On $AdS_5 \times S^5$ String S-matrix

Gleb Arutyunov

Institute of Theoretical Physics, Utrecht

Albert-Einstein-Institut, Potsdam

"Integrability in Gauge and String Theory"

July 24-28 2006

hep-th/0508140 with Fernando Alday and Sergey Frolov hep-th/0510208 and hep-th/0604043 with Sergey Frolov

Plan

1. Superstring as integrable coset model

- Superalgebra psu(2, 2|4)
- Lagrangian
- Lax representation
- Light-cone type gauges

2. The " $\mathfrak{su}(1|1)$ " sector of string theory

- Uniform static gauge
- Uniform light-cone gauge
- Spectrum and the Bethe ansatz

3. Crossing symmetry for $AdS_5\times S^5$ string S-matrix

- String and gauge theory Bethe ansatze
- Functional relation for the dressing factor
- Perturbative check of the functional equation

4. Open problems

Motivation

- \checkmark Green-Schwarz string on $AdS_5 \times S^5$ is invariant
 - * reparametrizations
 - * local fermionic (kappa) symmetry
 - * global supergroup PSU(2,2|4)

Metsaev and Tseytlin '98

✓ Unclear how to construct an exact quantization but possible to guess Bethe type ansätze capturing quantum physics at leading order

Frolov, Staudacher and G.A. '04

- √ Impose a light-cone type gauge
 - $*~x^+= au$, $p_+=P_+$ is uniform along the string
 - * Gauge-fixed Hamiltonian depends on $\sqrt{\lambda}$ and P_+
- ✓ Different limits
 - * BMN limit: $\lambda \to \infty$, $\frac{\sqrt{\lambda}}{P_+}$ =fixed
 - * Flat-space limit: $\lambda \to \infty$, $\frac{\sqrt[4]{\lambda}}{P_+}$ =fixed
 - * Decompactification limit: $\lambda = \text{fixed}, \qquad P_+ \to \infty$
- \checkmark Use the gauge-fixed Hamiltonian to study $\frac{1}{P_+}$ corrections to these limits; extract string S-matrix

Superstring as integrable coset model

$$\frac{\mathrm{PSU}(2,2|4)}{\mathrm{SO}(4,1)\times\mathrm{SO}(5)}.$$

• What is psu(2,2|4)?

$$M_{8\times 8} = \begin{pmatrix} A & X \\ Y & D \end{pmatrix} \leftarrow \mathfrak{su}(2,2|4)$$
.

- \checkmark A, D are even (bosonic)
- \checkmark X, Y are odd (fermionic)
- $\checkmark \operatorname{str} M = \operatorname{tr} A \operatorname{tr} D = 0$
- $\begin{tabular}{ll} \checkmark $HM+M^\dagger H=0, \\ H-hermitian with ${\rm diag}(1,1,-1,-1;1,1,1)$ \end{tabular}$

Bosonic subalgebra of $\mathfrak{su}(2,2|4)$ is

$$\mathfrak{su}(2,2)\oplus\mathfrak{su}(4)\oplus\mathfrak{u}(1)$$

$$\mathfrak{psu}(2,2|4)=\mathfrak{su}(2,2|4)/\mathfrak{u}(1)$$

No realization in terms of 8×8 matrices!

$$[M_1, M_2] = M_3 + i \mathbb{I}r, \quad r \in \mathbb{R}$$

The superalgebra $\mathfrak{su}(2,2|4)$ has a \mathbb{Z}_4 grading

$$M = M^{(0)} \oplus M^{(1)} \oplus M^{(2)} \oplus M^{(3)}$$

defined by the automorphism $M \to \Omega(M)$

$$\Omega(M) = \begin{pmatrix} KA^tK & -KY^tK \\ KX^tK & KD^tK \end{pmatrix} ,$$

where we choose the 4×4 matrix K to be

$$K = \left(\begin{array}{cccc} 0 & -1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 \\ 0 & 0 & 1 & 0 \end{array}\right) .$$

