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Motivation

v

Green-Schwarz string on AdSs x S? is invariant
* reparametrizations
= local fermionic (kappa) symmetry

* global supergroup PSU(2,2|4)

Metsaev and Tseytlin '98

Unclear how to construct an exact quantization
but possible to guess Bethe type ansatze
capturing quantum physics at leading order

Frolov, Staudacher and G.A. '04

Impose a light-cone type gauge

x 1T = 7, p+ = P, is uniform along the string

+ Gauge-fixed Hamiltonian depends on v/X and P

Different limits
« BMN limit: A — oo,  ¥2=fixed

4
% Flat-space limit: A\ — oo, -ﬁg=fixed

x Decompactification limit: A=fixed, Py = 00

Use the gauge-fixed Hamiltonian to study TDII corrections
to these limits; extract string S-matrix



Superstring as integrable coset model

PSU(2,2|(4)
SO(4,1) x SO(5)

e What is psu(2,2[4)?

A X
Mgxg = ( Y D ) (_511(272'4)

v’ A, D are even (bosonic)
v X,Y are odd (fermionic)

v strM =trA —trD =0

v HM + M'H =0,

H-hermitian with diag(1,1,-1,—-1;1,1,1,1)

Bosonic subalgebra of su(2, 2|4) is

su(2,2) @ su(4) o u(l)



psu(2, 2|4) = su(2, 2|4)/u(1)

No realization in terms of 8 X 8 matrices!

[Ml, M2] = M3 -+ ’iH‘T‘, reR

The superalgebra su(2, 2|4) has a Z4 grading
M = M(O) D M(l) o) M(2) D M(3)

defined by the automorphism M — Q (M)

KA'K — KY'K
— ( KX'K KD'K ) ’

where we choose the 4 X 4 matrix K to be

0 -1'® ®

ik 10 e e
N = 6o 0 0 -1
g % 1L-%

M®©® ~ so(4,1) x so(5)
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e Lagrangian

X = ogsigma—model + g'wz

A==y g =0 AR+ 8 S .

even odd

3 = —%\/Xfyaﬁstr (Aff)A(Bz)) — ke*Pstr (Afxl)Ag’)) :

>y

W
Wess—Zumino term

Bena, Polchinski and Roiban '03

e \irasoro constraints

str (Ag)Ag)) — %fyag str (A§2)A§)2))’yap %= i)



e Integrability

Lax operator

o = AD +0AD + tryapePA?
+e3(A) + A + 44(A) - AD),
where £; are constants.

Equations of motion = £ = £(\), A is a spectral
parameter. '

[P, Z3] =0 in  su(2,2|4)

Bena, Polchinski and Roiban '03

e Global (Noether) Symmetry psu(2, 2|4)

¥ - ¢ =h#h ' +drh7 T, h=g

Expanding this connection around zero

H =X Lot .- ?a(eaﬁcg) =0

at order M\




kappa—symmetry Virasoro symmetr

Integrability (Lax)

The magic triangle of symmetries

e Integrability (existence of the Lax representation)

requires Kk = i%.

e It is this value of k which is required by k-
symmetry

e Kappa-symmetry variation of the Lax
connection §,.Z is a gauge transformation

50 L = [A(K), La] — BaA(K)

if and only if Virasoro constraints are satisfied.



Gauges
The AdS5 x S® metric is

ds® = fa(2)dt® + fs(y)d¢® + gfjdz'zdz’ + gf;dy’dy’

Isometries
t — t 4 const, ¢ — ¢ + const

Pt = an qu = ']0

Two conserved charges

> a /2ﬂdaE0 J—/-27rdo.

Introduce the light-cone coordinates and the light-cone
momenta

t = zyp—2., =44+

1 ‘ 1
pt = §(P+ +p-), pPp= ‘2‘(P+ - P-)



Fixing k-symmetry

Fermions =

Fixing k-symmetry — the “green” fermions are
switched off

Subalgebra which leaves the Hamiltonian
H=—p_

invariant comprises two copies of su(2[2). It is
natural to call these gauges as

SU(2|2)x SU(2|2) Gauges



SU(2|2)x SU(2|2) Gauges

This should provide a “stringy” realization of the su(2|2)-
invariant S-matrix

General construction of su(2|2)-invariant S-matrix

e Symmetry
[J1 + T2, S12] = 0, T = su(2,2)

e Unitarity
512821 =1

e Yang-Baxter
512513523 = S23513S512

v" BDS ansatz is derived
Beisert ‘05

v’ Symmetry algebra is extended psu(2|2) x R®

v" S-matrix is unique up to a scalar prefactor
(the dressing factor)

v' To derive the dispersion relation £ = E(p) off-shell
extension of su(2|2) is needed
— it involves two new central charges!
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SU(2|2) x SU(2|2) Gauges

