A. Mikhailov

Introduction

Def. of Ω.

PCM and NLSM Definitions Symplectic structure

Non-standard symplectic structures of the NLSM

NLSM and generalized sine-Gordon String on S^2 and SG $\theta_{\rm str}$: straightforward derivation

Better derivation of θ_{str}

vector mKdV

Geometry θ_0

Poisson brackets in AdS/CFT

Andrei Mikhailov

California Institute of Technology

July 2006 / Potsdam

▲□▶▲□▶▲□▶▲□▶ □ のQ@

A. Mikhailov

Introduction

Def. of Ω

PCM and NLSM Definitions Symplectic structur

Non-standard symplectic structures of the NLSM

NLSM and generalized sine-Gordon String on S² and SG θ_{sb} : straightforward derivation Better derivation of θ_{str} Poisson brackets of

Geometry of θ_0

Poisson brackets are very important in classical mechanics, in particular because they are the classical analogue of the quantum mechanical commutators.

Integrable systems usually have many Poisson brackets which satisfy some compatibility conditions. Actually, it is enough to have two "compatible" Poisson brackets, and then it is possible to generate an infinite family of them.

In my talk I will discuss this so-called "bihamiltonian structure" for the classical string on a sphere (the nonlinear sigma-model).

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ のQ@

A. Mikhailov

Introduction

Def. of Ω.

PCM and NLSM Definitions Symplectic structure

Non-standard symplectic structures of the NLSM

NLSM and generalized sine-Gordon String on S^2 and SG θ_{str} : straightforward derivation Better derivation of θ_{str} Poisson brackets of

. . .

. . .

Geometry of θ_0

The talk is based on my paper: A.M., hep-th/0511069 and some work in progress.

There was a substantial earlier work, for example: A. Doliwa, P.M. Santini, Phys. Lett. **A185** (1994) 373-384 J.A. Sanders, J.P. Wang, math.AP/0301212 G. Marí Beffa, ... S.C. Anco, nlin.SI/0512051,0512046

I. Bakas, Q-Han Park, H.-J. Shin, hep-th/9512030

I will use some ideas from these papers in my talk. (Not to mention the old classical papers of Pohlmeyer, Eichenherr, Rehren, Neveu, Papanicolaou.)

A. Mikhailov

Introduction

Def. of Ω.

PCM and NLSM Definitions Symplectic structu

Non-standard symplectic structures of the NLSM

NLSM and generalized sine-Gordon String on S^2 and SG θ_{str} : straightforward derivation Better derivation of θ_{str}

Poisson brackets of vector mKdV

Geometry of θ_0

I will first review the general definition of the symplectic structure, and then describe the canonical Poisson brackets for the nonlinear sigma-model (NLSM).

I will then discuss the "hidden" relativistic symmetry of the NLSM equations and how it acts on the canonical symplectic structure. For this I will need to introduce the "generalized sine-Gordon model". The relativistic symmetry leads to the existence of the non-standard symplectic structures. I will discuss the relativistically invariant non-standard symplectic structure and its geometrical meaning from the point of view of the string worldsheet.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

A. Mikhailov

Introduction

Def. of Ω .

PCM and NLSM Definitions Symplectic structure

Non-standard symplectic structures of the NLSM

NLSM and generalized sine-Gordon String on S^2 and SG derivationBetter derivation of θ_{str} Poisson brackets of vector refut

Geometry of θ_0

Suppose that we have a classical field theory with the action

$${m S}=\int {m d} au^+{m d} au^-{\cal L}[\phi]$$

We usually compute the action over infinite space-time, but let us suppose that we decided to compute the action of a given classical solution ϕ_{cl} in a finite region of τ^+, τ^- .

How does the result of this computation depend on the classical solution ϕ_{cl} ? Suppose that we change the classical solution by a small amount $\delta\phi_{cl}$. We will get: $\delta S = \int_C a$ where *a* is some 1-form on the worldsheet. Since *a* is linear in $\delta\phi_{cl}$, we can also say that *a* is a 1-form on the phase space (the space of classical solutions). We will say that this is a form of the type $(d\tau)(\delta\phi)$.

