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Introduction

The AdS/CFT correspondence:

The large N limit of N = 4 Yang-Mills is dual to type IIB
string theory on AdS5 × S5

⇓
Spectra of both theories should agree

→ Difficult to test, because the correspondence is a
strong/weak coupling duality: we can not use per-
turbation theory on both sides

String energies expanded at large λ

E(λ) = λ1/4E0 + λ−1/4E1 + λ−3/4E2 + . . .

Scaling dimensions of gauge operators at small λ

∆(λ) = D0 + λD1 + λ2D2 + . . .

E(λ) ↔ ∆(λ)

→ Integrability illuminates both sides of the
correspondence

→ Sstring should interpolate to Sgauge
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Integrability in the AdS/CFT correspondence

A complete formulation of the AdS/CFT correspondence

⇓
Precise identification of string states
with local gauge invariant operators

E
√

α′ = ∆

→ There is strong evidence in the supergravity regime,

R2 � α′ (R4 = 4πg2
Y MNα′2)

Difficulties:
◦ String quantization in AdS5 × S5

◦ Obtaining the whole spectrum
of N = 4 is truly involved

An insight: There is a maximally supersymmetric
plane-wave background for the IIB string [Blau et al]

⇓
Allows quantization in the light-cone gauge [Metsaev,Tseytlin]

Plane-wave geometry ⇒ Penrose limit
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The Penrose limit shows up on the
field theory side [Berenstein, Maldacena, Nastase]

⇓
Operators carrying large charges, tr (XJ

1 . . .), J � 1

→ Dual description in terms of small closed strings
whose center moves with angular momentum J along
a circle in S5 [Gubser, Klebanov, Polyakov]

Generalization:

Operators of the form
tr (XJ1

1 XJ2

2 XJ3

3 ) are dual to
strings with three angular
momenta Ji [Frolov, Tseytlin]

⇒ The energy of these semiclassical strings admits an
analytic expansion in λ/J2

E = J
[
1 + c1

(Ji

J

) λ

J2
+ . . .

]

⇓
Suggests a comparison with the anomalous dimensions

of large Yang-Mills operators:

• Bare dimension ∆0 → J

• One-loop anomalous dimension → λ
J
c1

(
Ji

J

)
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Verifying AdS/CFT in large spin sectors

⇓
Computation of the anomalous dimensions

of large operators

(Difficult problem due to operator mixing)

Insightful solution:

→ The one-loop planar dilatation operator of N = 4
Yang-Mills leads to an integrable spin chain (SO(6)
in the scalar sector [Minahan,Zarembo] or PSU(2, 2|4) in
the complete theory [Beisert,Staudacher])

The Bethe ansatz

→ The rapidities uj parameterizing the momenta of the
magnons satisfy a set of Bethe equations

eipjJ ≡
(

uj + i/2

uj − i/2

)J

=
M∏

k 
=j

uj − uk + i

uj − uk − i
≡

M∏
k 
=j

S(uj, uk)

Thermodynamic limit: integral equations

→ Assuming integrability an asymptotic all loop Bethe
ansatz has been proposed [Beisert,Dippel,Staudacher]
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The quantum string Bethe ansatz

String non-linear sigma model on the coset

PSU(2, 2|4)

SO(4, 1) × SO(5)

Integrable

[Mandal,Suryanarayana,Wadia;Bena,Polchinski,Roiban]

Admits a Lax representation: there is a family of
connections A(z) flat for all values of the spectral

parameter z

dA(z) − A(z) ∧ A(z) = 0

(Flatness of A(z) is equivalent to flatness of J = −g−1dg
and conservation of the Noether current K)

⇓
Classical solutions of the sigma model are parametrized

by an integral equation
[Kazakov,Marshakov,Minahan,Zarembo]

− x

x2 − λ
16π2J2

∆

J
+ 2πk = 2 −

∫
C
dx′ ρ(x′)

x − x′ x ∈ C

Reminds of the thermodynamic Bethe equations for
the spin chain ...

