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0 Introduction

N =4 SYM

e The AdS/CFT duality relates NV = 4 SYM to IIB string
theory on AdS;xSs. It is a weak/strong-coupling duality.

e The large N limit of the SYM theory can be described by spin
chains.

Derivative operators

e Built from scalar fields X and covariant derivatives.

e The derivatives act as magnons moving on the chain of scalars.

Large spin all-loops anomalous dimension

e We start from an all-loops conjecture for the Bethe ansatz.
A large spin continuum limit yields an integral equation
for the density of Bethe roots.

e The energy grows logarithmically with the spin. It is given by sums
of zeta values respecting a principle of maximal transcenden-
tality.

e We discuss dressing phases (integrable modifications of the
Bethe ansatz) that do not violate transcendentality.

e A kernel from string theory reverses the sign of certain con-
tributions to the energy. At four loops, agreement with field
theory is obtained.

Wrapping
e Limitation: Short spin chain length at high loop order

e Lowest case: Fourth anomalous dimension of the Konishi operator



1 Spin Chain Picture for BMIN Operators

Composite operators are characterised by
e Lorentz spin,
e SU(4) Dynkin labels,
e dimension A(g?, N).

Two-point functions of scalar singlets O, Oy obey
< (91(1) @2(2) > = O, Al 7& AQ,

c(g*, N)
(x%z)A(QQ’N) 7

< 01(1) @1(2) > =

T19 — X1 — 9.

SU(2)-sector BMN operators

Oy, k, p) = IL,Tr(X") Tr(®, X% P, X7),
Oy, k, p) = ILTr(X% Tr(®, X ) (D, XP) .

D v = ([X, [Pz, X])

P RPN R R RN R R
N
N
N
N

e Large N: Spin chain picture, X, ®- as up and down spins. The
one-loop interaction defines a Hamiltonian MZ 0212208.

e Higher order Feynman diagrams give a perturbation BKS 0303060.

e Wrapping: The interaction length becomes equal to or greater
than the number of fields in an operator.



2 Spin Chain Picture for Twist Operators

Derivative sector:
{81, 59,853, .. } = TT((D?X)(D?X)(D?X) .. )
e X is a complex scalar field of the N = 4 SYM theory with SU (V)
gauge group. D, = 0, + tgvm A,.

e The operators carry traceless symmetric Lorentz representation of
spin § = S1 + So + s34+ ... ; project 2 = x1 + 129.

e Loop diagrams define a Hamiltonian that can transfer derivatives
from one site to another. Free lines do not (as long as we look at
a certain tensor component).

e In the large NV limit this defines a nearest neighbour interaction.,

Two-site Hamiltonian.

We may view the derivatives as “magnons” moving on the sites of a
spin chain.

At one loop (B):

H ({1, 52} — {s1, 52}) = h(s1) + h(s)

HO sy, s} — {s1—d, ss+d}) = 1




3 Bethe Equations

e The one-loop Hamiltonian above defines the Heisenberg XXX chain
with spin —%.

The dynamics of the system is captured by the Bethe ansatz
\ L
(uk+1> _H<uk—uj—z'

-, g ke{l,... s},
ik uk—uj—i—z)

All-loops conjecture (S,BS):

- 2
?
ut-—=axF+ J

VA
> 2wt YT i
The deformed system is

e Valid only for infinite spin chain length!



4 Some One-Loop Solutions for L =2

The results of KLOV may be reproduced from the Bethe ansatz. The
large spin limit of the universal anomalous dimension should connect
via the AdS/CFT duality to the prediction by GKP.

e There are only solutions for even spin s. The roots are all real
and symmetrically distributed around zero. We label them as

u—s/?a ey U, Uy .. ;%/2-
o For k> 0 we plot pp = —— against (k — 1)/s, similarly for
k< 0. |
s =20
..:;0.
s = 50

- N w IS o




5 One-Loop Large Spin Limit

e The L = 2 case is exactly solvable for any (even) spin; the uy are
the zeroes of certain Hahn polynomials DKM 0210216.

e The roots are real and symmetrically distributed around zero. The
density peaks at the origin, there is no gap.

e The outermost roots grow as max{|u.|} — s/2.
e The mode numbers are F1 for negative/positive roots.

e For L > 2 there is more than one state. However, for the lowest
state the root distribution is again real and symmetric with n =

sign(u).
We take the logarithm of the Bethe equations
up + L e —
—1i L log i f :27rnk—i21oguk o Z,,
Up — 3 P Up — Uj + 2

rescale u — su, expand in 1/s; and take a continuum limit:

1/2 — (=
0=2me(a) —2 ][ g 2o

1/2 U—ﬂ/

One may solve by an inverse Hilbert transform:

1 14+vV1—4u2 2
1) =—lo — — arctanh ( 1 — 4ﬂ2>
pole) = o8 T A=y V

The one-loop energy is:




6 Asymptotic All-Loops Large Spin Limit

Split
pl) = ofa) — ¢ 2 ()

and integrate out the one-loop density.