A. Mikhailov

Introduction

Def. of Ω .

PCM and NLSM Definitions Symplectic structur

Non-standard symplectic structures of the NLSM

NLSM and generalized sine-Gordon String on S^2 and SG θ_{str} : straightforward derivation Better derivation of

Poisson brackets o vector mKdV

Geometry of θ_0

Let us consider $\omega = \delta a$. This is a form of the type $d\tau (\delta \phi)^2$. We will assume that ω is defined unambiguously. In principle we could add to *a* some *a'* which is closed as a 1-form on the worldsheet. But for a large class of theories if *a'* is $d\tau \delta \phi$ -type and *d*-closed then it is δ of some *d*-closed for of the type $(d\tau)$ (a density of the local conserved charge).

Assuming that there are no *d*-closed forms *a'* of the type $(d\tau)(\delta\phi)$, other than δ of something, we have $\omega = \delta a$ an unambiguously defined form of the type $(d\tau)(\delta\phi)^2$. Notice that ω is *d*-closed.

(日) (日) (日) (日) (日) (日) (日)

A. Mikhailov

Introduction

Def. of Ω .

PCM and NLSM Definitions Symplectic structure

Non-standard symplectic structures of the NLSM

NLSM and generalized sine-Gordon String on S^2 and SG θ_{str} : straightforward derivation Better derivation of

- sr Poisson brackets of vector mKdV

Geometry of θ_0

Now consider the theory either on a cylinder (periodic boundary conditions on $\tau^+ - \tau^-$) or some other appropriate boundary condition. The symplectic form is by definition:

 $\Omega = \oint_{C} \omega$

This is a closed 2-form on the phase space.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ のQ@

A. Mikhailov

Introduction

Def. of Ω .

PCM and NLSM Definitions Symplectic structure

Non-standard symplectic structures of the NLSM

NLSM and generalized sine-Gordon String on S^2 and SG θ_{str} : straightforward derivation Better derivation of

Poisson brackets of vector mKdV

Geometry of θ_0

It is also sometimes useful to consider the "symplectic potential" which is defined as:

 $\alpha = \oint_{\mathcal{C}} \mathbf{a}$

such that

 $\delta \alpha = \Omega$

(But we have to remember that α depends on the choice of the contour *C*.)

▲□▶▲□▶▲□▶▲□▶ □ のQ@

A. Mikhailov

Introduction

Def. of Ω.

PCM and NLSM

Definitions Symplectic structur

Non-standard symplectic structures of the NLSM

NLSM and generalized sine-Gordon String on S^2 and S θ_{str} : straightforwa derivation Better derivation o θ_{str}

Poisson brackets vector mKdV

Geometry of θ_0

Principal chiral model (PCM) and nonlinear σ -model (NLSM)

These models are both defined by the action of the type:

$$S_{str} = \int d au^+ d au^- \mathcal{U}(\partial_+ g g^{-1}, \partial_- g g^{-1})$$

where g is a group element belonging to some group G, and \mathcal{U} is some potential. For the PCM we have

$$\mathcal{U}(\partial_+ gg^{-1}, \partial_- gg^{-1}) = -\mathrm{tr}(\partial_+ gg^{-1}\partial_- gg^{-1})$$

