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Historical Remarks

Physical properties

• M. C. Gutzwiller 1963, J. Hubbard 1963
(independly): Formulation (derivation) of the
model in its present day form

• E. H. Lieb and F. Y. Wu 1968: Bethe ansatz
solution

• M. Takahashi 1972 (74): string hypothesis, TBA
equations and formulation of the
thermodynamics, basis for the understanding of
all elementary excitations (particle spectrum)

• F. Woynarovich 1989: finite size corrections; H.
Frahm and V. E. Korepin 1990 (91): Calculation
of the long distance asymptotics of correlation
functions, generic case (0 < n < 1, h finite)

• F. H. L. Essler and V. E. Korepin 1994:
Calculation of the S-matrix at for the half-filled
system, clear picture of spin-charge separation

• G. Jüttner, A. Klümper and J. Suzuki 1998: Cal-
culation of the thermodynamic properties within
the quantum transfer matrix approach
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system, clear picture of spin-charge separation
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culation of the thermodynamic properties within
the quantum transfer matrix approach

Mathematical structure:

• E. H. Lieb and F. Y. Wu 1968: Bethe ansatz
solution

• B. S. Shastry 1986 (88): Construction of an
R-matrix relating to the Hubbard model;
analytical proof of YBE by M. Shiroishi and
M. Wadati 1995

• F. H. L. Essler, V. E. Korepin and K.
Schoutens 1992: SO(4) highest weight
properties of Bethe ansatz states

• D. B. Uglov and V. E. Korepin 1994: Yangian
symmetry; more generally (including long
range) FG and V. I. Inozemtsev 1996

• M. J. Martins and P. B. Ramos 1996:
Algebraic Bethe ansatz based on Shastry’s
R-matrix

• S. Murakami and FG 1997: Connection be-
tween Shastry’s R-matrix and Yangian sym-
metry
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The Hubbard model

• The Hamiltonian

H = −t ∑
〈i, j〉

c†
i,ac j ,a

︸ ︷︷ ︸

=:T , ‘hopping’

+U ∑
i

ni↑ni↓

︸ ︷︷ ︸

=:D

• t ∼ 1meV, typical energy in solids,

c†
i,a field operator on the lattice, creates an

electron of spin a in Wannier state i
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The Hubbard model

• The Hamiltonian

H = −t ∑
〈i, j〉

c†
i,ac j ,a

︸ ︷︷ ︸

=:T , ‘hopping’

+U ∑
i

ni↑ni↓

︸ ︷︷ ︸

=:D

• t ∼ 1meV, typical energy in solids,

c†
i,a field operator on the lattice, creates an

electron of spin a in Wannier state i

Interpretation (1d)

• |x,a〉 = |(x1, . . . ,xN),(a1, . . . ,aN)〉 =

c†
xn,aN

. . .c†
x1,a1

|0〉

D|x,a〉 = ∑
1≤m<n≤N

δxm,xn|x,a〉

D diagonal with respect to Wannier basis,
counts the number of doubly occupied orbitals

U
−t
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• |x,a〉 = |(x1, . . . ,xN),(a1, . . . ,aN)〉 =

c†
xn,aN

. . .c†
x1,a1

|0〉

D|x,a〉 = ∑
1≤m<n≤N

δxm,xn|x,a〉

D diagonal with respect to Wannier basis,
counts the number of doubly occupied orbitals

U
−t

• U = 0⇒ H = T free Fermions

H = ∑
k

−2t cos
(

2πk
L

)

ñk

ñk = c̃†
k,ac̃k,a with c̃†

k,a Fourier transform of c†
i,a

−π −π/2 0 π/2 π
p

−2

−1

0

1

2

E
(p

)
4t band width, u = U/4t intrinsic coupling
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Origin in solid state physics

Solid a low temperature:

• positive Ions form a crystal lattice

• static lattice good starting point for studying
electronic properties of solids, theoretical ex-
planation: separation of mass scales

Hel =
N

∑
i=1

(
p2

i

2m
+VIon(xi)

)

+ ∑
1≤i< j≤N

VC(xi −x j )

N number of electrons, VI (x) periodic potential of
the ions

VC(x) =
e2

||x ||
Coulomb repulsion among the electrons
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Solid a low temperature:

• positive Ions form a crystal lattice

• static lattice good starting point for studying
electronic properties of solids, theoretical ex-
planation: separation of mass scales

Hel =
N

∑
i=1

(
p2

i

2m
+VIon(xi)

)

+ ∑
1≤i< j≤N

VC(xi −x j )

N number of electrons, VI (x) periodic potential of
the ions

VC(x) =
e2

||x ||
Coulomb repulsion among the electrons

• Many body problem . . .

• Success of Solid State Physics relies on
good one-body approximations to Hel

Hel =
N

∑
i=1

( p2
i

2m
+VIon(xi)+VA(xi)

︸ ︷︷ ︸

=:Ve f f(xi )

)

+ ∑
1≤i< j≤N

(

VC(xi −x j )− 1
N−1

(
VA(xi)+VA(x j )

)

︸ ︷︷ ︸

=:U(xi ,x j )

)

• Good one-body approximations through appropriate choice of VA: matrix elements of U(x,y) between

the eigenstates of the one-particle Hamiltonian h1(x,p) = p2

2m +Ve f f(x) must be small
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Origin in solid state physics

Phenomenology: Screening

Veff

VIon

• VIon screened by charge cloud

|Ψ(x1, . . . ,xN)|2

• Systematic approach: Density functional
theory
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Veff

VIon

• Adapted bases
(1) Bloch basis: Eigenstates of

h1(x,p) = p2

2m +Ve f f(x)