In fact, it leads to the spin chain equations
when λ/J2 → 0
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The previous string integral equations are
classical/thermodynamic equations

⇓
Assuming integrability survives at the quantum level,

a discretization would provide
a quantum string Bethe ansatz

→ There is an even greater similarity between the classi-
cal string Bethe ansatz and the long range Bethe
ansatz for the gauge theory of [Beisert,Dippel,Staudacher]

⇓
After some convenient map

gauge: 2 −
∫
C
dx′ ρg(x′)

x − x′ =
1

x

1

1 − λ
2J2x2

+
λ

J2

1

x

∫
dx′ ρg(x′)

1 − λ
J2xx′

+ 2πk

string: 2 −
∫
C
dx′ ρs(x′)

x − x′ =
1

x

1

1 − λ
2J2x2

+
λ

J2

1

x

∫
dx′ ρs(x′)

1 − λ
J2x2

+ 2πk
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The S-matrices of the (discrete) quantum string and the
long range gauge Bethe ansätze differ simply by a phase

[Arutyunov,Frolov,Staudacher]

Sst(pj, pk) = ei θ(pj,pk)Sg(pj, pk)

θ(pj, pk) = 2
∞∑

r=2

cr(λ)

(
λ

16π2

)r(
qr(pj)qr+1(pk) − qr+1(pj)qr(pk)

)

(qr(p) are the conserved charges of the integrable
system)

→ To recover the integrable structure of the classical
string the coefficients must satisfy cr(λ) → 1 as λ → ∞

→ This phase should interpolate from the string to
the gauge theory (strong weak/coupling inter-
polation)

⇓
Explicit form of cr(λ)

To constrain the string Bethe ansatz and find the
structure of the dressing phase we can compare to

one-loop corrections to semiclassical strings
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One-loop corrections to semiclassical strings

One-loop corrections are obtained from the spectrum
of quadratic fluctuations around a classical solution

[Frolov,Tseytlin;Frolov,Park,Tseytlin]

E1 =
∞∑

n=−∞
e(n)

→ e(n) is a sum over bosonic and fermionic
frequencies with mode number n

In the simpler case, SU(2) with k = 2m,

e(n) =

√
1 +

(n +
√

n2 − 4m2)2

4(J 2 + m2)
+

√
1 +

n2 − 2m2

J 2 + m2

+ 2

√
1 +

n2

J 2 + m2
− 4

√
1 +

n2 − m2

J 2 + m2

⇓
Bosonic fluctuations along S3 + remaining S5

+ AdS5 directions + fermionic fluctuations

(→ Analogous, but much more involved expression,
in the SL(2) sector)
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From a careful analysis of the sum
[Schäfer-Nameki,Zamaklar,Zarembo]

→ Agreement up to order λ3/J6 ≡ 1/J 6

→ Disagreement if cr(λ) = 1, because of non-analytic
terms in λ

Origin of the non-analytic terms

⇓

Difficulties in the evaluation of
E1 =

∑∞
n=−∞ e(n)

→ Expanding e(n) for fixed n at large J : divergences at
high n [Schäfer-Nameki,Zamaklar,Zarembo]

⇒ Cannot reach the high energy spectrum

→ Expanding e(n) at fixed x = n/J : regular at large x,
but divergences at x = 0
⇒ Cannot reach the lowest modes of the spectrum
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Solution: Combine both expansions
[Beisert,Tseytlin; Schäfer-Nameki]

e(n) = e1(n) + e2(n/J )

e1(n) and e2(n/J ) are the regular terms
for fixed n and n/J

(e1(n) is zeta regularized, and e2(n) substracting
negative powers of x)

→ ∑
e1 contains only (1/J )2n powers

→ ∑
e2 leads to (1/J )2n+1 powers

For instance, for SL(2) circular strings

∫ ∞

−∞
J dx e

SL(2)
2 (x) = −(k − m)3 m3

3J 5

(
1 − 3k2 − 8km

2J 2
+ . . .

)
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Corrections to the string ansatz

In order to cure the disagreement, and fit the first non-
analytic term a quantum correction to the string Bethe
ansatz was suggested [Beisert,Tseytlin]

θ(pj, pk) = 2
∞∑

r=2

cr(λ)

(
λ

16π2

)r(
qr(pj)qr+1(pk) − qr+1(pj)qr(pk)

)

with c2(λ) = 1 − 16

3

1√
λ

Then the energy shift for the one-loop string
correction

δEone-loop = −(k − m)3 m3

3J 5
+ O(1/J 7)

agrees with the quantum string Bethe ansatz
computation!!

The negative correction term opens the possibility that
cr(λ) could interpolate between the strong coupling value

c2(∞) = 1

and zero at weak coupling

⇓
Suggests a solution to the three-loop discrepancy!