For the NLSM we take $\mathbf{g} = Lie(G)$, $\mathbf{g} = \mathbf{g}_{\bar{0}} \oplus \mathbf{g}_{\bar{1}}$,

$$\mathcal{U}(\partial_+ gg^{-1}, \partial_- gg^{-1}) = -\mathrm{tr}\left((\partial_+ gg^{-1})_{\bar{1}}(\partial_- gg^{-1})_{\bar{1}}\right)$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Poisson We will consider $\mathbf{g} = so(N+1)$ and $\mathbf{g}_{\bar{0}} = so(N)$. In this brackets in AdS/CFT case we have: A. Mikhailov ${\bm g}_{\bar 0}: \begin{tabular}{ccccc} 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & * & * & * & * & * \\ 0 & * & * & * & * & * \\ 0 & * & * & * & * & * \\ 0 & * & * & * & * & * \\ 0 & * & * & * & * & * \\ \end{tabular}$ Definitions and $\mathbf{g}_{\bar{1}}: \begin{bmatrix} 0 & * & * & * & * & * \\ * & 0 & 0 & 0 & 0 & 0 \\ * & 0 & 0 & 0 & 0 & 0 \\ * & 0 & 0 & 0 & 0 & 0 \\ * & 0 & 0 & 0 & 0 & 0 \\ * & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$ θ_{rtr} : straightforward vector mKdV

This nonlinear sigma-model describes the target space $SO(N + 1)/SO(N) = S^{N}$.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

A. Mikhailov

Introductior Def. of Ω.

PCM and NLSM

Definitions Symplectic structur

Non-standard symplectic structures of the NLSM

NLSM and generalized sine-Gordon String on S^2 and SG θ_{str} : straightforward derivation Better derivation of ρ

Poisson brackets o vector mKdV

Geometry of θ_0

We introduce the notation

$$J_{\pm} = -\partial_{\pm}gg^{-1}$$

So, the action is
$$\int d\tau^+ d\tau^- \mathcal{U}(J_+, J_-)$$
.

For the NLSM we will use the notations $J_{\bar{0}}$ and $J_{\bar{1}}$:

$$J = J_{\overline{0}} + J_{\overline{1}}, \quad J_{\overline{0}} \in \mathbf{g}_{\overline{0}}, \quad J_{\overline{1}} \in \mathbf{g}_{\overline{1}}$$

Let us consider the infinitesimal left shift of g:

$$\delta_{\xi} g(\tau^+, \tau^-) = -\xi(\tau^+, \tau^-) g(\tau^+, \tau^-)$$

In terms of *J*:

 $\delta_{\xi}J = D\xi = d\xi + [J,\xi]$

・ロト・日本・日本・日本・日本・日本

A. Mikhailov

Introductior Def. of Ω.

PCM and NLSM

Definitions Symplectic structur

Non-standard symplectic structures of the NLSM

NLSM and generalized sine-Gordon String on S² and SG θ_{str} : straightforward derivation Better derivation of θ

Poisson brackets o vector mKdV

Geometry of θ_0

We introduce the notation

$$J_{\pm} = -\partial_{\pm}gg^{-1}$$

So, the action is
$$\int d\tau^+ d\tau^- \mathcal{U}(J_+, J_-)$$
.

For the NLSM we will use the notations $J_{\bar{0}}$ and $J_{\bar{1}}$:

$$J = J_{\overline{0}} + J_{\overline{1}}, \quad J_{\overline{0}} \in \mathbf{g}_{\overline{0}}, \quad J_{\overline{1}} \in \mathbf{g}_{\overline{1}}$$

Let us consider the infinitesimal left shift of *g*:

$$\delta_{\xi} \boldsymbol{g}(\tau^+,\tau^-) = -\xi(\tau^+,\tau^-) \boldsymbol{g}(\tau^+,\tau^-)$$

In terms of *J*:

$$\delta_{\xi}J = D\xi = d\xi + [J,\xi]$$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

A. Mikhailov

Virasoro constraint

Introduction

Def. of Ω .

PCM and NLSM

Definitions

Symplectic structure

Non-standard symplectic structures of the NLSM

NLSM and generalized sine-Gordon String on S^2 and SG θ_{str} : straightforward decinetion

Better derivation of θ_{str}

Poisson brackets of vector mKdV

Geometry of θ_0

In string theory we use the NLSM with the additional constraint:

$$tr(J_{\bar{1}+})^2 = tr(J_{\bar{1}-})^2 = -1$$
 (1)

▲□▶▲□▶▲□▶▲□▶ □ のQ@

This is called Virasoro constraint

A. Mikhailov

Introduction Def. of Ω .