ϕαk(x) = ei〈k,x〉uαk(x)

uαk periodic, α band index, k lattice momentum,

c†
αk corresponding creation operator

• VIon screened by charge cloud

|Ψ(x1, . . . ,xN)|2

• Systematic approach: Density functional
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Origin in solid state physics

Phenomenology: Screening

Veff

VIon

• Adapted bases
(1) Bloch basis: Eigenstates of

h1(x,p) = p2

2m +Ve f f(x)

ϕαk(x) = ei〈k,x〉uαk(x)

uαk periodic, α band index, k lattice momentum,

c†
αk corresponding creation operator

• VIon screened by charge cloud

|Ψ(x1, . . . ,xN)|2

• Systematic approach: Density functional
theory

(2) Wannier basis, lattice analogue of atomic
wave functions

φα(x−Ri)

φα(x) =
1√
L

∑
k

ϕαk(x)

i = 1, . . . ,L = number of ions, Ri lattice vector,

c†
αi corresponding creation operator

(3) Connection

c†
αi =

1√
L

∑
k

e−i〈k,Ri 〉c†
αk
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Origin in solid state physics

Hel in Wannier representation

H = ∑
α,i, j ,a

tα
i j c†

αi,a cα j ,a + 1
2 ∑

α,β,γ,δ
i, j,k,l

∑
a,b

Uαβγδ
i jkl c†

αi,a c†
β j ,b cγk,b cδl ,a

hopping matrix elements tα
i j

tα
i j =

Z

dx3 φ∗α(x−Ri)(h1φα)(x−R j )

interaction parameters Uαβγδ
i jkl

Uαβγδ
i jkl =

Z

dx3dy3 φ∗α(x−Ri)φ∗β(y−R j )U(x,y)φγ(y−Rk)φδ(x−Rl )
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Hel in Wannier representation

H = ∑
α,i, j ,a

tα
i j c†

αi,a cα j ,a + 1
2 ∑

α,β,γ,δ
i, j,k,l

∑
a,b

Uαβγδ
i jkl c†

αi,a c†
β j ,b cγk,b cδl ,a

hopping matrix elements tα
i j

tα
i j =

Z

dx3 φ∗α(x−Ri)(h1φα)(x−R j )

interaction parameters Uαβγδ
i jkl

Uαβγδ
i jkl =

Z

dx3dy3 φ∗α(x−Ri)φ∗β(y−R j )U(x,y)φγ(y−Rk)φδ(x−Rl )

• So far Hel only rewritten, no approximation

• Optimal choice of the Wannier functions (optimal choice of VA)
minimises the interaction parameters

• Uαβγδ
i jkl negligible ⇒ band model, tα

i j band structure

• Fermi surface inside a
single band ⇒ neglect
inter-band interaction,

tα
i j → ti j , Uαβγδ

i jkl →Ui jkl ,

one-band model

• Usually intra-atomic
interaction Uiiii dominant
⇒Ui jkl →U , Hubbard!

• Applications:
– electronic properties of
solids with narrow bands
– band magnetism of iron,
cobalt, nickel
– Mott metal-insulator tran-
sition
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Strong coupling descendants

Strong coupling U ≫ |ti j | in

H = ∑
〈i, j〉

ti j c
†
i,ac j ,a +U ∑

i
ni↑ni↓

0

U

UL

Heff

UD   +    T
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Strong coupling descendants

Strong coupling U ≫ |ti j | in

H = ∑
〈i, j〉

ti j c
†
i,ac j ,a +U ∑

i
ni↑ni↓

0

U

UL

Heff

UD   +    T

• Second order (projected) degenerate perturbation theory

• N < L, t-J model

Ht−J =
L

∑
j,k=1
j 6=k

t jkc†
j ,ack,a(1−n j )+

L

∑
j,k=1
j 6=k

2|t jk|2
U

(

Sα
j Sα

k − n j nk

4

)

+
1
U

L

∑
j,k,l=1

j 6=k6=l 6= j

t jktkl

(

c†
j ,aσα

abcl ,bSα
k − 1

2c†
j ,acl ,ank

)

(1−n j)

where 2Sα
j = c†

j ,aσα
abc j ,b, spin operator

• N = L (half-filling), Heisenberg model, Mott transition

(electro-magnetic field couples like t jk → t jkeiλ jk )

HSpin=
L

∑
j,k=1
j 6=k

2|t jk|2
U

(

Sα
j Sα

k −
1
4

)

U > 0⇒ exchange positive, antiferromagnetism
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Strong coupling descendants

N = L4t/U = 2

HHubbard

HSpinHt–JHt–J
(2)Ht–J

(s)

Ht–0

neglecting
3-site terms

first order
perturbation theory

second order
perturbation theory
t U

The various models related to the strong coupling limit of the Hubbard model
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Strong coupling descendants

Strong coupling perturbation theory beyond second
order

• Has appeared in a recent attempt to identify
the dilatation operator of N = 4 gauge
theory in the su(2) sector (A. Rej, D. Serban
and M. Staudacher 2006)
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Strong coupling descendants

Strong coupling perturbation theory beyond second
order

• Has appeared in a recent attempt to identify
the dilatation operator of N = 4 gauge
theory in the su(2) sector (A. Rej, D. Serban
and M. Staudacher 2006)

• In solid state physics vast literature on strong
coupling limit (e.g. Takkahashi 1977,
McDonald, Girvin and Yoshioka 1988, 90).
Reasons: (1) Although Hubbbard is
completely regularized it is still a truly
interacting many body problem,
simplifications, in particular for d = 2,3, are
highly appreciated. (2) Relevant for
applications to real materials.

