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Outline

✔ On-shell scattering amplitudes in N = 4 SYM

✔ Iterative structure of gluon amplitudes and BDS ansatz

✔ Dual conformal invariance – hidden symmetry of planar MHV amplitudes

✔ Wilson loop/MHV amplitude duality in N = 4 SYM

✔ Dual superconformal invariance of MHV and next-to-MHV amplitudes

✔ Wilson loop/all amplitudes (MHV, NMHV, N2MHV, . . .) duality in N = 4 SYM
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On-shell scattering amplitudes in N = 4 SYM

✔ N = 4 SYM – (super)conformal gauge theory with the SU(Nc) gauge group

Asymptotic on-shell states: gluons G±1(p), four gaugino ΓA

± 1
2

(p), six real scalars SAB
0 (p)

✔ Scattering amplitudes in N = 4 SYM

. . .

An = S

1

2

n

✗ Quantum numbers of on-shell states |i〉 = |pi, hi, ai〉:
momentum (p2

i = 0), helicity (hi), color (ai)

✗ On-shell matrix elements of S−matrix

✗ Suffer from IR divergences 7→ require IR regularization

✔ Color-ordered planar partial amplitudes

An({pi, hi, ai}) = tr
[
Ta1Ta2 . . . Tan

]
Ah1,h2,...,hn

n (p1, p2, . . . , pn) + [Bose symmetry]

✗ All-loop planar amplitudes can be split into (universal) IR divergent and (nontrivial) finite part

Ah1,h2,...,hn
n (p1, p2, . . . , pn) = Div({si,i+1}, 1/εIR) Fin({pi, hi})

✗ IR divergences exponentiate [Mueller],[Sen],[Collins],[Sterman],[GK,Radyushkin],...

log (Div({si,i+1}, 1/εIR)) = −1

4

∞∑

l=1

al

(
Γ
(l)
cusp

(lεIR)2
+ G(l)

lεIR

) n∑

i=1

(−si,i+1)
lεIR

✗ Main goal: identify the finite part of the planar amplitudes
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MHV amplitudes

Classify color-ordered amplitudes Ah1,h2,...,hn
n (p1, p2, . . . , pn) according to their helicity content:

✔ Supersymmetry relations:

A++...+ = A−+...+ = 0 , A(MHV) = A−−+...+ , A(next−MHV) = A−−−+...+ , . . .

✔ The n = 4 and n = 5 planar gluon amplitudes are all MHV

{A++−−
4 , A+−+−

4 , . . .} , {A+++−−
5 , A+−+−−

5 , . . .}

✔ Next-to-MHV amplitude appear starting from n = 6 gluon amplitudes

A+++−−−
6 , A−+−−++

6 , . . .

✔ Weak-coupling expansion of generic color-ordered amplitudes in ’t Hooft coupling λ = g2Nc

An =
∑

α∈Lorentz structures

[

A
(0),α
n + λ A

(1),α
n + O(λ2)

]

The MHV amplitudes involve only one Lorentz structure [Parke,Taylor]

A(MHV) = A
(0)
n + λ A

(1)
n + O(λ2) = A

(0)
n

[

1 + λ
A

(1)
n

A
(0)
n

+ O(λ2)

]

Weak/strong coupling corrections to all MHV amplitudes are described by a single function of ’t
Hooft coupling and kinematical invariants!
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MHV superamplitude

✔ On-shell helicity states in N = 4 SYM:

±1 (gluons), ± 1
2

(gluinos), 0 (scalars)

✔ Can be ‘packed’ into a single on-shell superstate [Mandelstam],[Brink et el]

Φ(p, η) = G+(p) + ηAΓA(p) +
1

2
ηAηBSAB(p)

+
1

3!
ηAηBηCεABCDΓ̄D(p) +

1

4!
ηAηBηCηDεABCDG−(p)

✔ Combine all MHV amplitudes into a single MHV superamplitude [Nair]

AMHV
n = (η1)4(η2)4 × A

(

G−
1 G−

2 G+
3 . . . G+

n

)

+ (η1)4(η2)3η3 × A
(

G−
1 Γ̄2 Γ3 . . . G+

n

)

+ (η1)4(η2)2(η3)2 × A
(

G−
1 S̄2 S3 . . . G+

n

)

+ . . .