PCM and NLSM Definitions Symplectic structure

Non-standard symplectic structures of the NLSM

NLSM and generalized sine-Gordon String on S² and SG θ_{str} : straightforward derivation Better derivation of θ_{str} Poisson brackets of

Geometry o θ_0

Symplectic structure of PCM

For PCM the symplectic potential is:

$$lpha_{\it PCM}(\delta_{\xi}) = \oint {\sf tr} \; \xi \; * J$$

where $*J = *(J_+d\tau^+ + J_-d\tau^-) = J_+d\tau^+ - J_-d\tau^-$. Calculation of $\delta \alpha$ gives:

$$\Omega(\delta_{\xi}, \delta_{\eta}) = \int d\tau^{+} \operatorname{tr} \left(2\xi \frac{\partial}{\partial \tau^{+}} \eta + \xi[J_{+}, \eta] \right) - \int d\tau^{-} \operatorname{tr} \left(2\xi \frac{\partial}{\partial \tau^{-}} \eta + \xi[J_{-}, \eta] \right)$$

Hint: use the formula $\delta \alpha(\mathbf{v}_1, \mathbf{v}_2) = \mathbf{v}_1 \cdot \alpha(\mathbf{v}_2) - \mathbf{v}_2 \alpha(\mathbf{v}_1) - \alpha([\mathbf{v}_1, \mathbf{v}_2])$ and the fact that $[\delta_{\xi}, \delta_{\eta}] = \delta_{[\xi, \eta]}$.

A. Mikhailov

Introduction Def. of Ω .

PCM and NLSM Definitions Symplectic structure

Non-standard symplectic structures of the NLSM

NLSM and generalized sine-Gordon String on S^2 and SG θ_{st} : straightforward derivation Better derivation of θ

Poisson brackets of vector mKdV

Geometry of θ_0

Symplectic structure of NLSM

For the NLSM the symplectic potential is:

$$\alpha_{NLSM}(\delta_{\xi}) = \oint \operatorname{tr} \xi_{\bar{1}} * J_{\bar{1}}$$
(2)

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ のQ@

The symplectic form Ω evaluated on the vectors δ_{ξ} and δ_{η} defined by $\delta_{\xi}J = d\xi + [J, \xi]$ and $\delta_{\eta}J = d\eta + [J, \eta]$ is:

$$\Omega(\delta_{\xi},\delta_{\eta}) = \int d\tau^{+} \operatorname{tr}(\xi_{\bar{1}} D_{\bar{0}+} \eta_{\bar{1}}) - \int d\tau^{-} \operatorname{tr}(\xi_{\bar{1}} D_{\bar{0}-} \eta_{\bar{1}}) \quad (3)$$

where

$$D_{ar{0}} = d + \operatorname{ad}_{J_{ar{0}}}$$

When $\xi \in \mathbf{g}_{\bar{\mathbf{0}}}$, δ_{ξ} is a gauge symmetry; it is in the kernel of Ω . (Because Ω does not contain $\xi_{\bar{\mathbf{0}}}$.)

A. Mikhailov

Introduction Def. of Ω. PCM and

NLSM Definitions Symplectic structur

Non-standarc symplectic structures of the NLSM

NLSM and generalized sine-Gordon

String on S² and SG θ_{str} : straightforward derivation

Better derivation of θ_{str} Poisson brackets of

vector mKdV

Geometry of θ_0

In our <u>definition</u> of the NLSM we used a group-valued field $g \in SO(N + 1)$. The current *J* was defined as $J = -dgg^{-1}$. In fact NLSM describes the minimal embeddings of the worldsheet to S^N , and $g(\tau^+, \tau^-)$ has a simple geometrical meaning:

> It is the orthogonal matrix which rotates some fixed $\mathbf{x}_0 \in S^N$ to $\mathbf{x}(\tau^+, \tau^-)$. We have $\mathbf{x} = g^{-1}\mathbf{x}_0$. Notice that g is defined up to $g \simeq g_0 g$ where $g_0 \in SO(N)$. This corresponds to the gauge transformation of J, $\delta_{\xi}J = d\xi + [J, \xi]$ for $\xi \in \mathbf{g}_{\bar{0}}$.