Large spin limit:

0 = 27mo(u) o)
_Q/OOdU/(u—u’)Z—i-l

‘(%E)[ﬁzo+xtm]

42 /_ Z du’a(u’)% log G = zzﬁmi;m

e This is an asymptotic result, because L needs to grow with the
order in ¢? to avoid “wrapping”.

e The final formula is L independent. "Wrapping” is thus absent.



7 Weak Coupling and Transcendentality
We introduce the Fourier transform &(t) of the fluctuation density

/ due ™ o(u).

(0. 9]

The integral equation becomes

o(u)

Do+

o(t)=e"

el —1 29t

5(t) = [
—492/ dt K(2gt.2gt) 6(t)]
0

with the non-singular kernel

it ) = BB — Q) 1)
The energy is
_ E(g) B L Ji(2g1)
flg) = og(s) 89g° 6494/0 dot) =

The integral equation is of Fredholm II type. One may solve by iter-

ation:
1t 1 t
7(t) = — — ¢ (= 2
oW =371 g(4et—1+C()et—1)+ ’
where we have used
1 O dt t"
1) = — :
Cnt1) n!/o et — 1



We find
flg) = 8¢° —16¢2)g" + (4¢(2) + 12¢(1)) 8°
_ (4 C(2)® + 24 C(2)C(4) — 4¢C(3)% + 50 C(6)> 166 + ...

or, alternatively:

8 88 73
f(g) =8¢* — §7r294 + £W4g6 — (@76 — 4g(3)2) 16¢g° + . ..

o Agrees with KLOV up to three loops (in the large spin limit their
harmonic sums become zeta functions).

The result obeys a principle of uniform transcendentality:

The [-loop contributions have degree of transcendentality 21 - 2.




8 Dressing Kernels

The higher-loop Bethe equations receive corrections KMMZ, BDS,
AFS, BK:

+\ L S .- + 2 /ot on—

) x, —x; 1 —g° /) x; _

L) = A —— exp(2i0(u, u;)),

(a:k) jl_[la:z—xj 1—92/95'k,:1:';r ( J )
j#k

For perturbative String theory write the dressing phase as

uk)“’j Z Z Crs q (uj) - st(uk) qr(u])) :

r=2 s=r+1

The ¢,(u) are the higher conserved charges. The strong-coupling ex-
pansion of ¢, s within string theory is

Cr,s(g) - 67(“?3)9

Proposal for the all-order strong-coupling expansion:
L= (=1)"™*)¢(n)
m —1)(s—1
@8 = =) DT
F[%(S +7r+4+n—23)|I]
Fi(s+r—n+1)]
Singular for n = 0, 1, when
_ (__1\rts
C&og S 67{18 _ (1 (—1) ) (r—1)(s—1) .
’ ’ s (s+r—2)(s—r)

(The latter are the AFS and BT HL terms, respectively.)

(s —r+n—1)
(s—r—n+3)]’

DO DO

Based on:
e n =0, 1: available data
e for even n: crossing symmetry (J,BHL)

e for odd n: natural choice



Can we interpolate to weak coupling in order to recompute f(g)
with this dressing kernel?

U(z) = 0, log I'(2) has the asymptotic expansion (z >> 0)
00 c,
W(l+2) =1 & 2Lyl —n),
1+ =logs D0 (~1)°¢(1—n)
while the expansion around z = 0 reads
U(l+2)=—ym+ Y &2 a&=—(-D}1+k).
k=1

The expansion coefficients for large and small 2z are almost the same!

Cn — _é_n

In our situation: ¢, ;(g) has the weak coupling expansion

00
Cr,s(Q) = — Z Cgﬂ;n)gl—kn.
n=1

We use the identities

C(1=2z) =2(2m) " cos(3mz) I'(2) ((2) and ['(1—z)= T
to obtain
o (L= (=D coslmn) (<117 ¢(1 — )

T TG = )ITEB —ntr —s)]

'2—n)F1—n)(r—1)(s—1)

"TIG—n—r+s|TR1-ntr+s)

e Only even n contribute.
e BES, v2 proot for ¢ 3, general proof KL 0611204

e J: Phase from Bethe ansatz with crossing symmetry



9 String Phase and Scaling Function

The weak coupling expansion of the string theory dressing phase yields
the kernel

chy) = —4¢(3),

ey =+40¢(), o) ==24¢(5), ;" =+8¢(5),
&) = —420¢(7), o) =+420¢(7), c55) = —168¢(7),
o) = +4704¢(9),

The scaling function becomes

8 88 73
:8 2__ 2 4 i 46_16 Y 6 4 32 8
f+(g) =8¢ ST =T 0™t C3)" g

887 8 4 ) 2 10
s (14175 w4 SR8 4 0C(3 <<5>) g
S

136883 40
— 64 10 =4 3 2 o2 3 5
(3742200” T g TB)ed)

+210¢(3) ¢(7) + 102 g(5)2) gi+ .

f+(g) is obtained from f(g) (trivial dressing phase) by multiplying all
odd zeta functions by the imaginary unit z.