Homogenous polynomial in η’s of degree 8

AMHV
n = i(2π)4δ(4)(

n∑

i=1

pi)
δ(8)(

∑n
i=1 λα

i ηA
i )

〈1 2〉〈2 3〉 . . . 〈n 1〉
︸ ︷︷ ︸

tree amplitude

× MMHV
n ({si,i+1}; a)

︸ ︷︷ ︸

universal function
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Four-gluon amplitude in N = 4 SYM at weak coupling

log
[

MMHV
4

]

= a

1

2 3

4

+O(a2) = Div(s, t, 1/εIR)+Fin(s/t) [Green,Schwarz,Brink’82]

✔ Bern-Dixon-Smirnov (BDS) conjecture:

Fin(s/t) = a
[
1
2

ln2 (s/t) + 4ζ2
]
+ O(a2)

all loops
=⇒ 1

4
Γcusp(a) ln2 (s/t) + const

✗ Compared to QCD,

(i) the complicated functions of s/t are replaced by the elementary function ln2(s/t);

(ii) no higher powers of logs appear in Fin(s/t) at higher loops;

(iii) the coefficient of ln2(s/t) is determined by the cusp anomalous dimension Γcusp(a) just
like the coefficient of the double IR pole.

✗ The conjecture has been verified up to three loops [Anastasiou,Bern,Dixon,Kosower’03],[Bern,Dixon,Smirnov’05]

✗ A similar conjecture exists for n-gluon MHV amplitudes [Bern,Dixon,Smirnov’05]

✗ It has been confirmed for n = 5 at two loops [Cachazo,Spradlin,Volovich’04], [Bern,Czakon,Kosower,Roiban,Smirnov’06]

✗ Agrees with the strong coupling prediction from the AdS/CFT correspondence [Alday,Maldacena’06]

✔ Surprising features of the finite part of the MHV amplitudes in planar N = 4 SYM:

Why should finite corrections exponentiate? and be related to the cusp anomaly of Wilson loop?
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Dual conformal symmetry

Examine one-loop ‘scalar box’ diagram

✔ Change variables to go to a dual ‘coordinate space’ picture (not a Fourier transform!)

p1 = x1 − x2 ≡ x12 , p2 = x23 , p3 = x34 , p4 = x41 , k = x15

p1

p2 p3

p4
x1

x2

x3

x4x5
=

∫
d4k (p1 + p2)2(p2 + p3)2

k2(k − p1)2(k − p1 − p2)2(k + p4)2
=

∫
d4x5 x2

13x2
24

x2
15x2

25x2
35x2

45

Check conformal invariance by inversion xµ
i → xµ

i /x2
i

[Broadhurst],[Drummond,Henn,Smirnov,Sokatchev]

✔ The integral is invariant under conformal SO(2, 4) transformations in the dual space!

✔ The symmetry is not related to conformal SO(2, 4) symmetry of N = 4 SYM

✔ All scalar integrals contributing to A4 up to four loops possess the dual conformal invariance!

✔ If the dual conformal symmetry survives to all loops, it allows us to determine four- and
five-gluon planar scattering amplitudes to all loops! [Drummond,Henn,GK,Sokatchev],[Alday,Maldacena]

✔ Dual conformality is slightly broken by the infrared regulator

✔ For planar integrals only!
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From gluon amplitudes to Wilson loops

Properties of gluon scattering amplitudes in N = 4 SYM:

(1) IR divergences of M4 are in one-to-one correspondence with UV div. of cusped Wilson loops

(2) Perturbative corrections to M4 possess a hidden dual conformal symmetry

☞ Is it possible to identify the object in N = 4 SYM for which both properties are manifest ?