• 1d case mostly considered for validity tests

The Hubbard Chain – A Paradigmatic Integrable Model Golm, 23/10/2001 [largeu3 – 10/22]



Strong coupling descendants

Strong coupling perturbation theory beyond second
order

• Has appeared in a recent attempt to identify
the dilatation operator of N = 4 gauge
theory in the su(2) sector (A. Rej, D. Serban
and M. Staudacher 2006)

• In solid state physics vast literature on strong
coupling limit (e.g. Takkahashi 1977,
McDonald, Girvin and Yoshioka 1988, 90).
Reasons: (1) Although Hubbbard is
completely regularized it is still a truly
interacting many body problem,
simplifications, in particular for d = 2,3, are
highly appreciated. (2) Relevant for
applications to real materials.

• 1d case mostly considered for validity tests

• Application in 1d (Takahashi 77)

Up to the order t4/U3 the ground state
energy of the Hubbard chain at half-filling can
be expressed in terms of ground state
correlation functions of the Heisenberg chain

E =
t2

U ∑
j

(
〈σα

j σα
j+1〉0−1

)

t4

U3 ∑
j

(
4(1−〈σα

j σα
j+1〉0)+〈σα

j σα
j+2〉0−1

)

On the other hand, the ground state energy
of the half-filled Hubbard model has a large
U expansion (convergent for U > 4t,
Takahashi 1971). Comparison yields

〈σz
j σ

z
j+2〉0 =

1
3
− 16ln2

3
+3ζ(3)

for next-to-nearest neighbour zz-correlator.
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Bethe ansatz solution

Bethe ansatz eigenstates for N electrons and M
down are characterised by two types of quantum
numbers k = (k1, . . . ,kN) and λλλ = (λ1, . . . ,λM)

|ψk,λλλ〉 =
1

N!

L

∑
x1,...,xN=1

∑
a1,...,aN=↑,↓

ψ(x;a|k;λλλ)|x,a〉 ,

where ψ(x;a|k;λλλ) is the N-particle Bethe ansatz
wave function. It depends on the relative ordering
of the coordinates x j . To any ordering a Q∈S

N can
be assigned,

1≤ xQ(1) ≤ xQ(2) ≤ ·· · ≤ xQ(N) ≤ L

This divides the configuration space of N electrons
into N! sectors labeled by the permutations Q. In
sector Q

ψ(x;a|k;λλλ) = ∑
P∈SN

sign(PQ)〈aQ|kP,λλλ〉ei〈kP,xQ〉

with spin dependent amplitudes 〈aQ|kP,λλλ〉
The Hubbard Chain – A Paradigmatic Integrable Model Golm, 23/10/2001 [Bas – 11/22]
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down are characterised by two types of quantum
numbers k = (k1, . . . ,kN) and λλλ = (λ1, . . . ,λM)

|ψk,λλλ〉 =
1

N!
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∑
x1,...,xN=1

∑
a1,...,aN=↑,↓

ψ(x;a|k;λλλ)|x,a〉 ,

where ψ(x;a|k;λλλ) is the N-particle Bethe ansatz
wave function. It depends on the relative ordering
of the coordinates x j . To any ordering a Q∈S

N can
be assigned,

1≤ xQ(1) ≤ xQ(2) ≤ ·· · ≤ xQ(N) ≤ L

This divides the configuration space of N electrons
into N! sectors labeled by the permutations Q. In
sector Q

ψ(x;a|k;λλλ) = ∑
P∈SN

sign(PQ)〈aQ|kP,λλλ〉ei〈kP,xQ〉

with spin dependent amplitudes 〈aQ|kP,λλλ〉

The ‘charge momenta’ k j , j = 1, . . . ,N, and λℓ, and
‘spin rapidities’ ℓ = 1, . . . ,M, are complex numbers
that satisfy the Lieb-Wu equations

eik j L =
M

∏
ℓ=1

λℓ −sink j − iu
λℓ −sink j + iu

, j = 1, . . . ,N

N

∏
j=1

λℓ −sink j − iu
λℓ −sink j + iu

=
M

∏
m=1
m6=ℓ

λℓ −λm−2iu
λℓ −λm+2iu

ℓ = 1, . . . ,M
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wave function. It depends on the relative ordering
of the coordinates x j . To any ordering a Q∈S

N can
be assigned,

1≤ xQ(1) ≤ xQ(2) ≤ ·· · ≤ xQ(N) ≤ L

This divides the configuration space of N electrons
into N! sectors labeled by the permutations Q. In
sector Q

ψ(x;a|k;λλλ) = ∑
P∈SN

sign(PQ)〈aQ|kP,λλλ〉ei〈kP,xQ〉

with spin dependent amplitudes 〈aQ|kP,λλλ〉

The ‘charge momenta’ k j , j = 1, . . . ,N, and λℓ, and
‘spin rapidities’ ℓ = 1, . . . ,M, are complex numbers
that satisfy the Lieb-Wu equations

eik j L =
M

∏
ℓ=1

λℓ −sink j − iu
λℓ −sink j + iu

, j = 1, . . . ,N

N

∏
j=1

λℓ −sink j − iu
λℓ −sink j + iu

=
M

∏
m=1
m6=ℓ

λℓ −λm−2iu
λℓ −λm+2iu

ℓ = 1, . . . ,M

The Bethe eigenstates are joint eigenstates of the
Hubbard Hamiltonian and the momentum operator
with eigenvalues

E = −2
N

∑
j=1

cosk j +u(L−2N)

P =
[ N

∑
j=1

k j

]

mod 2π
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Bethe ansatz solution

The Bethe ansatz equations together with the ex-
pressions for energy and momentum can be used to
obtain

• The ground state properties (ground state
energy, density and magnetisation, spin and
charge susceptibilities) Lieb & Wu 68,
Takahashi 69, 71