And the right shift $g \mapsto gC$, $C \in SO(N+1)$, C = const corresponds tothe global rotations of S^N ; notice that these global rotations *do not change J.*

A. Mikhailov

Introduction

Def. of Ω.

PCM and NLSM Definitions Symplectic structur

Non-standard symplectic structures of the NLSM

NLSM and generalized sine-Gordon

String on S^2 and SG θ_{str} : straightforward derivation Better derivation of θ_{str} Poisson brackets of vector mKdV

Geometry of θ_0

NLSM symplectic form in plain English.

The geometrical "translation" of Eq. (3) is:

$$\Omega = \int d\tau^{+}(\delta \mathbf{x}, D_{\bar{0}+} \delta \mathbf{x}) - \int d\tau^{-}(\delta \mathbf{x}, D_{\bar{0}-} \delta \mathbf{x})$$
(4)

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Here we should understand $D_{\bar{0}}$ as the standard (Levi-Civita) connection in the tangent space to S^N .

This is the canonical symplectic form following from the action $\int d\tau^+ d\tau^- (\partial_+ \mathbf{x}, \partial_- \mathbf{x})$.

A. Mikhailov

Introduction Def. of Ω. PCM and NLSM

Definitions Symplectic structu

Non-standard symplectic structures of the NLSM

NLSM and generalized sine-Gordon

String on S^2 and S θ_{str} : straightforward derivation

Better derivation

Poisson brackets

Geometry of θ_0

Generalized sine-Gordon

Consider the space of solutions of the differential equations

$$\partial_{+}J_{\bar{1}-} + [J_{\bar{0}+}, J_{\bar{1}-}] = 0$$
 (5)

$$\partial_{-}J_{\bar{1}+} + [J_{\bar{0}-}, J_{\bar{1}+}] = 0$$
 (6)

$$\partial_{+}J_{\bar{0}-} - \partial_{-}J_{\bar{0}+} + [J_{\bar{0}+}, J_{\bar{0}-}] + [J_{\bar{1}+}, J_{\bar{1}-}] = 0$$
 (7)

with the gauge symmetry

$$\delta \boldsymbol{J} = \boldsymbol{d}\xi_0 + [\boldsymbol{J}, \xi_0], \quad \xi_0 \in \boldsymbol{g}_{\bar{0}}$$
(8)

and the constraint

$$\operatorname{tr}(J_{\bar{1}+})^2 = \operatorname{tr}(J_{\bar{1}-})^2 = -1$$
 (9)

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ のQ@

Definition. The system of equations (5),(6) and (7) with the gauge symmetry (8) and the constraint (9) is called the generalized sine-Gordon (GSG).

A. Mikhailov

Introduction Def. of Ω. PCM and

NLSM Definitions Symplectic structu

Non-standard symplectic structures of the NLSM

NLSM and generalized sine-Gordon

 θ_{str} : straightforwar derivation

 θ_{str} Poisson brackets of

Geometry of θ_0

In some sense, the generalized sine-Gordon is equivalent to the NLSM. One only has to add g satisfying (d + J)g = 0But this g is almost defined in terms of J, the only ambiguity comes from the integration constants. (Which correspond to $g \mapsto gC$, C = const, it i.e. the global rotations of S^N .)