$$M^{(0)} \sim \text{so}(4,1) \times \text{so}(5)$$

Lagrangian

$$\mathcal{L} = \mathcal{L}_{\text{sigma-model}} + \mathcal{L}_{wz}$$

$$\mathbf{A} = -g^{-1} dg = \underbrace{\mathbf{A}^{(0)} + \mathbf{A}^{(2)}}_{\text{even}} + \underbrace{\mathbf{A}^{(1)} + \mathbf{A}^{(3)}}_{\text{odd}}.$$

$$\mathcal{L} = -\frac{1}{2}\sqrt{\lambda}\gamma^{\alpha\beta}\operatorname{str}\left(\mathbf{A}_{\alpha}^{(2)}\mathbf{A}_{\beta}^{(2)}\right) - \underbrace{\kappa\epsilon^{\alpha\beta}\operatorname{str}\left(\mathbf{A}_{\alpha}^{(1)}\mathbf{A}_{\beta}^{(3)}\right)}_{\text{Wess-Zumino term}},$$

Bena, Polchinski and Roiban '03

Virasoro constraints

$$\operatorname{str}\left(\mathbf{A}_{\alpha}^{(2)}\mathbf{A}_{\beta}^{(2)}\right) - \frac{1}{2}\gamma_{\alpha\beta}\operatorname{str}\left(\mathbf{A}_{\delta}^{(2)}\mathbf{A}_{\rho}^{(2)}\right)\gamma^{\delta\rho} = 0$$

Integrability

Lax operator

$$\mathcal{L}_{\alpha} = \ell_{0} \mathbf{A}_{\alpha}^{(0)} + \ell_{1} \mathbf{A}_{\alpha}^{(2)} + \ell_{2} \gamma_{\alpha \beta} \epsilon^{\beta \rho} \mathbf{A}_{\rho}^{(2)} + \ell_{3} (\mathbf{A}_{\alpha}^{(1)} + \mathbf{A}_{\alpha}^{(3)}) + \ell_{4} (\mathbf{A}_{\alpha}^{(1)} - \mathbf{A}_{\alpha}^{(3)}),$$

where ℓ_i are constants.

$$\mathcal{D}_{\alpha} = \partial_{\alpha} - \mathcal{L}_{\alpha}$$

Equations of motion $\implies \ell = \ell(\lambda)$, λ is a spectral parameter.

$$[\mathscr{D}_{\alpha},\mathscr{D}_{\beta}]=0 \qquad in \quad \mathfrak{su}(2,2|4)$$

Bena, Polchinski and Roiban '03

• Global (Noether) Symmetry $\mathfrak{psu}(2,2|4)$

$$\mathcal{L} \to \mathcal{L}' = h\mathcal{L}h^{-1} + dhh^{-1}, \qquad h = g$$

Expanding this connection around zero

$$\mathcal{L}'_{\alpha} = \lambda \underbrace{\mathcal{L}_{\alpha}}_{\text{c.c.}} + \dots \underbrace{\partial_{\alpha} \left(\epsilon^{\alpha \beta} \mathcal{L}_{\beta} \right) = 0}_{\text{at order } \lambda}$$

Virasoro symmetry

Integrability (Lax)

The magic triangle of symmetries

- Integrability (existence of the Lax representation) requires $\kappa = \pm \frac{\sqrt{\lambda}}{2}$.
- ullet It is this value of κ which is required by κ -symmetry
- Kappa-symmetry variation of the Lax connection $\delta_{\kappa} \mathcal{L}$ is a gauge transformation

$$\delta_{\kappa} \mathcal{L}_{\alpha} = [\Lambda(\kappa), \mathcal{L}_{\alpha}] - \partial_{\alpha} \Lambda(\kappa)$$

if and only if Virasoro constraints are satisfied.