• TBA description of the thermodynamics,
Takahashi 72, 74

• Complete picture of the elementary
excitations, many authors from 70, the book

• S-matrix of elementary excitations, Essler
and Korepin 94, Murakami and FG 97

• Asymptotic finite size behaviour and large-
time, long-distance asymptotics of correlation
functions, Woynarovich 89, Frahm and Kore-
pin 90, 91
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Bethe ansatz solution

The Bethe ansatz equations together with the ex-
pressions for energy and momentum can be used to
obtain

• The ground state properties (ground state
energy, density and magnetisation, spin and
charge susceptibilities) Lieb & Wu 68,
Takahashi 69, 71

• TBA description of the thermodynamics,
Takahashi 72, 74

• Complete picture of the elementary
excitations, many authors from 70, the book

• S-matrix of elementary excitations, Essler
and Korepin 94, Murakami and FG 97

• Asymptotic finite size behaviour and large-
time, long-distance asymptotics of correlation
functions, Woynarovich 89, Frahm and Kore-
pin 90, 91

Information that has been drawn from the wave
functions (not so much)

• su(2)⊕su(2) highest weight properties

S+|ψk,λλλ〉 = 0

Sz|ψk,λλλ〉 = 1
2(N−2M)|ψk,λλλ〉

η−|ψk,λλλ〉 = 0,

ηz|ψk,λλλ〉 = 1
2(N−L)|ψk,λλλ〉

counting of states (Essler, Korepin,
Schoutens 92)

• norm formula conjectured (FG and Korepin
99)

Obtaining local information from the Bethe ansatz
solution is, in general, non-trivial (see Maillet’s talk)
and seems to require algebraic techniques
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Algebraic approach

The ‘quantum inverse scattering method’ deals with sys-
tems which are based on an associative quadratic alge-
bra TR defined in terms of its generators Tα

β (λ), α,β =

1, . . . ,d; λ ∈ C, by the relation

R(λ,µ)T1(λ)T2(µ) = T2(µ)T1(λ)R(λ,µ)

Here

T(λ) =







T1
1 (λ) . . . T1

d (λ)

...
...

Td
1 (λ) . . . Td

d (λ)







T1(λ) = T(λ)⊗ Id

T2(λ) = Id ⊗T(λ)

where Id is the d×d unit matrix. R(λ,µ) ∈ End(Cd ⊗C
d)

is a numerical d2×d2 matrix, the R-matrix, which fixes the
structure of the quadratic algebra TR in a similarly to the
tensor of structure constants in the Lie algebra case.
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R(λ,µ)T1(λ)T2(µ) = T2(µ)T1(λ)R(λ,µ)

Here
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1 (λ) . . . T1

d (λ)

...
...

Td
1 (λ) . . . Td

d (λ)







T1(λ) = T(λ)⊗ Id

T2(λ) = Id ⊗T(λ)

where Id is the d×d unit matrix. R(λ,µ) ∈ End(Cd ⊗C
d)

is a numerical d2×d2 matrix, the R-matrix, which fixes the
structure of the quadratic algebra TR in a similarly to the
tensor of structure constants in the Lie algebra case.

The algebra TR has a rich commutative subalge-
bra. With the definition

t(λ) = Tγ
γ (λ) = tr(T(λ))

we have the important result

[t(λ), t(µ)] = 0

It means that t(λ) is a generating function of a
commutative subalgebra of TR, e.g., if t(λ) =

I0 +λI1 +λ2I2 + . . . , then [I j , Ik] = 0.
For a representation of TR on the space of states
of some physical system t(λ) generates a set
of mutually commuting operators which by con-
struction are embedded into the quadratic alge-
bra TR. On the one hand we may meet the re-
quirements of Liouville’s theorem in the classical
limit, on the other hand, the quadratic relations
of the algebra TR may provide means to simul-
taneously diagonalize the quantum integrals of
motion, generated by t(λ).
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Algebraic approach

The Yang-Baxter algebra TR is associative if the R-matrix
satisfies the Yang-Baxter equation

R12(λ,µ)R13(λ,ν)R23(µ,ν) = R23(µ,ν)R13(λ,ν)R12(λ,µ)

Under appropriate additional conditions this guarantees
the existence of an infinite family of representations con-
nected to local Hamiltonians, the ‘fundamental models’.
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The Yang-Baxter algebra TR is associative if the R-matrix
satisfies the Yang-Baxter equation

R12(λ,µ)R13(λ,ν)R23(µ,ν) = R23(µ,ν)R13(λ,ν)R12(λ,µ)

Under appropriate additional conditions this guarantees
the existence of an infinite family of representations con-
nected to local Hamiltonians, the ‘fundamental models’.

{eβ
α} gl(d) standard basis,

ej
β
α = I⊗( j−1)

d ⊗eβ
α ⊗ I⊗(L− j)

d

Then Rjk(λ,µ) = Rαγ
βδej

β
αek

δ
γ and

L j
α
β (λ,µ) = Rαγ

βδ(λ,µ)ej
δ
γ

defines the so-called L-matrix whose elements are opera-

tors in
(
End(Cd)

)
. The monodromy matrix

T(λ) = LL(λ,νL) . . .L1(λ,ν1)

generates a representation of the Yang-Baxter algebra.
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the existence of an infinite family of representations con-
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{eβ
α} gl(d) standard basis,

ej
β
α = I⊗( j−1)

d ⊗eβ
α ⊗ I⊗(L− j)

d

Then Rjk(λ,µ) = Rαγ
βδej

β
αek

δ
γ and

L j
α
β (λ,µ) = Rαγ

βδ(λ,µ)ej
δ
γ

defines the so-called L-matrix whose elements are opera-

tors in
(
End(Cd)

)
. The monodromy matrix

T(λ) = LL(λ,νL) . . .L1(λ,ν1)

generates a representation of the Yang-Baxter algebra.