But this is simply the first coefficient
in the dressing phase ...
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Let us now recall the explicit expansion of the first
quantum correction to the rotating string ...

→ In the SU(2) sector with k = 2m the energy shift for
the one-loop correction

δESU (2) = − m6

3J 5
+

m8

3J 7
− 49 m10

120J 9
+

2 m12

5J 11
− 5749 m14

13440J 13
+ . . .

→ In the SL(2) case for general k and m

δESL(2) =−(k − m)3 m3

3J 5

[
1 − P2

2J 2
+

P4

40J 4
− P6

80J 6
+

P8

4480J 8
+. . .

]

with Pn homegeneous polynomials

P2 = 3k2 − 8km ,

P4 = 75k4 − 455k3m + 679k2m2 − 153km3 + 29m4 ,

P6 = 175k6 − 1755k5m + 5635k4m2 − 6843k3m3

+ 2823k2m4 − 562km5 + 2m6

P8 = 11025k8 − 159565k7m + 820785k6m2

− 1923509k5m3 + 2159033k4m4 − 1141813k3m5

+ 303665k2m6 − 31753km7 + 2557m8

... and compare to the quantum string Bethe
ansatz

(At order 1/J r+s: polynomial with r + s − 4 coefficients,
enough to fix the (r + s − 3)/2 terms in the phase)
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Careful comparison with the one-loop string correction
requires a slightly more general ansatz [Beisert,Klose]

θ(pj, pk) = 2
∞∑

r=2

∞∑
s=r+1

cr,s(λ)

(
λ

16π2

)r+s−1

2
(
qr(pj)qs(pk) − qs(pj)qr(pk)

)

It reminds to solve the (SL(2)) corrected Bethe equation

2 −
∫
C
dy

ρ(y)

x − y
= 2π ki − x

x2 − (1/4πJ )2

[
1 −

(
1

4πJ
)2

∫
C
dy

2ρ(y)

yx

− 2ar,s
1√
λ

(
1

4πJ
)r+s−1

∫
C
dy ρ(y)

(
1

xr−1ys
− 1

xs−1yr

)]

The coefficients [RH,López]

cr,s = δr+1,s +
1√
λ

ar,s

ar,s = −8
(r − 1)(s − 1)

(r + s − 2)(s − r)

fit the quantum string result up to the order we
checked: 1/J 101 in the SU(2) sector and 1/J 13 in the

SL(2) sector!!

→ The coefficients are universal: valid in all sectors

(Remain valid in the SU(3) sector [Freyhult,Kristjansen])

First quantum correction: first step towards the
reconstruction of the complete S-matrix
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Constraints on the dressing factor

• The structure of the complete S-matrix is [Beisert]

S = S0(p1, p2).
[
ŜSU(2|2) ⊗ ŜSU(2|2)

]
◦ The term in the bracket is determined by the sym-

metries: Yang-Baxter

◦ The coefficient is the dressing factor: constrained
by unitarity and crossing (→ dynamics) [Janik]

θ(x1, x2) + θ(1/x1, x2) = −2i log h(x1, x2) ,

with

h(x1, x2) =
x−

2

x+
2

x−
1 − x+

2

x+
1 − x+

2

1 − 1/x−
1 x−

2

1 − 1/x+
1 x−

2

→ h(x1, x2) contains information on the dynamics of Sgauge

→ θ(x1, x2) contains information on the quantum struc-
ture of the string

An expansion of both sides has been shown to agree,
using the explicit form of the one-loop correction in

θ(xj, xk) [Arutyunov,Frolov]

⇓
The coefficients cr,s(λ) are a solution of the crossing

equations
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Conclusions

• Testing AdS/CFT in large spin sectors ⇒ Integrability
in the planar limit of N = 4 Yang-Mills

◦ Precision tests of the correspondence

• Quantum corrections to classical strings constrain the
string Bethe ansatz

◦ Simple form of the first correction

◦ An explicit solution to the crossing equation has re-
cently been found [Beisert]

◦ A proof of the the AdS/CFT correspondence requires
identification of spectra, together with interpolation as
the coupling evolves

⇓
The dressing factor should interpolate from the string
to the gauge theory, and strong to weak coupling

Sst(pj, pk) = eiθ(pj,pk)Sg(pj, pk)

◦ Algebraic origin of the structure of the dressing phase
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