Gauges

The $\mathrm{AdS}_5 \times \mathrm{S}^5$ metric is

$$ds^{2} = f_{a}(z)dt^{2} + f_{s}(y)d\phi^{2} + g_{ij}^{a}dz^{i}zdz^{j} + g_{ij}^{s}dy^{i}dy^{j}$$

Isometries

$$t \to t + {\rm const}$$
, $\phi \to \phi + {\rm const}$ $p_t \equiv E^0$, $p_\phi \equiv J^0$

Two conserved charges

$$E = \int_0^{2\pi} \frac{\mathrm{d}\sigma}{2\pi} E^0 \qquad J = \int_0^{2\pi} \frac{\mathrm{d}\sigma}{2\pi} J^0$$

Introduce the light-cone coordinates and the light-cone momenta

$$t = x_{+} - x_{-}, \quad \phi = x_{+} + x_{-}$$
 $p_{t} = \frac{1}{2}(p_{+} + p_{-}), \quad p_{\phi} = \frac{1}{2}(p_{+} - p_{-})$

Fixing κ -symmetry

Fixing κ -symmetry – the "green" fermions are switched off

Subalgebra which leaves the Hamiltonian

$$H = -p_{-}$$

invariant comprises two copies of $\mathfrak{su}(2|2)$. It is natural to call these gauges as

$$SU(2|2) \times SU(2|2)$$
 Gauges

$SU(2|2) \times SU(2|2)$ Gauges

This should provide a "stringy" realization of the $\mathfrak{su}(2|2)$ invariant S-matrix

General construction of $\mathfrak{su}(2|2)$ -invariant S-matrix

Symmetry

$$[\mathcal{J}_1 + \mathcal{J}_2, S_{12}] = 0, \qquad \mathcal{J} = \mathfrak{su}(2, 2)$$

Unitarity

$$S_{12}S_{21} = 1$$

Yang-Baxter

$$S_{12}S_{13}S_{23} = S_{23}S_{13}S_{12}$$

✓ BDS ansatz is derived.

Beisert '05

- ✓ Symmetry algebra is extended $\mathfrak{psu}(2|2) \times \mathbb{R}^3$
- √ S-matrix is unique up to a scalar prefactor (the dressing factor)
- ✓ To derive the dispersion relation E=E(p) off-shell extension of $\mathfrak{su}(2|2)$ is needed
 - it involves two new central charges!

$SU(2|2) \times SU(2|2)$ Gauges

Static gauge
$$t= au\,, \qquad p_\phi=J$$
 $E=H_{
m 2dim}$

Computing the spectrum of the world-sheet Hamiltonian we compute the space-time energy = conformal dimensions

Uniform light-cone gauge $x_+ = \tau \ , \qquad p_+ = P_+ = E + J = {\rm const}$

$$H_{2\dim} = E - J$$

$$E = J + H_{2\dim}(\underbrace{E + J}_{P_{+}=\text{const}})$$

We get non-trivial equation to determine the energy. Level-matching constraint $\mathcal{V}=0$.

The bosonic unbroken symmetry subalgebra is

$$SO(4) \times SO(4) = \underbrace{SU(2) \times SU(2)}_{Sphere} \times \underbrace{SU(2) \times SU(2)}_{AdS}$$

Structure of the light-cone supercharges. Red and blue blocks are two copies of $\mathfrak{su}(2|2)$ sharing the same central charge which is the Hamiltonian $H=-p_-$.

We showed that with the level-matching condition omitted the algebra is enlarged by two central charges

$$\{Q,Q\}$$
 \sim C_Q
 $\{S,S\}$ \sim C_S
 $\{Q,Q^{\dagger}\}$ \sim H

The charges $\mathcal{C}_{\mathcal{Q}}$ and $\mathcal{C}_{\mathcal{S}}$ vanish on physical states.

Frolov, Plefka, Zamaklar and G.A., to appear

Quantum String Bethe Ansatz QSBA

$$e^{ip_jL} = \prod_{k \neq j}^{M} \underbrace{S(p_j, p_k)}_{\text{gauge}} e^{i\theta(p_j, p_k)}$$

Frolov, Staudacher and G.A '04

Checks and Properties:

- Reduces to KMMZ equations in the thermodynamic limit $M,L\to\infty$, $\frac{M}{L}={\rm fixed}$
- √ Reproduces near-plane wave corrections to the energy
- \checkmark Reproduces $\Delta \sim \lambda^{1/4}$ as $\lambda \to \infty$
- ✓ For $\lambda \to 0$ defines a new long-range integrable spin chain.