If R(λ0,ν0) = P the transposition matrix,
then T(λ) defines a fundamental model: If
ν j = ν0, j = 1, . . . ,L, the function τ(λ) =

ln(Û−1t(λ)), where U is the shift operator, gen-
erates a sequence of local, mutually commuting
operators.

τ′(λ0) =
L

∑
j=1

∂λŘj−1, j (λ,ν0)
∣
∣
∣
λ=λ0

︸ ︷︷ ︸

=:H j−1, j

τ′′(λ0) =
L

∑
j=1

{

∂2
λŘj−1, j (λ,ν0)

∣
∣
∣
λ=λ0

−H2
j−1, j − [H j−1, j ,H j , j+1]

}

If R is of difference form Ř(λ,µ) = Ř(λ−µ) then

τ′′(λ0) = −∑L
j=1[H j−1, j ,H j , j+1]. This provides

an ‘integrability test’.
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)
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T(λ) = LL(λ,νL) . . .L1(λ,ν1)

generates a representation of the Yang-Baxter algebra.

If R(λ0,ν0) = P the transposition matrix,
then T(λ) defines a fundamental model: If
ν j = ν0, j = 1, . . . ,L, the function τ(λ) =

ln(Û−1t(λ)), where U is the shift operator, gen-
erates a sequence of local, mutually commuting
operators.

τ′(λ0) =
L

∑
j=1

∂λŘj−1, j (λ,ν0)
∣
∣
∣
λ=λ0

︸ ︷︷ ︸

=:H j−1, j

τ′′(λ0) =
L

∑
j=1

{

∂2
λŘj−1, j (λ,ν0)

∣
∣
∣
λ=λ0

−H2
j−1, j − [H j−1, j ,H j , j+1]

}

If R is of difference form Ř(λ,µ) = Ř(λ−µ) then

τ′′(λ0) = −∑L
j=1[H j−1, j ,H j , j+1]. This provides

an ‘integrability test’.

Hubbard model fails to pass this test! Either no
difference form or non-fundamental.
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Algebraic approach

Ř(λ,µ)=
1
ρ4

·




































ρ1

1 −ρ9

1 −ρ9

ρ3 −ρ6 ρ6 −ρ8

−ρ10 1

ρ4

−ρ6 ρ5 ρ7 −ρ6

1 ρ10

−ρ10 1

ρ6 ρ7 ρ5 ρ6

ρ4

1 ρ10

−ρ8 −ρ6 ρ6 ρ3

ρ9 1

ρ9 1

ρ1




































(Up to a similarity transformation) Shastry’s R-matrix (1986), not of difference form!
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Algebraic approach

Expressions for the Boltzmann weights

ρ1(λ,µ) = cos(λ)cos(µ)eh−l +sin(λ)sin(µ)el−h

ρ4(λ,µ) = cos(λ)cos(µ)el−h +sin(λ)sin(µ)eh−l

ρ3(λ,µ) =
cos(λ)cos(µ)eh−l −sin(λ)sin(µ)el−h

cos2(λ)−sin2(µ)

ρ5(λ,µ) =
cos(λ)cos(µ)el−h−sin(λ)sin(µ)eh−l

cos2(λ)−sin2(µ)

ρ6(λ,µ) =
sh(2(h− l))

2u(cos2(λ)−sin2(µ))

ρ7(λ,µ) = ρ4(λ,µ)−ρ5(λ,µ)

ρ8(λ,µ) = ρ1(λ,µ)−ρ3(λ,µ)

ρ9(λ,µ) = sin(λ)cos(µ)el−h−cos(λ)sin(µ)eh−l

ρ10(λ,µ) = sin(λ)cos(µ)eh−l −cos(λ)sin(µ)el−h

The parameters λ, µ, h and l are subject to the con-
straints

sh(2h)

sin(2λ)
=

sh(2l)
sin(2µ)

= u
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cos2(λ)−sin2(µ)

ρ5(λ,µ) =
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ρ7(λ,µ) = ρ4(λ,µ)−ρ5(λ,µ)

ρ8(λ,µ) = ρ1(λ,µ)−ρ3(λ,µ)

ρ9(λ,µ) = sin(λ)cos(µ)el−h−cos(λ)sin(µ)eh−l

ρ10(λ,µ) = sin(λ)cos(µ)eh−l −cos(λ)sin(µ)el−h

The parameters λ, µ, h and l are subject to the con-
straints

sh(2h)

sin(2λ)
=

sh(2l)
sin(2µ)

= u

Remarks

• Shastry’s R-matrix is not of difference form
and does not fit into the usual classification of
rational, trigonometric and elliptic R-matrices

• Accordingly no uniform parameterization is
known (setting µ= 0 we find that the
corresponding L-matrix lives on a Riemann
surface of genus 3)

• Shastry’s R-matrix can be constructed by
gluing together two free fermion R-matrices

Ř(λ)=








cos(λ)

1 xsin(λ)

x−1 sin(λ) 1

cos(λ)







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Algebraic approach

Shastry’s R-matrix is not a very convenient tool for
calculations. The algebraic Bethe ansatz for the cor-
responding vertex model (Martins and Ramos 97,
98) is partially conjectural. However, the algebraic
approach was useful for

• The construction of the quantum transfer
matrix approach to the thermodynamics of
the Hubbard model (Jüttner, Klümper, Suzuki
98)

• The construction of a boost operator (Links et
al. 2001)

• The algebraic construction of the eigenstates
on the infinite interval and the clarification of
the role of the Yangian (S. Murakami and FG
97, 98)

• The generalization to higher rank building
blocks (Maassarani 98, Peng and Yue 02)
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Yangian symmetry at n = 0