In terms of J the symplectic structure Eq. (3) is nonlocal:

$$\Omega = \int d\tau^{+} \operatorname{tr} \left((D_{+}^{-1} \delta J_{+})_{\overline{1}} D_{\overline{0}+} (D_{+}^{-1} \delta J_{+})_{\overline{1}} \right) - (+ \leftrightarrow -)$$

But if we add g satisfying (d + J)g = 0 we get the local formula because

$$D_+^{-1}\delta J_+ = \delta g g^{-1}$$

$$\Omega = \int d\tau^{+} \operatorname{tr} \left((\delta g g^{-1})_{\bar{1}} D_{\bar{0}+} (\delta g g^{-1})_{\bar{1}} \right) - (+ \leftrightarrow -)$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

A. Mikhailov

Introduction Def. of Ω. PCM and NLSM

Non-standard symplectic structures of the NLSM

NLSM and generalized sine-Gordon

String on S^L and SG θ_{str} : straightforward derivation

 θ_{str}

vector mKdV

Geometry o θ_0

In fact adding *g* is not the only way of getting the system with the local symplectic structure out of the GSG. For example, we can add the so(N + 1)-valued field Ψ satisfying

$$D\Psi = *J_{\overline{1}}$$

and get the symplectic structure:

$$\Omega = \oint \delta \Psi \delta J$$

This corresponds to the action

$$\mathcal{S} = \int \mathrm{tr} \left(\Psi(dJ + J^2) + J_{ar{1}} \wedge * J_{ar{1}}
ight)$$

The equation of motion for Ψ implies the existence of g such that $J = -dgg^{-1}$ and the action on-shell is equal to the standard action $\int d\tau^+ d\tau^- \text{tr} \left((\partial_+ gg^{-1})_{\bar{1}} (\partial_- gg^{-1})_{\bar{1}} \right)$ and therefore gives the same symplectic structure. This could be thought of as a "T-dual" of the classical string.

A. Mikhailov

Introduction Def. of Ω. PCM and NLSM

Definitions Symplectic structure

Non-standard symplectic structures of the NLSM

NLSM and generalized sine-Gordon

 θ_{str} : straightforward derivation

 θ_{str} Poisson brackets of

vector mKdV

Geometry θ_0

In any case, we have a classical string (or its T-dual) and go to sine-Gordon by forgetting $g: (J, g) \mapsto J$ (or forgetting Ψ in the case of the T-dual). Classical string had a local Poisson bracket, and the corresponding Poisson bracket of GSG becomes nonlocal because we forget some degrees of freedom:

A. Mikhailov

Introduction

Def. of Ω.

PCM and NLSM Definitions Symplectic structure

Non-standard symplectic structures of the NLSM

NLSM and generalized sine-Gordon

String on S² and SC θ_{str} : straightforward derivation Better derivation of

Poisson brackets

Geometry of θ_0

Relativistic symmetry of the GSG

Equations of motion:

$$\begin{array}{l} \partial_{+}J_{\bar{1}-} + [J_{\bar{0}+}, J_{\bar{1}-}] = \partial_{-}J_{\bar{1}+} + [J_{\bar{0}-}, J_{\bar{1}+}] = 0\\ \partial_{+}J_{\bar{0}-} - \partial_{-}J_{\bar{0}+} + [J_{\bar{0}+}, J_{\bar{0}-}] + [J_{\bar{1}+}, J_{\bar{1}-}] = 0 \end{array}$$

with the gauge symmetry $\delta J = d\xi_0 + [J, \xi_0], \quad \xi_0 \in \mathbf{g}_{\bar{0}}$ and the Virasoro constraint $\operatorname{tr}(J_{\bar{1}_+})^2 = \operatorname{tr}(J_{\bar{1}_+})^2 = -1.$

There is an obvious symmetry under the constant shifts of τ^+ and τ^- . But besides shifts, the GSG equations are also symmetric under *boosts*:

$$J_{\bar{0}\pm}(\tau^+,\tau^-) \mapsto \lambda^{\pm 1} J_{\bar{0}\pm}(\lambda\tau^+,\lambda^{-1}\tau^-)$$
$$J_{\bar{1}\pm}(\tau^+,\tau^-) \mapsto J_{\bar{1}\pm}(\lambda\tau^+,\lambda^{-1}\tau^-)$$

・ロト・日本・日本・日本・日本・日本

A. Mikhailov

Introduction

Def. of Ω

PCM and NLSM Definitions Symplectic structur

Non-standard symplectic structures of the NLSM

NLSM and generalized sine-Gordon

 $\theta_{\rm str}$: straightforward derivation

Better derivation of θ_{str} Poisson brackets of

Geometry of θ_0

We we will use this relativistic symmetry to show that the classical string has an interesting non-standard symplectic structure.

