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Outline

e MHV amplitudes in N=4 SYM & Wilson loops

» iterative structures in the perturbative expansion

» one-loop 7-point amplitudes and Wilson loops

(Brandhuber, Heslop, GT)
® 4-point MHV amplitude in N=8 supergravity
(Brandhuber, Heslop, Nasti, Spence, GT)
» iterative structures

» Wilson loops




Motivations

® Scattering amplitudes in gauge theory are
simple
» geometry in Twistor Space (Witten)

» recursive structures in the perturbative S-matrix of gauge theories

® Simplicity hidden by Feynman diagrams
» diagrams not not separately gauge invariant

» unphysical singularities

® Unitarity-based & twistor-inspired methods

» gauge-invariant, on-shell data at each intermediate step of calculation

» also in non-supersymmetric theories




® Amplitudes in N=4 super Yang-Mills are even
simpler (and more mysterious...)

» All one-loop amplitudes expressed in terms of
box functions (Bern, Dixon, Dunbar, Kosower)

» lterative structures in splitting amplitudes and planar
MHV amplitUdeS (Anastasiou, Bern, Dixon, Kosower; Bern, Dixon, Smirnov)

- planar:leading in 1/N




Intriguing connection between MHYV amplitudes in
N=4 super Yang-Mills and Wilson loops

(Drummond, Korchemsky, Sokatchev + Henn; Brandhuber, Heslop, GT)

Dual (super)conformal symmetry:

integral functions in planar amplitudes are pseudo-conformal
(Drummond, Henn, Smirnoyv, Sokatchev)

Wilson loops satisfy dual conformal Ward identities
(Drummond, Henn, Korchemsky, Sokatchev)

Maximal transcendentality




® Novel motivation: explore the new duality
N=4 MHV amplitudes/Wilson loops in
other theories

» Wilson loop calculation does not produce spinor
prefactors

» Look at amplitudes which are proportional to the
tree-level amplitude to all loops, A = A M ...

- ..where M is a scalar, helicity-blind function

- can we calculate it using Wilson loops ?

» First, we need to find some examples ...




® We will consider N=8 supergravity amplitudes

» four-point MHV amplitude is of the form A = Apee M
» maximally supersymmetric

» nonplanar

® Our goals:

» look for iterative relations in MHV amplitudes
» try to relate amplitudes to Wilson loops

idea: find more similarities between the two maximally
supersymmetric theories




® Common features N=4/N=8:

» Absence of triangle and bubble subgraphs in amplitudes
(“no-triangle h)’POtheSiS”) (Bern, Dixon, Perelstein, Rozowsky; Bern, Bjerrum-

Bohr, Dunbar; Bjerrum-Bohr, Dunbar, Ita; Bjerrum-Bohr, Dunbar; Ita, Perkins, Risager; Bjerrum-Bohr,
Vanhove)

» N=8 conjectured to be perturbatively finite (@jerrum-Bohr, Dunbar,

Ita, Perkins, Risager; Chalmers; Bern, Dixon, Roiban; Green, Russo,Vanhove; Bern, Carrasco, Dixon,
Johansson, Kosower, Roiban)

® Gauge theory/gravity:

» KLT relations (Kawai, Lewellen, Tye)

» UV behaviour of tree amplitudes under (complex) shifts
much softer than expected,

(Bedford, Brandhuber, Spence, GT; Cachazo, Svrcek; Benincasa, Boucher-Veronneau, Cachazo;
Arkany-Hamed, Kaplan)




In the rest of the talk:

® |terative structures

» n-point MHV amplitudes in

(Anastasiou, Bern, Dixon, Kosower; Bern, Dixon, Smirnov)

4-point MHV amplitude in

(Brandhuber, Heslop, Nasti, Spence, GT)

® Wilson loops

» vs one-loop n-point MHYV amplitudes in
(Brandhuber, Heslop, GT)

vs one-loop 4-point MHV amplitude in
(Brandhuber, Heslop, Nasti, Spence, GT)




N=4 Yang-Mills




Simplest one-loop amplitude

® n-point MHV amplitude in N=4 SYM at
one loop:

1—loo
}7[ Y tree

MHV HV

» Colour-ordered partial amplitude, leading term in 1/N

« Sum of two-mass easy box functions, all with coefficient 1 ‘




® Computed in 1994 by Bern, Dixon, Dunbar and
Kosower using unitarity

® Rederived in 2004 with loop MHYV diagrams...