Since the Hubbard model describes electrons we
better use a graded version +−−+ of the Yang-
Baxter algebra,

Ř(λ,µ)
(
T (λ)⊗sT (µ)

)
=

(
T (µ)⊗sT (λ)

)
Ř(λ,µ)

where

T (λ) =








D1
1(λ) C1

1(λ) C1
2(λ) D1

2(λ)

B1
1(λ) A1

1(λ) A1
2(λ) B1

2(λ)

B2
1(λ) A2

1(λ) A2
2(λ) B2

2(λ)

D2
1(λ) C2

1(λ) C2
2(λ) D2

2(λ)








consists of four 2×2 blocks.
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Yangian symmetry at n = 0

Since the Hubbard model describes electrons we
better use a graded version +−−+ of the Yang-
Baxter algebra,

Ř(λ,µ)
(
T (λ)⊗sT (µ)

)
=

(
T (µ)⊗sT (λ)

)
Ř(λ,µ)

where

T (λ) =








D1
1(λ) C1

1(λ) C1
2(λ) D1

2(λ)

B1
1(λ) A1

1(λ) A1
2(λ) B1

2(λ)

B2
1(λ) A2

1(λ) A2
2(λ) B2

2(λ)

D2
1(λ) C2

1(λ) C2
2(λ) D2

2(λ)








consists of four 2×2 blocks.

Thermodynamic limit with respect to |0〉 possible on
the level of operators (à la Faddeev and Sklyanin 78)
This requires regularization of the mon-
odromy matrix. Let V(λ) = 〈0|Lm(λ)|0〉 and

V(2)(λ,µ) = 〈0|Lm(λ)⊗s Lm(µ)|0〉. Then V reg-

ularizes T and V(2) regularizes T ⊗ T . Since

V(2) 6= V ⊗V, the R-matrix is changed (simplified!).
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Yangian symmetry at n = 0
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

consists of four 2×2 blocks.

Thermodynamic limit with respect to |0〉 possible on
the level of operators (à la Faddeev and Sklyanin 78)
This requires regularization of the mon-
odromy matrix. Let V(λ) = 〈0|Lm(λ)|0〉 and

V(2)(λ,µ) = 〈0|Lm(λ)⊗s Lm(µ)|0〉. Then V reg-

ularizes T and V(2) regularizes T ⊗ T . Since

V(2) 6= V ⊗V, the R-matrix is changed (simplified!).

• The regularized monodromy matrix has the
‘integral representation’

T̃ (λ) = I4 +∑
m

(L̃m(λ)− I4)

+ ∑
m>n

(L̃m(λ)− I4)(L̃n(λ)− I4)+ . . .

where L̃ j (λ) = V(λ)− j−1L j (λ)V(λ) j
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
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
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consists of four 2×2 blocks.

Thermodynamic limit with respect to |0〉 possible on
the level of operators (à la Faddeev and Sklyanin 78)
This requires regularization of the mon-
odromy matrix. Let V(λ) = 〈0|Lm(λ)|0〉 and

V(2)(λ,µ) = 〈0|Lm(λ)⊗s Lm(µ)|0〉. Then V reg-

ularizes T and V(2) regularizes T ⊗ T . Since

V(2) 6= V ⊗V, the R-matrix is changed (simplified!).

• The regularized monodromy matrix has the
‘integral representation’

T̃ (λ) = I4 +∑
m

(L̃m(λ)− I4)

+ ∑
m>n

(L̃m(λ)− I4)(L̃n(λ)− I4)+ . . .

where L̃ j (λ) = V(λ)− j−1L j (λ)V(λ) j

• Submatrix A(λ) decouples

ř(λ,µ)
(
A(λ)⊗A(µ)

)
=

(
A(µ)⊗A(λ)

)
ř(λ,µ)
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Thermodynamic limit with respect to |0〉 possible on
the level of operators (à la Faddeev and Sklyanin 78)
This requires regularization of the mon-
odromy matrix. Let V(λ) = 〈0|Lm(λ)|0〉 and

V(2)(λ,µ) = 〈0|Lm(λ)⊗s Lm(µ)|0〉. Then V reg-

ularizes T and V(2) regularizes T ⊗ T . Since

V(2) 6= V ⊗V, the R-matrix is changed (simplified!).

• The regularized monodromy matrix has the
‘integral representation’

T̃ (λ) = I4 +∑
m

(L̃m(λ)− I4)

+ ∑
m>n

(L̃m(λ)− I4)(L̃n(λ)− I4)+ . . .

where L̃ j (λ) = V(λ)− j−1L j (λ)V(λ) j

• Submatrix A(λ) decouples

ř(λ,µ)
(
A(λ)⊗A(µ)

)
=

(
A(µ)⊗A(λ)

)
ř(λ,µ)

• Moreover the change of variables

v(λ) = −ictg(2λ)ch(2h)

transforms ř(λ,µ) into the rational R-matrix of
the XXX spin chain,

ř(λ,µ) =
2iu+(v(λ)−v(µ))P

2iu+v(λ)−v(µ)
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Yangian symmetry at n = 0

• It follows that the coefficients J0
n , Jα

n in the
asymptotic expansion

A(λ) = I2 +2iu
∞

∑
n=1

J0
n−1I2 +Jα

n−1σα

v(λ)n

generate a representation of the Yangian
Y(gl(2))
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Yangian symmetry at n = 0

• It follows that the coefficients J0
n , Jα

n in the
asymptotic expansion

A(λ) = I2 +2iu
∞

∑
n=1

J0
n−1I2 +Jα

n−1σα

v(λ)n

generate a representation of the Yangian
Y(gl(2))

• The centre of this algebra is obtained by
expanding the quantum determinant,

detq(A(λ)) = A1
1(λ)A2

2(λ̌)−A1
2(λ)A2

1(λ̌)

= 1+2iu
∞

∑
n=1

an−1

v(λ)n

where λ̌ is determined by the condition that

v(λ̌) = v(λ)−2iu.

