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|l. How we get away with perturbative QCD

The sorrows of QCD perturbation theory:

1. Confinement

/ e (0| T[a(z) ...] |0)

has no g = m? pole for any field (particle) ¢, that

transforms nontrivially under color (confinement)

2. The pole at p* = m?

/ =19 (0] Tl (x) ... ]]0)

is not accessible to perturbation theory (xSB etc., etc.)



e And yet we use infrared safety & asymptotic freedom:

Q% 6sp(Q° 1, as(1)) = D eal@Q%/p?) @M (1) + O (1/Q")

n

3 en(1) (@) + O (1/Q7)

n

e \What are we really calculating? PT for color singlet operators

— [e7"*(0| T[J(x)J(0)...]|0) for color singlet currents

eTe™ total, sum rules etc. “no scale”



— Another class of color singlet matrix elements:
EEC (1978) . . . Sveshnikov and F. V. Tkachov (1996), Korchemsky, Oderda, GS (1997)

.. . Bauer, Fleming, Lee, GS (08) Hofmann & Maldacena (08)

R— o0

With T{; the energy momentum tensor
— These are what we really calculate: jet cross sections, etc.

If the “weight” f(n) introduces no new dimensional scale,
and all d*f/dn* bounded, then individual final states

have IR divergences, but these cancel in sum over collinear
splitting/merging & soft parton emission

because they respect energy flow.



We regularize these divergences dimensionally (typically)
and “pretend” to calculate the long-distance enhancements
only to cancel them in infrared safe quantities

It is this intermediate step that makes the calcualtions
tough, and is part [not all] of why higher-order calculations
are hard!

Resummation organizes large, or potentially large, terms
from high orders in ay at the short-distance scale.



Il. Factorization and Resummation

Q 0phys(Q,m) = wsp(Q/p, as(p)) ® fLp(p,m) + O (1/Q")

— p = factorization scale; m= IR scale (m may be perturbative)

— New physics in wsp; fr.p “universal”

— ep DIS inclusive, pp — jets, QQ, w(pr) . . .



e Whenever there is factorization, there is evolution

d
0= ,u@ In ophys(@, m)

dln f dlnw
p— —P 3 = —
i (as(p)) = —p m

L4
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e Wherever there is evolution there is resummation

Q /
I e (Q, m) = exp { / ‘%P <as<u'>>}



e Infrared safety & factorization proofs:
— (1) wsp incoherent with long-distance dynamics

— (2) Mutual incoherence when v, = ¢:
Jet-jet factorization Ward identities.

— (3) Wide-angle soft radiation sees only total color flow:
jet-soft factorization Ward identities.

— (4) Dimensionless coupling and renormalizability
& no worse that logarithmic divergence in the IR:
fractional power suppression = finiteness



lll. The Classic Case: ()7 resummation

Every final state from a hard scattering carries the imprint
of QCD dynamics from at all distance scales

e L ook at transverse momentum distribution at order o,

q(p1) + q(p2) — v (Q) + g(k)

e Treat this 2 — 2 process at lowest order (o) “LO”
in factorized cross section, so that k = — Q7



e Factorized cross section at fixed Q:

dO-NN—>pJ+pJ_—|—X(Q7p17p2 / a,—>/,L+/,L_(Q)+X(Q7 M glpla €2p27 QT>
dQ2d2Q 6.6 o dQ*d?Q

X fa/N<€17,u) fa/N(f%U)

e (i is the factorization scale that separates
IR (f) from UV (d&) in quantum corrections.



e The diagrams at order a,. Finite for Qr #0 . . .

Gluon emission contributes at Q7 # 0

)

Virtual corrections contribute only at Q)7 =0




~ (1 _
daqq)—vy*g B QSCF (1 B 4Q% 1/2
(

A2 2Qr U x2 1 — 2)26,68

Qr1-2z (1-2)@7

[11+z2 2z ]
X

as long as Qr # 0, z = Q?/£,£:8 # 1.

In Q>
Q%

Qr integral — 1n§1_—zz); z integral




The leading singularity in Q7

o 2 integral: If Q°/S not too big, PDFs nearly constant:

1 /1—‘%2%/@2 dz 1 [ Q? ]
_ — _ _In | =
QQT 1—Q2/s 11—z QT Q

= Prediction for ()7 dependence:

dO-NN—>,u+,u_—|—X(Q7 QT) a,Crp 1 In [ Q2 ]

dQ2d*Qr T 7 Q2 Q:

da-aa—> tu— (Q,,LL)
" azq:Q»/lEQ - Mdé‘?Q;—i_X fa/N(flmu) fa//N(£27lLl/)




e Com pare to: / DT (from Kulesza, G.S., Vogelsang (2002))

| do/dQ; (pb/GeV) T oo -

Resum ,\ 66 < Q < 116 GeV
T —

Exclusive Limit

30

T
\K
200 S0
,

He— Resum+power
10 I Q

o In Q7 /Q1 works pretty well for large Qr

e But at smaller () reach a maximum, then a decrease
near “exclusive” limit (parton model kinematics)

e Most events are at “low” Qr < Q = my.