Yes! The expectation value of light-like Wilson loop in N = 4 SYM [Drummond-Henn-GK-Sokatchev]

W (C4) =
1

Nc

〈0|TrP exp

(

ig

∮

C4

dxµAµ(x)

)

|0〉 , C4 =

x1

x2 x3

x4

✔ Gauge invariant functional of the integration contour C4 in Minkowski space-time

✔ The contour is made out of 4 light-like segments C4 = `1 ∪ `2 ∪ `3 ∪ `4 joining the cusp points xµ
i

xµ
i − xµ

i+1 = pµ
i = on-shell gluon momenta

✔ The contour C4 has four light-like cusps 7→ W (C4) has UV divergencies

✔ Conformal symmetry of N = 4 SYM 7→ conformal invariance of W (C4) in dual coordinates xµ
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MHV scattering amplitudes/Wilson loop duality I

The one-loop expression for the light-like Wilson loop (with x2
jk

= (xj − xk)2)

ln W (C4) =

x1 x1x1
x2 x2x2

x3 x3x3 x4 x4x4

=
g2

4π2
CF

{

− 1

εUV
2

[(
−x2

13µ2
)εUV +

(
−x2

24µ2
)εUV

]
+

1

2
ln2

(
x2
13

x2
24

)

+ const
}

+ O(g4)

The one-loop expression for the gluon scattering amplitude

ln M4(s, t) =
g2

4π2
CF

{

− 1

εIR2

[(
−s/µ2

IR

)εIR +
(
−t/µ2

IR

)εIR
]

+
1

2
ln2

( s

t

)

+ const
}

+ O(g4)

✔ Identity the light-like segments with the on-shell gluon momenta xµ
i,i+1 ≡ xµ

i − xµ
i+1 := pµ

i :

x2
13 µ2 := s/µ2

IR , x2
24 µ2 := t/µ2

IR , x2
13/x2

24 := s/t

☞ UV divergencies of the light-like Wilson loop match IR divergences of the gluon amplitude

☞ the finite ∼ ln2(s/t) corrections coincide to one loop!
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MHV scattering amplitudes/Wilson loop duality II

MHV amplitudes are dual to light-like Wilson loops [Drummond,Henn,GK,Sokatchev], [Brandhuber,Heslop,Travaglini]

ln M
(MHV)
n = ln W (Cn) + O(1/N2

c ) , Cn = light-like n−(poly)gon

✔ At strong coupling, the relation holds to leading order in 1/
√

λ [Alday,Maldacena]

✔ At weak coupling, the duality relation was verified for:

✗ n = 4 (rectangle) to two loops [Drummond,Henn,GK,Sokatchev]

✗ n ≥ 5 to one loop [Brandhuber,Heslop,Travaglini]

✗ n = 5 (pentagon) to two loops [Drummond,Henn,GK,Sokatchev]

✔ For arbitrary coupling, conformal symmetry of light-like Wilson loops in N = 4 SYM + duality
relation impose constraints on the finite part of the MHV amplitudes

✔ All-loop anomalous conformal Ward identities for the finite part of the MHV amplitudes
D = dilatations, K

µ = special conformal transformations [Drummond,Henn,GK,Sokatchev]

D Fn ≡
n∑

i=1

(xi · ∂xi
)Fn = 0

K
µ Fn ≡

n∑

i=1

[
2xµ

i (xi · ∂xi
) − x2

i ∂µ
xi

]
Fn =

1

2
Γcusp(a)

n∑

i=1

xµ
i,i+1 ln

( x2
i,i+2

x2
i−1,i+1

)

The same relations also hold at strong coupling [Alday,Maldacena],[Komargodski]
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Finite part of MHV amplitudes