(Brandhuber, Spence, GT)

® ..and, more recently, with a weakly-coupled Wilson
loop calculation, with the Alday-Maldacena polygonal
CONTOUr (Brandhuber, Heslop, GT)




Surprising regularities at higher loops

(Anastasiou, Bern, Dixon, Kosower; Bern, Dixon, Smirnov)

® pn-point MHV amplitude in N=4 SYM

tree
» Apvav = A v Mo

M= 143 atm® 2 exp[ZaL(f@) (©OMP (Le) + CP) 1 0(9)]

L=1 L=1
a~ g°N/(8m%) (Bern, Dixon, Smirnov)

"(e) is the all-orders in € one-loop amplitude, D =4 — 2¢

%

: , L
anomalous dimension of twist-two operators at large spin, ny /4

5" Higher-loop amplitudes expressed in terms of lower loop amplitudes




First few terms of BDS conjecture:  (take Log of the Ansatz)

& = %( %”(@)2 + A MP(2¢) + O(e)
1
3

-

(M) + MP @M @) + 1O M (30 + O
and so on...

® Signature of two-loop iteration:
MEP — L (MP@) = 1O MDe) + 0

One-loop amplitude

» Requires knowledge of lower-loop amplitude to higher
orders in €

» Go up by one loop only




IR behaviour of Yang-Mills amplitudes

® MOtIV&tES BDS An SatZ (Anastasiou, Bern, Dixon, Kosower)

® Universal resummation of IR divergences

(for colour-ordered amplitudes)

o0 —Le L o0 —Le
L Z o1 D g
2 L L* e =" 2 L

(Catani; Magnea, Sterman; Sterman, Tejeda-Yeomans)

® BDS: exponentiation of finite parts

» Exponentiated finite remainders approach constants
(independent of kinematics and # of particles)




Checks of BDS conjecture

Two and three IOOPS at four POintS (Anastasiou, Bern, Dixon, Kosower;

Bern, Dixon, Smirnov). Confirmed result for three-loop cusp
anomalous dimension obtained assuming

maximal transcendentality (Kotikoy, Lipatov, Onishcenko, Velizhanin)

Two IOOPS at five POintS (Bern, Czakon, Kosower, Roiban, Smirnov)

- Parity odd terms cancel in the iteration

Problems begin at six POintS (Bern, Dixon, Kosower, Roiban, Spradlin,Vergu,
Volovich)

Exponent requires an additional finite remainder




N=8 Supergravity




N=8 supergravity MHV amplitudes

® At four points ANG MHV = AffiﬁHV/\/lﬁv =

» tree-level amplitude factors out as in N=4 thanks to
supersymmetric VWard identities

® Write MY =1+ MY =exp Zmi“]
L=1

L=1

m® = M m = MP — (M) and so on

2
e Goal: compute the quantity M\ — %(M%”(e))

nYM: ME, — (MEO) = FOMB0) + 0()




One- and two-loop MHV amplitude

® One loop:

2
MY = —istu (5) [If)(s,t) + 7 (s,u) + Iil)(u,t)}

(Green, Schwarz, Brink; Dunbar, Norridge)

1 2

Iil)(s,t) = / leD ! zero-mass box
(2m)P 12(1 — p1)*(l — p1 — p2)*(L + pa)?