The Hubbard Chain – A Paradigmatic Integrable Model Golm, 23/10/2001 [y2 – 19/22]



Yangian symmetry at n = 0

• It follows that the coefficients J0
n , Jα

n in the
asymptotic expansion

A(λ) = I2 +2iu
∞

∑
n=1

J0
n−1I2 +Jα

n−1σα

v(λ)n

generate a representation of the Yangian
Y(gl(2))

• The centre of this algebra is obtained by
expanding the quantum determinant,

detq(A(λ)) = A1
1(λ)A2

2(λ̌)−A1
2(λ)A2

1(λ̌)

= 1+2iu
∞

∑
n=1

an−1

v(λ)n

where λ̌ is determined by the condition that

v(λ̌) = v(λ)−2iu.

• The asymptotic expansions can be calculated
term by term
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• It follows that the coefficients J0
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1(λ)A2

2(λ̌)−A1
2(λ)A2

1(λ̌)

= 1+2iu
∞

∑
n=1

an−1

v(λ)n

where λ̌ is determined by the condition that

v(λ̌) = v(λ)−2iu.

• The asymptotic expansions can be calculated
term by term

• Explicit expressions for the zeroth and first
level Yangian generators,

Jα
0 = ∑

j
Sα

j ,

Jα
1 = − i

4 ∑
j

(
Sα

j j+1−Sα
j j−1

)
+2u ∑

j<k

εαβγSβ
j S

γ
k
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Yangian symmetry at n = 0

• It follows that the coefficients J0
n , Jα
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asymptotic expansion

A(λ) = I2 +2iu
∞

∑
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n−1I2 +Jα
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generate a representation of the Yangian
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∞

∑
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an−1

v(λ)n

where λ̌ is determined by the condition that

v(λ̌) = v(λ)−2iu.

• The asymptotic expansions can be calculated
term by term

• Explicit expressions for the zeroth and first
level Yangian generators,

Jα
0 = ∑

j
Sα

j ,

Jα
1 = − i

4 ∑
j

(
Sα

j j+1−Sα
j j−1

)
+2u ∑

j<k

εαβγSβ
j S

γ
k

• The 1
v(λ) -expansion of detq(A(λ))

a0 = 0, a1 = iH/2

where H is the Hubbard Hamiltonian
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Yangian symmetry at n = 0

• It follows that the coefficients J0
n , Jα

n in the
asymptotic expansion

A(λ) = I2 +2iu
∞

∑
n=1

J0
n−1I2 +Jα

n−1σα

v(λ)n

generate a representation of the Yangian
Y(gl(2))

• The centre of this algebra is obtained by
expanding the quantum determinant,

detq(A(λ)) = A1
1(λ)A2

2(λ̌)−A1
2(λ)A2

1(λ̌)

= 1+2iu
∞

∑
n=1

an−1

v(λ)n

where λ̌ is determined by the condition that

v(λ̌) = v(λ)−2iu.

• The asymptotic expansions can be calculated
term by term

• Explicit expressions for the zeroth and first
level Yangian generators,

Jα
0 = ∑

j
Sα

j ,

Jα
1 = − i

4 ∑
j

(
Sα

j j+1−Sα
j j−1

)
+2u ∑

j<k

εαβγSβ
j S

γ
k

• The 1
v(λ) -expansion of detq(A(λ))

a0 = 0, a1 = iH/2

where H is the Hubbard Hamiltonian

• Two pairs of normalized creation operators

Fa(λ)† = −ieh cos(λ)C1
a(λ)D1

1(λ)−1

Za(λ)† = (−1)3−aie−h cos(λ)

B3−a
2 (λ)D2

2(λ)−1

for a = 1,2, spin-up, spin-down
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Yangian symmetry at n = 0

• Annihilation operators Fa(λ), Za(λ) similar

• Commutation relations between the
normalized operators follow from the YBA.
For λ 6= µ (mod 2π)

Fa(λ)†Fb(µ)† = −Fc(µ)†Fd(λ)†řcd
ab(λ,µ)

Fa(λ)Fb(µ)† = −Fc(µ)†Fd(λ)řca
db(µ,λ)

Za(λ)†Zb(µ)† = −řab
cd(µ,λ)Zc(µ)†Zd(λ)†

Za(λ)Zb(µ)† = −řdb
ca(λ,µ)Zc(µ)†Zd(λ)

Fa(λ)†Zb(µ)† = −Zb(µ)†Fa(λ)†

Fa(λ)Zb(µ)† = −Zb(µ)†Fa(λ)

Fa(λ), Fa(λ)† and Za(λ), Za(λ)† are forming
(right and left) representations of the (graded)
Faddeev-Zamolodchikov algebra with two-
particle S-matrix ř(λ,µ). All operators are
odd. The algebra guarantees the factorization
of the N-particle S-matrix into products of two-
particle S-matrices.
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• Annihilation operators Fa(λ), Za(λ) similar
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normalized operators follow from the YBA.
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db(µ,λ)

Za(λ)†Zb(µ)† = −řab
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ca(λ,µ)Zc(µ)†Zd(λ)

Fa(λ)†Zb(µ)† = −Zb(µ)†Fa(λ)†

Fa(λ)Zb(µ)† = −Zb(µ)†Fa(λ)

Fa(λ), Fa(λ)† and Za(λ), Za(λ)† are forming
(right and left) representations of the (graded)
Faddeev-Zamolodchikov algebra with two-
particle S-matrix ř(λ,µ). All operators are
odd. The algebra guarantees the factorization
of the N-particle S-matrix into products of two-
particle S-matrices.