The consequences of the conformal Ward identity for the finite part of the Wilson loop/ MHV
scattering amplitudes: [Drummond, Henn, GK, Sokatchev]

✔ n = 4, 5 are special: there are no conformal invariants (too few distances due to x2
i,i+1 = 0 )

=⇒ the Ward identity has a unique all-loop solution (up to an additive constant)

F4 =
1

4
Γcusp(a) ln2

( x2
13

x2
24

)

+ const ,

F5 = −1

8
Γcusp(a)

5∑

i=1

ln
( x2

i,i+2

x2
i,i+3

)

ln
( x2

i+1,i+3

x2
i+2,i+4

)

+ const

Exactly the functional forms of the BDS ansatz for the 4- and 5-point MHV amplitudes!

✔ Starting from n = 6 there are conformal invariants in the form of cross-ratios

u1 =
x2
13x2

46

x2
14x2

36

, u2 =
x2
24x2

15

x2
25x2

14

, u3 =
x2
35x2

26

x2
36x2

25

Hence the general solution of the Ward identity for W (Cn) with n ≥ 6 contains an arbitrary
function of the conformal cross-ratios.

✔ The BDS ansatz is a solution of the conformal Ward identity for arbitrary n but does it actually
work for n ≥ 6 [Alday, Maldacena] [Bartels, Lipatov, Sabio Vera]? if not what is a missing function of u1,2,3?
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Discrepancy function

✔ We computed the two-loop hexagon Wilson loop W (C6) ... [Drummond, Henn, GK, Sokatchev’07]

ln W (C6) =














x6

x5

x4x3

x2

x1

1 2 3 4 5 6 7

8

15 16 2119

18 13 14

1217 20

9 10 11














... and found a discrepancy ln W (C6) 6= lnM(BDS)
6

✔ Bern-Dixon-Kosower-Roiban-Spradlin-Vergu-Volovich computed 6-gluon amplitude to 2 loops

M(MHV)
6 = + . . .

... and found a discrepancy lnM(MHV)
6 6= lnM(BDS)

6

☞ The BDS ansatz fails for n = 6 starting from two loops.

☞ What about Wilson loop duality? lnM(MHV)
6

?
= ln W (C6)
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6-gluon amplitude/hexagon Wilson loop duality

✔ Comparison between the DHKS discrepancy function ∆WL and the BDKRSVV results for the
six-gluon amplitude ∆MHV:

Kinematical point (u1, u2, u3) ∆WL − ∆
(0)
WL ∆MHV − ∆

(0)
MHV

K(1) (1/4, 1/4, 1/4) < 10−5 −0.018 ± 0.023

K(2) (0.547253, 0.203822, 0.88127) −2.75533 −2.753 ± 0.015

K(3) (28/17, 16/5, 112/85) −4.74460 −4.7445 ± 0.0075

K(4) (1/9, 1/9, 1/9) 4.09138 4.12 ± 0.10

K(5) (4/81, 4/81, 4/81) 9.72553 10.00 ± 0.50

evaluated for different kinematical configurations, e.g.

K(1): x2
13=−0.7236200 , x2

24=−0.9213500 , x2
35=−0.2723200 , x2

46=−0.3582300 , x2
36=−0.4825841 ,

x2
15=−0.4235500 , x2

26=−0.3218573 , x2
14=−2.1486192 , x2

25=−0.7264904 .

✔ Two nontrivial functions coincide with an accuracy < 10−4!

✌ The Wilson loop/MHV amplitude duality holds at n = 6 to two loops!!

✌ We expect that the duality relation should also hold for arbitrary n to all loops!!!

What about next-to-MHV amplitudes?
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MHV superamplitude

✔ All tree MHV amplitudes can be combined into a single (Nair) superamplitude by introducing
Grassmann variables ηA

i (with A = 1, . . . , 4), one for each external particle.