Getting to Q7 < ): Transverse momentum resummation
(Logs of Q7)/Qr to all orders
How? Variant factorization and separation of variables

g and ¢ “arrive” at point of annihilation with transverse
momentum of radiated gluons in initial state.

q and ¢ radiate independently (fields don't overlap!).

Final-state QCD radiation too late to affect cross section

dO-NN—>,u‘|‘M_—|—X(Q7 QT)

dQ?*d*Qr




Summarized by: (Qp-factorization:

donN—
dg?l;QiX = /dfldfz d*kird*kord’kyr 6 (Qr — kir — kor — ko)

X H(&1p1, §2p2, @n)aa—Q+X
XPo/n (&1 01 -0, ki) Payn (&2, 02 - 1, ko) Uga(ksr, 1)

The P’s: new Transverse momentum-dependent PDFs

Also need U: “soft function” for wide-angle radiation



Symbolically:

AdoONN—QX

dQd*Qr

= H X Pa/N('fl,pl -n, ki) Pa/N(527p2 -n, kar)
®€i’kiT Ua&(ksTa n)
We will solve for the k1 dependence of the P’s.

New factorization variables: n* apportions gluons k:

pik<n-k = k €P;
Do k,pa-k > n-k = keU

Convolution in k; s = Fourier e!@7



The factorized cross section in “impact parameter space” :

donn—ox(@,b)
e / 4é,dé

x H(&1p1, §2p2, @) aa—Q+X
XPa/n(&1,p1 -1, 0) Payn (&2, 02 - 1, b) Uga(b,n)

Now we can resum by separating variables!

the LHS independent of (e, 7 = two equations

do do
ren ; 0 “—— =0
s dfren " dne



Method of Collins and Soper, and Sen (1981)

Change in jet must cancel change in (UV) H and (IR) U:

- 0
op-n

p In P(p-n/p,bp) =Gp-n/p)+ K(bp)

(G matches H, K matches U. Renormalization indep. of n*:

M%[G(p-n/uHK(bu)]:O
%G@-n/m — Alas(n) = —M%K(bﬂ)

Solve this one first. p in ay varies (& a, need not be small).



pn d,lL,
- / — Aa(as (1))
1/ M

The consistency equation for the jet becomes

.n 8
b op-n

In P(p-n/p,bp) =G(p-n/pn) + K(u/p-n)

p-ndlu/
- / U Aa ()
1/b M

n*""HQ/Q7)
QT '

Integrate p - n and get double logs in b —



Transformed solution back to Qr: all the (Logs of Q1)/Qr,
Which fits the data; (viz. Yuan, Nadolsky et al.; Ellis, Veselli; Kulesza, Stirling)

dUNNres L o 2 d*b zQTg PT
== Hua(as(Q?)) e’ TP exp | Eqg (0,Q, 1) |

dQ2 d2Q . <27T)2
daaa—> + (Q :LL)
‘Z [ TR (€18 fuy(En 1/

“Sudakov” exponent links large and low virtuality:

Q* dk2 2
pif = [ (Ao (35 ) + 28euthn)

With B = 2(K + G),,—p.n, and lower limit: 1/b (NLL)



IV. Poles in Color Exchange Amplitudes
e \What distinguishes hadron colliders.

e Multiloop scattering amplitudes in dimensional regularization

(Catani (1998) Tejeda-Yeomans & GS (2002) Kosower (2003) Aybat, Dixon & GS (2006) )

— Amplitude for partonic process

f: falpa,ra)+ fB(pB,7B) — fi(p1,71) + fa(p2,72)

f Q° £
MF{L} (pj,p,ozs(ﬁ),e) = M[L] (pja_ZaaS(M2)7€> (CL){ri}

e Need to control poles in e for factorized calculations at
fixed order and for resummation.



e Source of double logs and poles in dimensional reg.:

‘Leading Regions’

‘jets’

e The same cast of characters as for Q).



e Same separation (Sen (1983)):
Factorization of soft gluons:

x O
X

e ¢ =2 —d/2 plays the role of b !



e Example of cy: ¢g tensors (CL){ri}:

1 3 1
2 1 2

— Jet/soft factorization for amplitude. :

2 2
M ae) = T2 (Lad)e)

1=A,B,1,2

f Q2 f Q2
X S[L]I (pza Fa OéS(IuQ)a E) h[I] (@u Fa &S(M2)>




e Special case: “0— 2, Fsinglet. Once again, factorize:

Fsinglet — H(pz n/,u) H J pz n/:“? )
1=1,2

e Same reasoning, boost invariance plus scale variation . . .

e Gives an evolution equation for I'gipget(Q)
2 1 2
Q25Q2 log [T (%ﬂ&ﬁ)m)] = 3 [K (e,as(p?)) + G <%,a3(u2),e)]
2
= K (o) + 6 (~ra($a)e) o)

LA A
‘|‘§ - Vw{ o pa@s(ﬂ ), €

With K, GG, vk separation constants as above.



— Jet function: J = \/Fsinglet(Q2) (Tejeda-Yeomans & GS (2002))
— Soft function labelled by color exchange (singlet, octet . . .)
— Factors require dimensional regularization

— Same factorization — resummation

— Poles at 2- and higher loops . . .