• Transformation under the action of the
Yangian

[Jα
0 ,Fa(λ)†] = 1

2Fb(λ)†σα
ba

[Jα
1 ,Fa(λ)†] = − 1

2 sink(λ)Fb(λ)†σα
ba

+uεαβγFb(λ)†σβ
baJ

γ
0

[Jα
0 ,Za(λ)†] = 1

2Zb(λ)†σα
ba

[Jα
1 ,Za(λ)†] = − 1

2 sinp(λ)Zb(λ)†σα
ba

−uεαβγZb(λ)†σβ
baJ

γ
0

It follows that n-particle states transform like
tensor products of evaluation representations
of the Yangian

The Hubbard Chain – A Paradigmatic Integrable Model Golm, 23/10/2001 [y3 – 20/22]



Yangian symmetry at n = 0

• Annihilation operators Fa(λ), Za(λ) similar

• Commutation relations between the
normalized operators follow from the YBA.
For λ 6= µ (mod 2π)

Fa(λ)†Fb(µ)† = −Fc(µ)†Fd(λ)†řcd
ab(λ,µ)

Fa(λ)Fb(µ)† = −Fc(µ)†Fd(λ)řca
db(µ,λ)

Za(λ)†Zb(µ)† = −řab
cd(µ,λ)Zc(µ)†Zd(λ)†

Za(λ)Zb(µ)† = −řdb
ca(λ,µ)Zc(µ)†Zd(λ)

Fa(λ)†Zb(µ)† = −Zb(µ)†Fa(λ)†

Fa(λ)Zb(µ)† = −Zb(µ)†Fa(λ)

Fa(λ), Fa(λ)† and Za(λ), Za(λ)† are forming
(right and left) representations of the (graded)
Faddeev-Zamolodchikov algebra with two-
particle S-matrix ř(λ,µ). All operators are
odd. The algebra guarantees the factorization
of the N-particle S-matrix into products of two-
particle S-matrices.

• Transformation under the action of the
Yangian

[Jα
0 ,Fa(λ)†] = 1

2Fb(λ)†σα
ba

[Jα
1 ,Fa(λ)†] = − 1

2 sink(λ)Fb(λ)†σα
ba

+uεαβγFb(λ)†σβ
baJ

γ
0

[Jα
0 ,Za(λ)†] = 1

2Zb(λ)†σα
ba

[Jα
1 ,Za(λ)†] = − 1

2 sinp(λ)Zb(λ)†σα
ba

−uεαβγZb(λ)†σβ
baJ

γ
0

It follows that n-particle states transform like
tensor products of evaluation representations
of the Yangian

• Construction of the creation and annihilation
operators of bound states also possible, yield
the bare S-matrix for the scattering of ‘strings’
of any length, strings are Yangian singlet
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Yangian symmetry at n = 0

Using the commutation relations for the elements of the monodromy matrix we obtain for our bound state
operators

F(2m)(λi)
†F(2n)(µj )

† =
ζ−η+(n+m)iu
ζ−η− (n+m)iu

ζ−η+ |n−m|iu
ζ−η−|n−m|iu

min{m,n}−1

∏
s=1

[
ζ−η+(n+m−2s)iu
ζ−η− (n+m−2s)iu

]2

F(2n)(µj )
†F(2m)(λi)

†

F(2m)(λi)
†Fa(µ)† =

ζ−sink(µ)+miu
ζ−sink(µ)−miu

Fa(µ)†F(2m)(λi)
† , a = 1,2

where ζ is the centre of the 2m-string and η the centre of the 2n-string. We interpret these relations as
Faddeev-Zamolodchikov algebra. Here particles without internal degrees of freedom are involved. The
bound-state bound-state S-matrix in is of the same form as for the scattering of bound states of magnons in
the XXX-chain (P. Kulish and F. Smirnov 1982, 85).
Yangian Singlet:

[Jα
0 ,F(2m)(λi)

†] = [Jα
1 ,F(2m)(λi)

†] = 0
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A summary and open questions

• Because of its important applications in
condensed matter physics the Hubbard
model is one of the best-studied integrable
models. It is a paradigm in condensed matter
physics, since it describes a generic deviation
from the one-particle picture, which explains
the ubiquitious occurence of
anti-ferromagnetism in nature and the
existence of Mott insulators.

• Arguably, it is also a paradigmatic integrable
system. It contains the Heisenberg chain and
the Gaudin model as limiting cases. It shows
most of the difficulties that possibly exist in
(Yang-Baxter) integrable systems (nested
Bethe ansatz, R-matrix not of difference form,
no simple Lie algebra symmetry).

• Those properties (relating to the spectrum)
which can be obtained from the Lieb-Wu
equations have been obtained.
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• Because of its important applications in
condensed matter physics the Hubbard
model is one of the best-studied integrable
models. It is a paradigm in condensed matter
physics, since it describes a generic deviation
from the one-particle picture, which explains
the ubiquitious occurence of
anti-ferromagnetism in nature and the
existence of Mott insulators.

• Arguably, it is also a paradigmatic integrable
system. It contains the Heisenberg chain and
the Gaudin model as limiting cases. It shows
most of the difficulties that possibly exist in
(Yang-Baxter) integrable systems (nested
Bethe ansatz, R-matrix not of difference form,
no simple Lie algebra symmetry).

• Those properties (relating to the spectrum)
which can be obtained from the Lieb-Wu
equations have been obtained.

Some open questions

• Simpler and more complete algebraic Bethe
ansatz

• Better understanding of the meaning and
structure of Shastry’s R-matrix,
generalization for fixed dimension (Alcaraz
and Bariev 1999)?

• Role of the Yangian symmetry at finite den-
sity?
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