Static gauge t=7, pe = J

Computing the spectrum of the world-sheet Hamiltonian we
compute the space-time energy = conformal dimensions

Uniform light-cone gauge

Tye =T, Py ="F, = F 4 J = cotmt

Hogpy = & — J

E=J+ Hogim( £+ J)

P+ =const

We get non-trivial equation to determine the energy. Level-
matching constraint V = 0.

al



The bosonic unbroken symmetry subalgebra is

SO(4) x SO(4) = SU(2) x SU(2) x SU(2) x SU(2)

Sp?lrere AdS

Structure of the light-cone supercharges.
Red and blue blocks are two copies of su(2|2) sharing the same central charge
which is the Hamiltonian H = —p_.

We showed that with the level-matching condition omitted the algebra is
enlarged by two central charges

{Q,.Q} ~ Cq
(8.5} ~ Cs
{Q.Qy ~ H

The charges Cg and Cg vanish on physical states.

Frolov, Plefka, Zamaklar and G.A., to appear



Quantum String Bethe Ansatz QSBA

Finite—gap Solutions (KMMZ) >
<Fundamental (discrete)

Bethe Equations

Integrability (Lax)

M
ip; L I I 10(p;,
e'Pit — §(p3’pkle (pj Pk)
k#j gauge

Frolov, Staudacher and G.A '04

Checks and Properties:

v Reduces to KMMZ equations in the thermodynamic
limit M, L — oo, £ = fixed

Reproduces near-plane wave corrections to the energy
Reproduces A ~ A% as A — oo

For A — 0 defines a new long-range integrable

spin chain. Beisert '04

Derivable from IDSC. Kazakov and Gromov '06
Reproduces scattering matrix of giant magnons

Hofman and Maldacena '06

L

< S
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Gauge Choice and Relation to QSBA

v" It can be seen already at the level of reduced models

v Interesting non-trivial reduction — the su(1|1) model

t, ¢ and two complex fermions

e In the uniform static gauge one finds the Lagrangian

A g = ‘ B 2
£ = \/X/_A do| — §($7%0at — 8aPy*¥) + b
— 3% ($0avbr 85 — BadyOpYy v)
+ $* (Pv)*0abv 50|
where

PR i

vV

We see that J — oo is a decompactification limit

New integrable system of interacting 2dim Dirac fermion

Alday, Frolov and G.A. '05

Perturbative S-matrix over a “bare” vacuum is known

Klose and Zarembo '06
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Gauge Choice and Relation to QSBA

® In the uniform light-cone gauge gauge one finds the
Lagrangian

£ = \/X/_i do| — §(P7*0at — 0aBy*¥) + By

Free massive 2dim Dirac fermion!

E=J+ Hogim( E+J )

P =const

Energy spectrum

Frolov and G.A. '05

Treatment of the whole model in the uniform light-cone gauge is

developed

Frolov, Plefka, Zamaklar '06

§



Gauge Choice and Relation to QSBA

The dispersion relation we found can be derived form the
Bethe ansatz equation

Bethe ansatz

M .
Pl — H Q%(Pj(ek*—l)“Pk(ej—l)l

Y

J1#k string S—matrix

Here L = J + M /2 is a “length” of the hypothetical spin

chain and NPy
)\p2

2y = 1 —

k \/ + 12

is an energy of an elementary excitation. The spectrum is

M
E—-J= €k
k=1

Agrees with the AFS proposal in the small-momentum
approximation (up to order 1/.J)

ej-—_\/ +—81n %

16




String and Gauge Theory Bethe Ansitze

Parametrization of the physical excitations

¥y 1 - 1 4T 2i¢
T —_——r —— =i— = 2%

zt x~ VA

Momentum of physical excitation
+
: z
ef=— = :L':t(p)
&

Energy of physical excitation

6*1+i(1 1)
= AT  a*

Beisert '04
Instead of physical momentum p we introduce another variable =

This gives

2
:ri(m)z‘]”\/l—‘c—l3“'C :
(z —

Particle-to-antiparticle transformation becomes inversion x — 1/x:

zE(1/z) = 1/z5(z)
Energy

8=

slay o
S

8=

17



String and Gauge Theory Bethe Ansitze

X

Modulus k is related to
the coupling constant

The Bethe ansatz data live on the elliptic curve

Explicit parametrization

g - ' sk
o - cn(z, k) &= isn(=z )(1 o i, Y,
vV —ksn(z, k)
p = 2am{z k)
Periods
2w; = 4K (k) , 2w = 4K (k) + 4iK(1 — k).
Modulus
s 4 = A