— Relation to supersymmetric Yang-Mills theories

(Anastasiou, Bern, Czakon, Dixon, Kosower & Smirnov (2006) N=4 )

Scale variation = scale invariance; otherwise reasoning unchanged.



— The dimensionally-regularized jets from I'gjpglet:
(Magnea & GS (1990), after Mueller, Collins & Soper, Sen (1980 - 81))

2 1 —Q2 d 2 ‘
Ji (%7QS(M2)76> = exp{ 1/0 5—62 [K[z](@s(ﬁﬁ)ae)

. 2
+Gl (—1,073 (%a%(ﬁ);@) 6)
2
| T T S AT
3 Jo G (o (o) )| ¢

J (i—j,%(ﬁ),e) — exp [i (O‘S(“ 2)>n ni i <:>(5) +ﬁnite]

n=1

— Double poles: v, K exactly as A < I'cysp
... just as in N-4; Alday & Maldacena (2007), but w/ N =4 A



— Single poles from G (Dixon, Magnea, GS (2008))

— G also generates finite coefficient of poles in I'gipglet

(Moch, Vermaseren, Vogt, 2005)

— Rederive by once again factoring the form factor

b;@>

X

ﬁ



— where the “singlet product of Wilson lines”

S (61 - B2, 048(,u2),e) — <O‘(I)52(0070) (I)Bl(()? _OO) ’O>

obeys (Korchemsky & Marchesini (1993); Belitsky (1998))

d

PR Y N S
uﬁlogS(aS(NZ),s) = — Glix (as(p ))+§/O ?’YK (@&, 9))

— Gejk: non-collinear poles that cancel in evolution kernel.



— The full G for the form factor is:

G = 2B + Gejx + B(g)(% Clas(Q))

— Same combination noted in DIS & Drell Yan by
Idilbi, Ji, Yuan (2007) Becher, Neubert, Pecjak (2007)
Becher, Neubert, Xu (2007)



— Dimensionally-regularized S
(Tejeda-Yeomans & GS (2002))

I'lfl: anomalous dimension; color mixing




e New result for all massless 2 — n processes (Aybat, Dixon, GS (2006))

Pe= 2 (14 %K) 1O 4

s s

I'? = (K/2)I'M) with same K as in the DGLAP splitting.

Related to the “CMW" or MC/bremsstrahlung scheme.
(Catani, Marchesini & Webber (1990))



1 3
2 4
(a) (b) (c)

(d) (e) (f)

9) (h) (i)

The diagrams with 3g vertices vanish!

To NNLO, “single-web” exchange generalizes single gluon.
(C.F. Berger, 2002)



e The full two-loop single-pole terms x LO are simply

UG 1 o
o+ TP % 1o
et

o E{i] (2) s 2 loop single pole in Sudakov form factor
(Ravindran, Smith, van Neerven (2005))

Agrees with Jantzen, Kuhn, Penin, Smirnov (2005, 2006) in EW logs.

e Hints of unexpected simplicity for IR gluons.



V. FINDING THE BASIC EXCHANGE
e Look for more insight into the

e “independent emission” — exponentiation — by analogy
to soft photons.

e A typical diagram (for final-state sources)




e \Webs and exponentiation for soft contributions to
weighted (e = @7, 1-thrust, etc.) cross sections
(GS; Gatheral, Frenkel and Taylor, 1981)

= Z% /de o(e —es) Oy e.=e, H E(e;)
= 5wl ZC n(€)

states n

e The M? are momentum integrals.



e The C'(M,,) are modified color factors for M,,s.
Examples at o?:

all C(M)=CCy4

e Notice that non-planar diagrams contribute in N, — oo limit!



e The webs determine exponentiation under transforms:

S.(N) = /de e Ve % = exp [/de’ o~ Ne E(e’)]

e Double logarithmic behavior is encoded in the construction
of the webs VV. Subdivergences cancel.

e Each web gives a single collinear and infrared logarithm
just like a single gluon.

e In a theory with a fixed coupling (SYM ... ) a web would act
exactly like a single gluon.

e The 2-loop structure of I'g is an intriguing suggestion that
“web=NP gluon” could generalize to arbitrary hard processes.



e For some (e.g. DY) cross sections, this gives a very specific
template for the all-orders form, up to corrections from recoil:

e Boost invariance in the etkonal annihilation cross section =

In6 (N, Q) =" / dPSy 0(Q? — k2)|M(¢1k) |2 ¢=Nko/@
N

[t o (23 e

o The “new” aeg: plas(u,e)) = Alas(u,e)) + 22

e A: “cusp’ anomalous dimension;.



Summary

e Have found a key to higher orders in factorization properties
of gauge theories.

e Two equations < boost invariance & scale invariance

e Extends from QCD to supersymmetric variants, and EW
(Lipatov, Fadin; Kihn, Penin . . . )

e [he basic structure not limited to weak coupling, only calculation
of the anomalous dimensions.

e Applications both to cross sections and perturbative S-matrix

e Structure of Fg) suggests a soft-gluon-web relation