10 Agreement with Field Theory

In parallel to our effort, BCDKS have completed a direct computation
of the scaling function f(g) at four loops. Their calculation uses uni-
tarity methods and conformal invariance to predict a set of integrals
which are evaluated with the help of the MB representation. The
exponentiation of infrared singularities is a stringent check.

BCDKS find

flg)=...—64x(29.335 £0.052) ¢° +...
=...— (3.0192 £ 0.0054) x 107 A" + ... .

Recall our value:

filg)=...—16 ((%wﬁ’wg@f) @+ ..

. —3.01502 x 1070\t ...

Q

The four-loop value calculated by Bern, Czakon, Dixon, Kosower and
Smirnov matches the fourth term in f,(g).

e BCDKS independently guessed the sign-flipped scaling function
fi(g). They checked compatibility with the KLV approximation
to rather high order.

e CSV have improved the error bar of the BCDKS result by three
orders of magnitude.

e BMcLR constructed the four-loop Hamiltonian of the su(2) sector
from Feynman graphs. They confirm

BY) = 4¢(3).



11 Numerics by BBKS

fo(g) arises by omitting the odd zeta values.

50

404 >

304 o ' 04 ' 08 1

f(g)

20 -

10 -

5 10
8
f(g)7 Jolg), f+(9)-

e The transition to the linear regime happens around g ~ 1. Ex-
trapolation is well behaved.

Strong coupling behaviour of f,(g):
filg) = 4.000000g — 0.661907 — 0.0232¢g~ + ...
Error: £{1,2,1} in the last digit displayed.

Exact result: GKP, F'T, RT; BKK, KSV




12 Beyond the Asymptotic Regime

We must understand the wrapping regime/finite size corrections.

e N = 4 version of the BFKL equation KLRSV 07043586
e thermodynamic Bethe ansatz AF 07101568

e quantum corrections to the “giant magnon” GSV 08013671

e In field theory, the first case of wrapping is the fourth anomalous

dimension of the Konishi operator. Two calculations FSSZ, KM

of the appropriate modification of the four-loop spin chain Hamil-

tonian have been presented, but they lead to results inconsistent

with each other and with the BFKL prediction.

e My initiative 07123513 involves a relatively small (O(100)) number
of numerator terms with six derivatives for the following two-point

topologies:

T
T T

The numerators of the six-loop diagrams have at least one p?.

— T

e

]

[ am currently reducing the four-loop part by IBP. Higher diagrams

perhaps first by MB? Non-planar five-loop topology is problematic.




13 Exploiting Superconformal Invariance

The Konishi superfield is
Ki=T1r <€gvd3[€_gvgb[) .
Using the e.o.m.

—i[ﬂ/cl = —3gB, B =Tr(o"d49").

At tree-level:

(K1(1) Ki(2) Yg—p—o = ?Egg—x%;)
(30 B(1)39 B by = —

(DD W ) Yoo __ONG L

(K1(1) K1(2) )g=i= o A,

N = 1 superconformal symmetry requires
c(g*, N)

('%%1}22 iQRlLZ)A/Q

<’C1(1)/C1(2)> -

with

TriRe = Tp1—TR2—2i (910@), A = 2+”7192+’ng4 +7396+... :

By straightforward differentiation

(DD K )i a e o L
(D K () Ygoims = —Ala-2




A: Upon equating:

6N g*
A2

+ O(g") = A(A=2) = 2ng* + O(g")

3N

T e

e The one-loop anomalous dimension was obtained without calcu-
lating any loop integral!

e Two-loop anomalous dimensions E require the inclusion of the
Konishi anomaly, i.c. the mixing of B = Tr([®', #*¢°) with
the Yang-Mills Lagrangian F = Tr(W*W,,).

e Calculation of the three-loop anomalous dimension of the Konishi
operator and the next higher composite in EJS, EJSS

e For the Konishi operator, the four-loop value can be found from
the set of diagrams in Section 12.

e Drawback: An “anomaly” in the supersymmetry transformation
of B, F is assumed absent (rather natural), high loop order.

e Advantage: No momenta are put to zero, thus no infrared
problem.