18



String and Gauge Theory Bethe Ansatze

Rank-one sectors

su(2), su(1]1), sl(2)
et i p—" el
s=1 s=0 s=—1

Bethe equations

. L M
e’l,pj = H S(mjﬁmk)

k#3
M number of excitations
L=J+%M “length”
String S-matrix
1
_\ 51— -
:rj — x a':;_:z:
S(zj, zx) = | == e E — o(z;, Tk)
) 7 k :cj_a:kl “strlngy”
gauge -‘afll loop

Beisert, Dippel and Staudacher '04
Frolov, Staudacher and G.A '04

Describes scattering of world-sheet states in the temporal gauge t =
and py = J in the decompactification limit J — oo with A=fixed.

19



String and Gauge Theory Bethe Ansitze

Some properties of the dressing factor o(z;, z})

e Universal to all sectors and for the whole model
e Cannot be fixed by psu(2, 2|4) symmetry
e Should tend tooneas A — 0

o(zj, zi) = "0k
18 ==
9(333’, xE) = ZZ Z crr4+1+2n (<) QT(-’UU)QT+1+2n($k]) .
r=2 n=0

Frolov, Staudacher and G.A '04
Beisert, Klose '05

The BDS local charges
'1: 1 r—1 1 r—1
i dead~e ((:c_+) 3 (a:_—> )

Functions ¢, s are expanded in power series in (:

2l 4 (r—1)(s—1)
cr,s(C) = 6ry1,s — C;(T_i_s = s Rt

Subleading correction due to Hernidndez and Lépez '06;
Freyhult and Kristjansen '06

20



Crossing Symmetry in String Theory

Janik’s functional equation on dressing factor from crossing
symmetry

a{z;, 2x)oll/z;, zx) = Mx;, :L‘k)2

Janik '06

(1= ==)@=; —7)
h(zj, xk) = mi jlk ¥ _ +
e (1~ m'.*'m;)(mj —z)

J

The equation admits different solutions — correspond to S-matrices in
different gauges preserving SU(2|2)xSU(2|2) symmetry

Idea:

Confront Janik's equation against the asymptotic
expansion of the dressing factor

Expansion: ¢ — 0, x fixed

21



Crossing Symmetry in String Theory

Logarithmic version
29(1‘3, :L‘k) -+ ie(l/:ﬂj, :Ek) = 2log h(mJ, :L'k)
Expansion of the r.h.s.

dizg(zk + z;(—2 + zz))
(zj — zp)(zjzr — 1) (zf — 1)

2logh(zj,z) = -—

4:!:?:1:%(1 —dz;x) + m? + :c% + x?m%)

(2% — 1)(zf — 1)(zj — zx)2%(zjzx — 1)2

PO

Dressing phase

1 myr i = =
0y an) = z[xjep) = x(a;,af) ~ x@f,20) + x@] .5
- x(=z,27) + x(@f 27 + x(22]) = x(z},2})]
where

xl@, ) = Z Z Cr,r+1+2n (<) 1

s M i =X rAxy
r:2n=0(r 1)(r + 2n) zr—1lyr+2n

22



Crossing Symmetry in String Theory

Asymptotic expansion of the phase

Leading term

1 xy — 1 zy — 1
xo(z,y) = —+ log ( )
Y Yy ry

Subleading term

1
x1(z,y) = ;[log log

Plug this into the dressing phase 0(x;, x}) and expand in ¢

(x5 25) — (=5 2) = x(=F, 2) + xt=F, =)

N

0(zj,z) =

- L ey =
‘_X(mk’xj)+X(-'L'ka33j)+X(mka$j)_X($kamj)]

Janik’s equation is satisfied by two leading terms of the asymptotic
expansion!
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Open Problems

What are analyticity conditions ?
New central charges in string theory?

Origin of the Hopf algebra symmetry?

24
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