4

® No colour ordering for gravity

» sum over permutations (1234), (1342), (1423)




® Two loops:

4
_ (g) stu [32I£2),P(5,t)+521'i2),13<8’u)_i_SQIiQ),NP(S’t)_i_SQIf),NP(S’u) . Cychc}

(Bern, Dunbar, Dixon, Perelstein, Rozowsky)

e 7" 7" are the planar and non-planar boxes

1
f(%)D (27T)D 12 (I=p1)? (I=p1—p2)? (I4+k)?k? (k—pa)? (k—p3—pa)?

7P

1
f(27r)D (QW)D 12 (I—p2)? (I+k)? (I+k+p1)? k2 (k—p3)? (k—p3—pa)?

IiQ),NP

= (;1 +p2)2, t:= (p2 +P3)27 u = (p1 +p3)2

» Laurent expansion explicitly evaluated by Smirnov and Tausk

» use it to study possible iterations




|terative structure

2
® Main result: M — %(/\/l%”(e)) — finite + O(e)

® Finite remainder has uniform transcendentality

» m,log have transcendentality 1; (,,Li, have transcendentality 7 ...

»  Soft anomalous dimensions in N=4 obtained as leading transcendentality
contribution of QCD result (Kotikov, Lipatov, Onishcenko, Velizhanin)

® Transcendentality appears after sum over perm’s

»  Planar one- and two-loop box are transcendental; specific combination
of nonplanar double-boxes is transcendental

1 Q: What about higher loops? Is transcendentality a property of N=8 theory ?




(2)
4

® Remainder is “simpler” compared to full M

K

MEP = SO = () [ [kw) + k1 /w)] + 52 (K0~ ) +RQ/(1 )

+ 2 k(y/(y — 1)) + k(1 = 1/y)] | + O(e)

where

1974
90

L4 w2 L2 1
k(y) = & + 7 4S12(y)L + 6 log*(1 —y) +4 Sa2(y) —

+i (—§w10g3(1 —y) — gwg log(1 — y) — 4L7 Lis(y) + 4wLis(y) — 4#((3))

y=—s/t, L:=log(s/t)
Disclaimer: analytic continuations needed !




What about IR divergences !

® Result for amplitudes should agree with the
expected IR divergence structure

® |R behaviour of gravity amplitudes studied by
Weinberg in 1965 !

» Not in dimensional regularisation...

® Much simpler than Yang-Mills amplitudes




6. Remark

It was crucial in the above that the infrared diver-
gences arise only from diagrams in which the soft real
or virtual photon or graviton is attached to an external
line, with “external line” not including the soft real
photons or gravitons themselves. In electrodynamics
this is true because photons are electrically neutral. In
gravitation theory it is justified because the effective
coupling constant for emission of a very soft graviton
from a graviton (or photon) line with energy E is pro-
portional to E, and the vanishing of this factor prevents
simultaneous infrared divergences from a graviton and
the line to which it is attached.

But these remarks do not apply to theories involving
charged massless particles. In such theories (including
the Yang-Mills theory) a soft photon emitted from an
external line can itself emit a pair of soft charged mass-
less particles, which themselves emit soft photons, and
so on, building up a cascade of soft massless particles
each of which contributes an infrared divergence. The
elimination of such complicated interlocking infrared
divergences would certainly be a Herculean task, and
might even not be possible.

We may be thankful that the zero charge of soft
photons and the zero gravitational mass of soft
gravitons saves the real world from this mess. Perhaps
it would not be too much to suggest that it is the
infrared divergences that prohibit the existence of
Yang-Mills quanta or other charged massless particles.
See Sec. III for further remarks in this direction.



IR behaviour of (super)gravity amplitudes

® Exponentiation of one-loop divergences weinberg

» Similar to QED

» Soft and collinear amplitudes unrenormalised

(Bern, Dunbar, Dixon, Perelstein, Rozowsky)

® No colour ordering: Mg = | [ Maiv(si)

1<jJ

e 4 Pts’ ohe IOOP, M(l)‘m = cp (g)Q % [s log(—s) + t log(—t) + u log(—u):

» < ' IR divergence, softer than in YM




® Our result is in agreement with the expected
IR singularities

» Cancellation of leading and subleading singularities in the
difference M| — L(m|")?