✔ Perturbative corrections to all MHV amplitudes are factorized into a universal factor M
(MHV)
n

✔ The all-loop generalization of the MHV superamplitude as

AMHV
n (p1, η1; . . . ; pn, ηn) = i(2π)4

δ(4)
(∑n

i=1 pi

)
δ(8)

(∑n
i=1 λα

i ηA
i

)

〈12〉〈23〉 . . . 〈n1〉 M
(MHV)
n ,

✔ The all-loop MHV amplitudes appear as coefficients in the expansion of AMHV
n;0 in powers of ηi.

In particular, the gluon MHV amplitude arises as

AMHV
n = (2π)4δ(4)

(
n∑

i=1

pi

) ∑

1≤j<k≤n

(ηj)
4(ηk)4A

(MHV)
n (1+... j−... k−... n+) + . . . , (1)

✔ The function M
(MHV)
n is dual to light-like Wison loop

ln M
(MHV)
n = ln Wn + O(ε, 1/N2) ,

✔ The MHV superamplitude possesses a much bigger, dual superconformal symmetry which acts
on the dual coordinates xµ

i and their superpartners θA
i α [Drummond, Henn, GK, Sokatchev]

pµ
i = xµ

i − xµ
i+1 , λα

i ηi = θα
i − θα

i+1
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Next-to-MHV amplitudes

✔ Are known to have a much more complicated structure compared with MHV amplitudes

✔ Simplest example: the six-gluon nMHV amplitudes A+++−−−, A++−+−− and A+−+−+−

A+++−−− = A6;0 + g2A6;1 + O(g4) ,

✗ Involves few Lorentz structures, each coming with its own perturbative corrections
[Bern,Dixon,Dunbar,Kosower’94]

A6;0 =
1

2
[B1 + B2 + B3]

A6;1 = cΓN
[

B1F
(1)
6 + B2F

(2)
6 + B3F

(3)
6

]

.

✗ Expressions for Bi in the dual coordinates pi = xi − xi+1

B1 =i
(x2

14)3

〈12〉〈23〉[45][56]〈1|x14|4]〈3|x36|6]

B2 =

(
[23]〈56〉

x2
25

)4

B1

∣
∣
i→i−2

+

( 〈4|x41|1]
x2
25

)4

B1

∣
∣
i→i+1

,

B3 =

(
[12]〈45〉

x2
36

)4

B1

∣
∣
i→i+2

+

( 〈6|x63|3]
x2
36

)4

B1

∣
∣
i→i−1

✗ F
(i)
6 = combination of box (IR-divergent) integrals evaluated within the dim. regularization

Do NMHV amplitudes have some (hidden) symmetry? Yes! Dual superconformal symmetry!
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Six-point next-to-MHV superamplitude

ANMHV
6 = AMHV

6

[

c̃146 δ(4)(Ξ146) (1 + aV146 + O(ε)) + (cyclic)
]

,

✔ Supercovariant Ξ146 is a linear combination of three Grassmann η−variables

Ξ146 = 〈61〉〈45〉
(
η4[56] + η5[64] + η6[45]

)
,

✔ ‘Even’ Lorentz factor c̃146 in the dual coordinates

c̃146 =
1

2
〈34〉〈56〉

(

x2
14〈1|x14|4]〈3|x36|6](〈45〉〈61〉)3[45][56]

)−1
,

✔ The scalar function V146 = linear combination of scalar box integrals

V146 = − ln u1 ln u2+
1

2

3∑

k=1

[

ln uk ln uk+1 + Li2(1 − uk)

]

= conformal invariant!

conformal ratios in the dual coordinates u1 =
x2
13x2

46

x2
14x2

36
, u2 =

x2
24x2

15

x2
25x2

14
, u3 =

x2
35x2

26

x2
36x2

25

✔ From n = 6 NMHV superamplitude to six-gluon NMHV amplitudes

ANMHV
6 = (2π)4δ(4)

(
6∑

i=1

pi

) [

(η1)4(η2)4(η3)4A(1−2−3−4+5+6+) + . . .
]

Reproduces all known results [Bern,Dixon,Dunbar,Kosower’94] for one-loop six-point NMHV amplitudes!
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n−point Next-to-MHV superamplitude

✔ The dual superconformal symmetry also allows us to understand the complicated structure of
n−point NMHV amplitudes.