 Beisert '04
- ✓ Derivable from IDSC. Kazakov and Gromov '06
- √ Reproduces scattering matrix of giant magnons

Hofman and Maldacena '06

Gauge Choice and Relation to QSBA

- ✓ It can be seen already at the level of reduced models
- Interesting non-trivial reduction the $\mathfrak{su}(1|1)$ model $t,\ \phi$ and two complex fermions
- In the uniform static gauge one finds the Lagrangian

$$\mathcal{L} = \sqrt{\lambda} \int_{-\Lambda}^{\Lambda} d\sigma \Big[-\frac{i}{2} \Big(\bar{\psi} \gamma^{\alpha} \partial_{\alpha} \psi - \partial_{\alpha} \bar{\psi} \gamma^{\alpha} \psi \Big) + \bar{\psi} \psi \\ -\frac{1}{4} \epsilon^{\alpha \beta} \Big(\bar{\psi} \partial_{\alpha} \psi \bar{\psi} \gamma^{3} \partial_{\beta} \psi - \partial_{\alpha} \bar{\psi} \psi \partial_{\beta} \bar{\psi} \gamma^{3} \psi \Big) \\ +\frac{1}{8} \epsilon^{\alpha \beta} (\bar{\psi} \psi)^{2} \partial_{\alpha} \bar{\psi} \gamma^{3} \partial_{\beta} \psi \Big]$$

where

$$\Lambda = \frac{\pi J}{\sqrt{\lambda}}$$

We see that $J \to \infty$ is a decompactification limit

New integrable system of interacting 2dim Dirac fermion

Alday, Frolov and G.A. '05

Perturbative S-matrix over a "bare" vacuum is known

Klose and Zarembo '06

Gauge Choice and Relation to QSBA

 In the uniform light-cone gauge gauge one finds the Lagrangian

$$\mathcal{L} = \sqrt{\lambda} \int_{-\Lambda}^{\Lambda} d\sigma \left[-\frac{i}{2} \left(\bar{\psi} \gamma^{\alpha} \partial_{\alpha} \psi - \partial_{\alpha} \bar{\psi} \gamma^{\alpha} \psi \right) + \bar{\psi} \psi \right]$$

Free massive 2dim Dirac fermion!

$$E = J + H_{2\dim}(\underbrace{E + J}_{P_{+}=\text{const}})$$

Energy spectrum

$$E - J = \sum_{i=1}^{M} \sqrt{1 + \frac{4\lambda n_i^2}{(E+J)^2}}$$
.

Frolov and G.A. '05

Treatment of the whole model in the uniform light-cone gauge is developed

Frolov, Plefka, Zamaklar '06

Gauge Choice and Relation to QSBA

The dispersion relation we found can be derived form the Bethe ansatz equation

Bethe ansatz

$$e^{ip_kL} = \prod_{j \neq k}^{M} \underbrace{e^{\frac{i}{2}(p_j(e_k-1) - p_k(e_j-1))}}_{\text{string S-matrix}}$$

Here L=J+M/2 is a "length" of the hypothetical spin chain and

$$e_k = \sqrt{1 + \frac{\lambda p_k^2}{4\pi^2}}$$

is an energy of an elementary excitation. The spectrum is

$$E - J = \sum_{k=1}^{M} e_k$$

Agrees with the AFS proposal in the small-momentum approximation (up to order 1/J)

$$e_j = \sqrt{1 + \frac{\lambda}{\pi^2} \sin^2 \frac{p_k}{2}}$$

Parametrization of the physical excitations

$$x^{+} + \frac{1}{x^{+}} - x^{-} - \frac{1}{x^{-}} = i \frac{4\pi}{\sqrt{\lambda}} \equiv 2i\zeta$$