First of all, we need to understand better the standard symplectic form in terms of the currents J.

We start by considering the classical string on S^2 , which corresponds to the usual sine-Gordon.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ のQ@

A. Mikhailov

Introduction Def. of Ω. PCM and NLSM

Definitions Symplectic structu

Non-standard symplectic structures of the NLSM

NLSM and generalized sine-Gordon

String on S² and SG

 $\theta_{\it str}$: straightforward derivation

Better derivation of θ_{str}

vector mKdV

Geometry of θ_0

Let us first concentrate on the special case of the S^2 sigma-model, *i.e.* N = 2, $\mathbf{g} = so(3)$, $\mathbf{g}_{\bar{0}} = so(2)$.

Let $\vec{n}(\tau^+,\tau^-)$ be the S^2 -part of the string worldsheet.

The Virasoro constraints: $|\partial_+ \vec{n}| = |\partial_- \vec{n}| = 1.$

The angle 2φ between $\partial_+ \vec{n}$ and $\partial_- \vec{n}$ satisfies the sine-Gordon equation

$$\partial_+\partial_-\varphi = -\frac{1}{2}\sin 2\varphi$$

The function $\varphi(\tau^+, \tau^-)$ determines the *shape* of the string worldsheet.

・ロト・日本・日本・日本・日本

A. Mikhailov

Introduction Def. of Ω. PCM and NLSM

Definitions Symplectic struct

Non-standard symplectic structures of the NLSM

NLSM and generalized sine-Gordon String on S² and SG

 θ_{str} : straightforward derivation Better derivation of θ_{str} Poisson brackets of vector mKdV

Geometry o θ_0

The sine-Gordon equation is the equation of motion in the relativistic two-dimensional theory with the action

$$S_{SG} = \int d\tau^+ d\tau^- \left(\partial_+ \varphi \partial_- \varphi + \frac{1}{2} \cos 2\varphi \right)$$
(10)

This action gives an exactly solvable relativistic quantum field theory.

But the action (10) does not correspond to the action of the classical string. Therefore the Poisson bracket of the classical string is different from the Poisson bracket of the sine-Gordon theory. In fact, the sine-Gordon theory has an infinite family of symplectic structures on its phase space, and the string symplectic structure corresponds to one of them.

Which one? We will first give a pedestrian derivation of Ω_{str} and then give a more <u>scientific derivation</u>.

A. Mikhailov

Introduction Def. of Ω. PCM and

Definitions Symplectic structure

Non-standard symplectic structures of the NLSM

NLSM and generalized sine-Gordon String on S² and S

 $\theta_{\it str}$: straightforward derivation

Better derivation of θ_{str} Poisson brackets of

Geometry of θ_0

$\Omega_{\textit{str}}$ in SG (a pedestrian approach)

The action of the classical string gives the following symplectic structure:

$$\Omega_{str} = \oint \left[\boldsymbol{d}\tau^+ (\delta \vec{\boldsymbol{n}}, \partial_+ \delta \vec{\boldsymbol{n}}) - (\delta \vec{\boldsymbol{n}}, \partial_- \delta \vec{\boldsymbol{n}}) \right]$$

We will concentrate on the left lightcone component:

 $\Omega_{str} = \int_{\mathcal{C}_+} \mathbf{d} au^+ (\delta ec{n}, \partial_+ \delta ec{n})$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