✔ In a close analogy with the MHV amplitude AMHV
n , all NMHV amplitudes can be combined into

a single superamplitude ANMHV
n .

✔ The ratio of the two superamplitudes is given by a linear combination of superinvariants

ANMHV
n = AMHV

n





n∑

p,q,r=1

cpqr δ(4) (Ξpqr) [1 + aVpqr + O(ε)] + O(a2)





Ingredients: ‘odd’ supercovariants Ξpqr, ‘even’ spinor made cpqr , conformal invariant Vpqr

made of scalar boxes

✔ The gluon NMHV amplitudes arise as coefficients in front of (ηi)
4(ηj)

4(ηk)4, i.e.

ANMHV
n = (2π)4δ(4)

(
n∑

i=1

pi

) ∑

i,j,k

(ηi)
4(ηj)

4(ηk)4A
(NMHV)
n (1+... i−... j−... k−... n+) + . . .

✔ Reproduces all known results [Bern,Dixon,Dunbar,Kosower’04],[Risanger’08] for n−point NMHV amplitudes!

✔ The dual conformal invariance of the superamplitudes AMHV
n and ANMHV

n is broken by infrared
divergences in such a way that their ratio remains conformal as ε → 0.
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All N = 4 superamplitudes to all loops

Our proposal for n−particle superamplitude

An(xi, λi, θ
A
i ) = AMHV

n + ANMHV
n + AN2MHV

n + . . . + AMHV
n

✔ The tree superamplitude A(tree)
n is covariant under superconformal transformations in the dual

superspace (x, λ, θ)

✔ At loop level, this symmetry becomes anomalous due to IR divergences

✔ The dual superconformal symmetry is restored in the ratio of superamplitudes An and AMHV
n

An(xi, λi, θ
A
i ) = AMHV

n ×
[

Rn(xi, λi, θ
A
i ) + O(ε)

]

The ratio function

Rn = 1 + RNMHV
n + RN2MHV

n + . . .

is IR finite and, most importantly, it is superconformal invariant!

✔ Wilson loop/superamplitude duality involves a new ingredient

An(xi, λi, θ
A
i )/Wn(xi) = AMHV (tree)

n ×
[
Rn(xi, λi, θ

A
i ) + O(ε)

]

Wilson loop Wn(xi) takes care of anomalous contribution, Rn = dual superconformal invariant

K
µ Rn(xi, λi, θ

A
i ) = D Rn(xi, λi, θ

A
i ) = 0
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Conclusions and open questions

✔ Various MHV amplitudes possess the dual conformal symmetry at both weak and strong
coupling (is not a symmetry of the full N = 4 SYM!)

✔ This symmetry is a part of much bigger dual superconformal symmetry of all planar
superamplitudes in N = 4 SYM

✔ The symmetry becomes manifest within the Wilson loops/superamplitudes duality

✔ We do not understand the origin of this symmetry but we do know how to make use of it
(anomalous conformal Ward identities)

✔ The fact that the DHKS discrepancy function for the n = 6 Wilson loop coincides with the
BDKRSVV discrepancy function for the six-gluon amplitude indicates that there exists yet
another hidden symmetry

✔ We have now good reasons to believe that the Wilson loop/superamplitude duality holds for all
superamplitudes to all loops... but

✗ What is the origin of the dual superconformal symmetry?

✗ Who controls a nontrivial discrepancy function of conformal ratios?

✗ What is a dual description of the superconformal ratio function Rn(xi, λi, θi)?

Should be related to integrability of planar N = 4 SYM. More work is needed!
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