» No new divergent contribution introduced at two loops

® Agreement with the results of Naculich,
Nastase, Schnitzer; Dixon (unpublished)




Beyond four points

® One-loop amplitudes no longer proportional to
the tree-level amplitude

o Requires more thinking / more ® ...




Wilson Loops



Amplitudes in N=4 and Wilson Loops

(Drummond, Korchemsky, Sokatchev; Brandhuber, Heslop, GT; Drummond, Henn, Korchemsky, Sokatchev)

® MHYV amplitudes in N=4 super Yang-Mills
appear in a completely different calculation:

< W[C] >

® Contour Cis determined by the momenta of
the scattered particles

® Strong coupling calculation of Alday and
Maldacena




® The contour of the Wilson loop:

» this contour corresponds to a seven-point amplitude
» colour ordering Tr(T'7T%---T7)

» at strong coupling, boundary of worldsheet tends to
boundary of dual AdS space as IR cutoff is removed

Pi— ki — ki+1 lightlike momenta

k’s are T-dual (region) momenta

P,
Lk LY
» momentum conservation ) p;=0 = closed contour
=1

» dual conformal symmetry acts on the T-dual momenta




4

4

< W[C(C] > is the n-point MHV
amplitude in N=4 SYM (modulo tree-level prefactor)

Eikonal approximation usually only reproduces IR behaviour; we also get
finite parts

(Log) < W[C] > = (Log) M
persists at higher loops

Recently checked at two loops by Drummond, Henn, Korchemsky,
Sokatchev for the four-, five-, and six-point case



< W[(C] > at one loop, n points

(Brandhuber, Heslop, GT)

® Calculation done (almost) instantly.
Two classes of diagrams:

ks

P1

Gluon stretched between two Gluon stretched between
segments meeting at a cusp two non-adjacent segments

A. Infrared divergent




® Clean separation between infrared-divergent
and terms

» Important advantage, as £ can be set to zero in the finite
parts from the start

® From diagrams in class A :

8

v sii1 = (pi+pis1)” is the invariant formed with the
momenta meeting at the cusp




® Diagram in class B, with gluon stretched
between p and ¢ gives a result proportional to

PP+ Q*—s—1
[—(P2+ (s = P)T,+ (1 — P2)T,+ (—s — 1 + P2+ 0?)1,1, )| ¢

1
ng(s,t,P,Q):/ dt,dt,
0

® Explicit evaluation shows that this is the
finite part of a 2-mass easy box function

» Two-dimensional representation of a four-dimensional integral
function




In the example: p=p> g =ps

P=p3+ps, Q=pstpr+p

One-to-one correspondence between Wilson loop diagrams
and finite parts of 2-mass easy box functions

Explains why each box function appears with coefficient equal
to one in the expression of the one-loop N=4 MHV




“Conformal” gauge

(Brandhuber, Heslop, Nasti, Spence, GT)

® A gauge where cusp diagrams vanish

® Motivation: reduce # of diagrams
» Wilson loop is gauge invariant

» special case of a Feynman-"t Hooft gauge

» a-gauge fixing

L&) = % (0, A")? » = 1 usual Feynman gauge

€

» «a = 5— conformal gauge




1 LTy

® Propagator is Ari(n) ~ ol [ - 275

TuTy .
S (T) = Ny — 275 Inversion tensor

® Full box function from a single diagram !




