 2-loop coefficient functions ...

Y1 > Yo 0000000000 ASTEETO0000
boundary condition
> to NNLL kernel
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The |-loop and 2-loop coefficient functions | showed

in the last two slides have never been computed in QCD.
Why ? They are

Q@ building blocks of BFKL kernels or of their boundaries,
which, as of now, are unlikely to be built

Q@ building blocks of n-point |-loop or 2-loop amplitudes
in particular kinematics, but in QCD we have no clue
about the structure of n-point |-loop or 2-loop amplitudes
in arbitrary kinematics (except for |-loop MHV configurations)




N=4 Super Yang-Mills

Bern-Dixon-Smirnov computed the 2-loop 4-pt amplitude M4? to O(&?)
and the 3-loop 4-pt amplitude M4 to O(€Y). Bern Dixon Smirnov 05
Those amplitudes can be used to test the high-energy factorisation

of the 4-pt amplitude.
It is known that the factorisation formula for

the QCD colour-dressed amplitude

My =s {igs foeo C(pa,paf)} % {(j)a(t) + (i)a(t)} {igs o C(pb,pb/)}

Fadin Lipatov 93

holds only up to NLL accuracy (which was fine for BFKL at NLL)
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It is known that the factorisation formula for

the QCD colour-dressed amplitude

My =s {igs o C(pa,paf)} % {(j)a(t) + (i)a(t)} {igs o C(pb,pb/)}

Fadin Lipatov 93

holds only up to NLL accuracy (which was fine for BFKL at NLL)

Im M4(!) contains leading colour structures other than the f’s  Schmide VDD 97

In the high-energy limit mflo)(— + —+)=— mflo)(— — ++) at tree level
which are connected under s <> u channel crossing.

Clearly, the coefficients of the colour-stripped amplitudes must be the same for the
formula above to hold. At n loops, that occurs for the n-th log and for the real part of

the (n-1)-th log: that suffices for BFKL at NLL




natural to use a high-energy factorisation for the colour-stripped amplitude

a(t)
1 —S , (1, Ha’ ‘»*" Va'
my(—, —,+,+) =my = s(gs C(pa, pa’)] p <—t> 195 C'(pv, por)] 0090009290000

in the s-channel physical region

a(t)
1/ s
m4(_7 _l_a R _l_) = m}f — S [93 C(paapa’)] ; (—t) [gs C(pbapb’)]

in the u-channel physical region

The formulae above contain the same info: they are related by s <> u channel crossing




natural to use a high-energy factorisation for the colour-stripped amplitude

—S

a(t)
S 1 )y (4 V,
m4<_7 T _l_a _I_) my =8 [gS C(paapa’)] g <—t> [gs C(pbapb’)] [ Q0000

in the s-channel physical region

a(t)
1/ s
m4(_7+7_7_|_) mz — 5[95 C(paapa’)] ; (—t) [gs C(pbvpb’)]

in the u-channel physical region

The formulae above contain the same info: they are related by s <> u channel crossing

Using the high-energy limit of BDS’s 2-loop 4-pt amplitude M4 to O(&?)
and 3-loop 4-pt amplitude M4 to O(€Y),
one can check that the formulae above hold at 3-loop accuracy Glover VDD 08

Instructive to implement the factorisation formulae with channel-
dependent coefficient functions. If the test amplitudes are not in
the right” kinematics, the coefficient functions are indeed
channel dependent — factorisation is broken




Factorisation of the 2-loop amplitude — @wmr
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Factorisation of the 2-loop amplitude — @wmr

y 1 2
m4(2) 2 (a(l)) L’ ww?mm

Gﬂm+20umm0_L
HO00000" < 00000q ASTETO0
20® 4 (C(l))2 g mmg&ﬁw”
L =1In (i>
—1 ”UUGUW 55900 (220000

by direct calculation from é
BDS’s 2-loop 4-pt amplitude M4®? to O(€?)
”OUUU@U\

we get 2-loop trajectory

T2 4t
ag\?éYM — _§ — 263 — 4_56 + (67T CB + 82C5)€ - O( )

2-loop coefficient function

572 1 95 11376
C](\/?;YM — — (s —|— 7T > 62 —+ 0(63)

6 €2 504
Glover VDD 08




BDS ansatz and high-energy factorisation

The BDS ansatz implies the 2-loop recursive formula
for the 2-loop 4-pt amplitude m4®? (rescaled by the tree amplitude)

D]’ 4 26700 @)y D
i (€] + g 1P @ mi (20— 26 +0()

Anastasiou Bern Dixon Kosower 03

FA(e) = =G — Cge — Gué?

e~ T(1 — 2¢)

faTrorei—eg 7o)

(we use a different normalisation from BDS) G(e) =




BDS ansatz and high-energy factorisation

The BDS ansatz implies the 2-loop recursive formula
for the 2-loop 4-pt amplitude m4®? (rescaled by the tree amplitude)

W12 L 267 )y, ()
= @] + G @m0~ 26 + 00

Anastasiou Bern Dixon Kosower 03

with [P (e) = —( — (e — (4€°

e~ T'(1 — 2¢)
T(1+¢)T2(1 —¢)

=1+ O(e)

(we use a different normalisation from BDS) G(e) =

from the 2-loop recursive formula and high-energy factorisation, we get

L 2G°(e)

(2) (1) ) — (2 .
G IO Clitvn(26) = G+ 0(0)

1 2
CJ(WQg‘YM(E) — 5 [Cl(wlg*YM(e)}

Glover VDD 08

one needs C!)  through O(¢®) but we know it to all orders of €, in QCD

Y(1+€) —2¢(—¢) + (1) Bern Schmidt VDD 98
€

CJ(ng‘YM —




BDS ansatz and 3-loop high-energy factorisation

from BDS’s recursive formula for the 3-loop 4-point amplitude and high-energy factorisation,
we get a recursive formula for the 3-loop coefficient function

1

C](\/[Bg‘YM(E) — _§ [Cj(wlg*YM(e)} —|_C](\/}2‘YM(6)CJ(\42%YM(€)

+ 453()) FP(€) Cirdyrr(3€) +4 Const™ +O(e)

Glover VDD 08

with O (e) = %QL + (6¢5 + 5CaCs)e + (c1e + c2(5)€

341 2 17 2
Const® = (216 Cl) Ce + ( 0 CQ) C3

oneneeds (%) through O(¢*) and (1) through O(e*)




Conclusions

what’s next !

once the 2-loop 5-point amplitude

in the (quasi)-multi-Regge kinematics is known,

we can derive the corresponding coefficient functions

. work in progress Duhr Glover VDD

A bootstrap approach:

once we know the coefficient functions from
the 2-loop 4-point and 5-point amplitudes,
we can use them to build 2-loop amplitudes
with 6 or more points, in the multi-Regge and
quasi-multi-Regge kinematics, and thus obtain
(hopefully useful) info on the analytic form of
2-loop amplitudes with 6 or more points in
arbitrary kinematics