Momentum of physical excitation

$$e^{ip} = \frac{x^+}{x^-} \implies x^{\pm}(p)$$

Energy of physical excitation

$$e = 1 + \frac{i}{\zeta} \left(\frac{1}{x^+} - \frac{1}{x^-} \right)$$

Beisert '04

Instead of physical momentum p we introduce another variable x

$$\sin\frac{p}{2} = \frac{\zeta}{x - \frac{1}{x}},$$

This gives

$$x^{\pm}(x) = x\sqrt{1 - \frac{\zeta^2}{(x - \frac{1}{x})^2}} \pm i\zeta \frac{x}{x - \frac{1}{x}}$$

Particle-to-antiparticle transformation becomes inversion $x \to 1/x$:

$$x^{\pm}(1/x) = 1/x^{\pm}(x)$$

Energy

$$e(x) = \frac{x + \frac{1}{x}}{x - \frac{1}{x}}.$$

Modulus k is related to the coupling constant

The Bethe ansatz data live on the elliptic curve

Explicit parametrization

$$x^{\pm} = \frac{\operatorname{cn}(z,k) \pm i \operatorname{sn}(z,k)}{\sqrt{-k}\operatorname{sn}(z,k)} (1 + \operatorname{dn}(z,k)),$$

$$p = 2\operatorname{am}(z,k)$$

Periods

$$2\omega_1 = 4K(k)$$
, $2\omega_2 = 4K(k) + 4iK(1-k)$.

Modulus

$$k = -\frac{4}{\zeta^2} = -\frac{\lambda}{\pi^2}$$

Rank-one sectors

$$\underbrace{\mathfrak{su}(2)}_{\mathfrak{s}=1}, \qquad \underbrace{\mathfrak{su}(1|1)}_{\mathfrak{s}=0}, \qquad \underbrace{\mathfrak{sl}(2)}_{\mathfrak{s}=-1}$$

Bethe equations

$$e^{ip_jL} = \prod_{k \neq j}^M S(x_j, x_k)$$

M number of excitations

$$L = J + \frac{\mathfrak{s}+1}{2}M$$
 "length"

String S-matrix

$$S(x_j, x_k) = \underbrace{\left(\frac{x_j^+ - x_k^-}{x_j^- - x_k^+}\right)^{\mathfrak{s}} \frac{1 - \frac{1}{x_j^+ x_k^-}}{1 - \frac{1}{x_j^- x_k^+}}}_{\text{gauge all loop}} \underbrace{\frac{\sigma(x_j, x_k)}{\text{"stringy"}}}_{\text{"stringy"}}$$

Beisert, Dippel and Staudacher '04 Frolov, Staudacher and G.A '04

Describes scattering of world-sheet states in the temporal gauge $t=\tau$ and $p_\phi=J$ in the decompactification limit $J\to\infty$ with $\lambda=$ fixed.

Some properties of the dressing factor $\sigma(x_i, x_k)$

- Universal to all sectors and for the whole model
- Cannot be fixed by psu(2, 2|4) symmetry
- Should tend to one as $\lambda \to 0$

$$\sigma(x_j, x_k) = e^{i\theta(x_j, x_k)}$$

$$\theta(x_j, x_k) = \frac{1}{\zeta} \sum_{r=2}^{\infty} \sum_{n=0}^{\infty} c_{r,r+1+2n}(\zeta) \ q_r(x_{[j]}) q_{r+1+2n}(x_{k]}.$$

Frolov, Staudacher and G.A '04 Beisert, Klose '05

The BDS local charges

$$q_r(x) = \frac{i}{r-1} \left(\left(\frac{1}{x^+} \right)^{r-1} - \left(\frac{1}{x^-} \right)^{r-1} \right)$$

Functions $c_{r,s}$ are expanded in power series in ζ :

$$c_{r,s}(\zeta) = \delta_{r+1,s} - \zeta \frac{4}{\pi} \frac{(r-1)(s-1)}{(r+s-2)(s-r)} + \cdots$$

Subleading correction due to Hernández and López '06; Freyhult and Kristjansen '06