Gravity Wilson Loops

(Brandhuber, Heslop, Nasti, Spence, GT)

® Requirements for candidate Wilson loop:

» invariance under coordinate transformations
» contour dictated by particle momenta

» has the same symmetries as the scattering amplitude




® Obvious choice: (Tr 4(C)) where

UK(C) = Pexp [m 7% dy“FgB(y)]

» I is the Christoffel connection
» invariant under coordinate transformations

» already studied in perturbation theory (Modanese)

® Result has nothing to do with amplitude !

7{ datdy” (Tyg(@)T 00 (y) ~ ]4 da,dy" 5P — y)
C C

» (quadratically) divergent expression, reminiscent of the loop
equation...




® Try again

» work in linearised approximation 9uv (%) = 1w + £hyu ()

W[C] = <eXp [m Jq{: dr hy (2(1))ik( )gbV(T)D

» Same expression used in gravity eikonal approximation
(Kabat & Ortiz; Fabbrichesi, Pettorino,Veneziano, Vilkovisky)




® For cusped contours, gauge invariance violated
at the cusps

» Exponent can be rewritten as / APz T (2)hy (2)

T (z) = /dT ()i (m) 0 (& — a(7))

energy-momentum tensor of free particle

® Reparametrisation invariance & cusps




® Try anyway

» in order to have correct symmetries, we consider

W = W|[Ci234] W[Ci243] W[C324]

» Ciji is @ contour obtained by joining p:.p;,pk. 1 in this order

» Atoneloop, W =WW[Cas] + W [Cross] + W [C)304]




Results

® Tree-level prefactor missing (as in YM)

» expected

® Relative normalisation between IR singular and
finite parts incorrect by a factor of - 2

» 2 from overcounting cusp contributions in W;
minus sign more difficult to explain

® Result gauge dependent (but very close to correct one...)




< W > atoneloop

® Diagrammatics identical to YM case.
2 classes of diagrams:

Graviton stretched between two Graviton stretched between
edges meeting at a cusp two non-adjacent edges

A. Infrared divergent




® FI"0m dlagl"ams in CIaSSA (after summing over permutations):

O e e

» leading divergence cancels dueto s + 7+ u =0

» subleading term proportional to expected 1/¢ term:

M ‘IR — o ("‘)2 2 [3 log(—s) + t log(—t) 4+ u log(—U):

€




® From diagrams in class B:

0 33 (0)

» finite part of zero-mass box function

» sum over all permutations reproduces finite part of
amplitude, to all orders in ¢

MY = zstu(Z) [z“)(s ) + 20 (s, ) + IV (u, 1)




Conformal gauge for Gravity

(Brandhuber, Heslop, Nasti, Spence, GT)

As in YM, it is the gauge where cusp diagrams
vanish

In this gauge, we obtain the correct N=8
supergravity amplitude, to all orders in ¢

Special case of a de Donder gauge fixing:

L=—X0,h,,)2+ (8,h",)2 + L(9,h )2 + h*,8,0, h"" Free Lagrangian of
2( a p> + M) +2( : 27 AR a linearised gravity

o » a-gauge fixing

1 2
,C(gﬂ — 5 (8yhz - 5@&3‘)
» o = -2 usual de Donder gauge

conformal gauge




® (raviton propagator in configuration space:

nf e+1 1 € 1
A () ~ 52 [(m2)1+6 ("u’wnv)v’ T W”uv"u’v’) 2 T ) (v T )

® Cfr.gluon propagator in configuration space:

Az?/nf(gj) ~ €t1 1 [77“1/ o 29@%}

e (—x2+ie)lte x2

XL, Ty o
Ju (T) = Ny — 2755 Inversion tensor




Summary

® Not quite same iterative structure in
N=8 supergravity as in N=4 super Yang-Mills
» uniform transcendentality of the result

» finite remainder is relatively simple

» IR divergences cancel

® Wilson loop reproduces amplitude

» Gauge-dependent expression
» Result closely related to correct answer

» Conformal gauge




® Wilson loop calculation in N=4 super Yang-Mills

» Agreement with MHV amplitudes in N=4

» Can we understand

» Can we extend this to