14 IBP: Triangle Rule

k+|q
) y P
P.— B
k+p, P,
Haw, 1, frvansan) = | Lk
A0 PR P EL ST |20 (k + p)?)P (K + p2)?) 2 () (p3)°2
Consider
/ P2 i = 0.
Ok, (k2)20 ((k +p1)?)P ((k + p2)?)™ (p7)™1 (p3)22

It follows:

I, B1, B2, a1, 0) = 1/(D — 209 — By — [B2) *
| B1(I(og =1, 81+ 1, B, o1, 09) — (v, Br 4 1, Ba, a0 — 1, 009)) +
Bo(I(ag — 1, 81, B0 + 1, a1, c0) — I(ew, i, Bo + 1,00, 00 — 1)) |

(n powers of k in the numerator send D — D + n.)

Calculation of Ti:

~([ Do+ OO0



15 IBP: Laporta Algorithm

Triangle rule on the non-planar four-loop topology:

) P o

e No more triangles!

Second graph: Three-loop NO topology with the exponent of one
line modified to 1 + €. Non-trivial numerators contain

Pn = {QQ, p%? <p2Q)} .
Let

P4 = P2—P1, P5 = P3—DP2, P6 = q—P1, P71 = q—P3, P8 = q—P1+P2—DP3.

Laporta Algorithm:

The set of equations

II_. P,
d"py dPpy d”ps 0, p; —
/ RV Ll v P

(p; can be q) relate the integrals with any numerator of rank [ to the

= 0

master with numerator (¢?)' and configurations with a missing line.

Here
N N = o

with a double propagator in any position.




e The first example can’t be dealt with by the triangle rule. Use
Laporta again! No master.

e We find the following masters:

In the sum of four-loop graphs they will probably drop.

e Last master: Laporta for three products in the numerator, two
double propagators gives matrix size 2555 X 6149.

e Five-loop NP graph: Laporta too hard, MB unsuitable?



16 Infrared Rearrangement

Example from K. Chetyrkin, preprint MPI-ph/Pth 13/91.

/ Pk, dPk,
(g = k)? + m?)((k1 — ko)? + m?)(kf +m?)

Fl(Q7m) -

Counterterm operation:

Apv L = Zym? + Zyq°

q-ks q-ka
Cigks ¢@+
a\_ q q
. K, ® ki

We try to compute Z,,. Differentiate in m?:

dPki dPk,
Fg(q,m) = /((q—k2)2+m2)((l€1 _k2)2+m2)(k%+m2)2
1

Ayy Iy = _§Zm

Infrared Rearrangement: ¢, m — 0, introduce ¢’.

Fq) = / dPky dPk,
MU R e — k)2 R (e — ¢

5 . 1 dPk, 1 1 1
A=K, (b — _ _t 2
uv e ( > 1672 / K2 (/ﬁ—q’)2> (1672)2( 2 %



R* operation:
Do not change ¢, put m — 0. Use

I

kY 1672

o (k1)

instead of 1/kf.

Our case: Differentiate by ¢°.

e Trivial outer integration on a four-loop IBP problem (three “dots”,
four products in the numerator)

e Combinatorics difficult



17

Conclusions

In the planar limit, the operator spectrum of N' = 4 SYM is
described by an integrable system. We have presented a quick
review of the strategy for the so-called su(2) and sl(2) sectors
(BMN and twist operators, respectively). The approach has been
generalised to the full set of multiplets, and to higher loop orders.

The weak coupling (gauge theory) Bethe ansatz is fixed up to
four loops by current data. It contains a dressing factor which
becomes relevant at four loops and beyond.

The Bethe equations are valid in the asymptotic regime of infinite
spin chain length.

Wrapping: For a discussion of strong coupling behaviour one
would need all orders in perturbation theory. In general, no such
result can be obtained for operators of finite length, since the in-
teraction range grows with the loop order.

In string theory, there is an equivalent problem with finite size
corrections.

We have discussed the all-loops Bethe ansatz for the derivative
operator sector. The energy of the lowest lying state scales log-
arithmically with the total spin s as the number of derivatives
becomes large. The coefficient of log(s) is the scaling function
f(g). The calculation is not affected by wrapping.

At strong-coupling (string theory) the dressing phase had been
conjectured on grounds of calculational data paired with crossing
symmetry constraints. We have presented the weak coupling ex-
pansion of this string theory dressing phase and discussed its effect
on the scaling function.

The four-loop term of the result f,(g) agrees with field theory
calculations!



e The lowest (and probably the only calculable) case of wrap-
ping concerns the fourth anomalous dimension of the Konishi
field. We have presented our ongoing attempt to calculate this
number.

e The result should help to understand whether the transcendental-
ity principle survives in the wrapping regime and whether BFKL
physics or the TBA can be used in this situation.