Crossing Symmetry in String Theory

Janik's functional equation on dressing factor from crossing symmetry

$$\sigma(x_j, x_k)\sigma(1/x_j, x_k) = h(x_j, x_k)^2$$

Janik '06

$$h(x_j, x_k) = \frac{x_k^-}{x_k^+} \frac{(1 - \frac{1}{x_j^- x_k^-})(x_j^- - x_k^+)}{(1 - \frac{1}{x_j^+ x_k^-})(x_j^+ - x_k^+)}$$

The equation admits different solutions – correspond to S-matrices in different gauges preserving $SU(2|2)\times SU(2|2)$ symmetry

Idea:

Confront Janik's equation against the asymptotic expansion of the dressing factor

Expansion: $\zeta \to 0$, x fixed

Crossing Symmetry in String Theory

Logarithmic version

$$i\theta(x_j, x_k) + i\theta(1/x_j, x_k) = 2\log h(x_j, x_k)$$

Expansion of the r.h.s.

$$2\log h(x_j, x_k) = -\zeta \frac{4ix_k(x_k + x_j(-2 + x_j x_k))}{(x_j - x_k)(x_j x_k - 1)(x_k^2 - 1)} + \zeta^2 \frac{4x_j^2 x_k^2 (1 - 4x_j x_k + x_j^2 + x_k^2 + x_j^2 x_k^2)}{(x_j^2 - 1)(x_k^2 - 1)(x_j - x_k)^2 (x_j x_k - 1)^2} + \cdots$$

Dressing phase

$$\theta(x_j, x_k) = \frac{1}{\zeta} \Big[\chi(x_j^-, x_k^-) - \chi(x_j^-, x_k^+) - \chi(x_j^+, x_k^-) + \chi(x_j^+, x_k^+) \\ - \chi(x_k^-, x_j^-) + \chi(x_k^+, x_j^-) + \chi(x_k^-, x_j^+) - \chi(x_k^+, x_j^+) \Big]$$

where

$$\chi(x,y) = \sum_{r=2}^{\infty} \sum_{n=0}^{\infty} \frac{c_{r,r+1+2n}(\zeta)}{(r-1)(r+2n)} \frac{1}{x^{r-1}y^{r+2n}} = \chi_0 + \zeta \chi_1 + \cdots$$

Crossing Symmetry in String Theory

Asymptotic expansion of the phase

Leading term

$$\chi_0(x,y) = \frac{1}{y} + \frac{xy - 1}{y} \log\left(\frac{xy - 1}{xy}\right)$$

Subleading term

$$\chi_{1}(x,y) = \frac{1}{\pi} \left[\log \frac{y-1}{y+1} \log \frac{x-\frac{1}{y}}{x-y} + \operatorname{Li}_{2} \frac{\sqrt{y}-\sqrt{\frac{1}{y}}}{\sqrt{y}-\sqrt{x}} - \operatorname{Li}_{2} \frac{\sqrt{\frac{1}{y}}+\sqrt{y}}{\sqrt{y}-\sqrt{x}} + \operatorname{Li}_{2} \frac{\sqrt{y}-\sqrt{\frac{1}{y}}}{\sqrt{y}+\sqrt{x}} - \operatorname{Li}_{2} \frac{\sqrt{y}+\sqrt{\frac{1}{y}}}{\sqrt{y}+\sqrt{x}} \right]$$

Plug this into the dressing phase $heta(x_j,x_k)$ and expand in ζ

$$\theta(x_{j}, x_{k}) = \frac{1}{\zeta} \left[\chi(x_{j}^{-}, x_{k}^{-}) - \chi(x_{j}^{-}, x_{k}^{+}) - \chi(x_{j}^{+}, x_{k}^{-}) + \chi(x_{j}^{+}, x_{k}^{+}) - \chi(x_{k}^{+}, x_{j}^{-}) + \chi(x_{k}^{-}, x_{j}^{+}) - \chi(x_{k}^{+}, x_{j}^{+}) \right]$$

Janik's equation is satisfied by two leading terms of the asymptotic expansion!

Open Problems

What are analyticity conditions?

New central charges in string theory?

Origin of the Hopf algebra symmetry?