A. Mikhailov

Introduction

PCM and NLSM Definitions

Non-standard symplectic structures of the NLSM

NLSM and generalized sine-Gordon String on S² and S

 $\theta_{\rm str}$: straightforward derivation

Better derivation of θ_{str} Poisson brackets of

Geometry o θ_0

Let us choose the following symplectic potential:

$$\alpha = \int d\tau^+ (\delta \vec{n}, \partial_+ \vec{n})$$
$$\Omega = \delta \alpha$$

Consider the O(3) invariant vector field on the phase space defined by the functions f_+ and f_- :

$$(\delta_{f_+,f_-}\vec{n},\partial_+\vec{n}) = f_+, \quad (\delta_{f_+,f_-}\vec{n},\partial_-\vec{n}) = f_-$$

We have a very simple formula for α :

$$\alpha(\delta_{f_+,f_-}) = \int d\tau^+ f_+$$

Now I want to compute $\Omega = \delta \alpha(\delta_f, \delta_g)$. I will compute $\delta \alpha$ using the general formula:

$$\delta\alpha(\mathbf{v},\mathbf{w}) = \mathbf{v}.\alpha(\mathbf{w}) - \mathbf{w}.\alpha(\mathbf{v}) - \alpha([\mathbf{v},\mathbf{w}])$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

A. Mikhailov

Introduction

Def. of Ω

PCM and NLSM Definitions Symplectic structur

Non-standard symplectic structures of the NLSM

NLSM and generalized sine-Gordon

θ_{str} : straightforward derivation

Better derivation of θ_{str} Poisson brackets of vector mKdV

Geometry of θ_0

$$\delta_f \mathbf{n} = \frac{4}{\sin^2 2\varphi} \left[(f_+ - f_- \cos 2\varphi) \partial_+ \mathbf{n} + (f_- - f_+ \cos 2\varphi) \partial_- \mathbf{n} \right]$$

Equations of motion for \vec{n} leads to the equations for $\delta \vec{n}$ which in turn leads to the equations for f_+ and f_- :

$$f_{-} = -\frac{\sin 2\varphi}{2q_{+}}\partial_{+}f_{+} + f_{+}\cos 2\varphi$$
$$f_{+} = -\frac{\sin 2\varphi}{2q_{-}}\partial_{-}f_{-} + f_{-}\cos 2\varphi$$

We can see that f_- is expressed in terms of f_+ and $\partial_+ f_+$. This allows to compute the action of δ_{f_+,f_-} on $(\partial_+ \vec{n}, \partial_- \vec{n})$ in terms of f_+ . It is convenient to introduce q_+ :

$$q_+ = \partial_+ \varphi$$

Direct computation shows:

$$\delta_f q_+ = \left((1 + \partial_+^2) q_+^{-1} \partial_+ + 4 \partial_+ q_+ \right) f_+$$

A. Mikhailov

Introduction Def. of Ω. PCM and

Definitions

Non-standard symplectic structures of the NLSM

NLSM and generalized sine-Gordon String on S² and S

 θ_{str} : straightforward derivation

Better derivation of θ_{str} Poisson brackets of vector mKdV

Geometry of θ_0

Now the commutator $[\delta_f, \delta_g]$ can be found by an explicit calculation:

$$\begin{split} & [\delta_{f}, \delta_{g}] = \delta_{[f,g]} \\ & \text{where} \\ & [f,g] = -\langle q_{+}^{-1}\partial_{+}f\rangle \stackrel{\leftrightarrow}{\partial_{+}} \langle q_{+}^{-1}\partial_{+}g\rangle + 4f \stackrel{\leftrightarrow}{\partial_{+}} g \end{split}$$

Therefore the symplectic structure $\Omega(\delta_f, \delta_g)$ is:

$$\Omega(\delta_f, \delta_g) = \int d\tau^+ \left(-\langle q_+^{-1} \partial_+ f \rangle \stackrel{\leftrightarrow}{\partial_+} \langle q_+^{-1} \partial_+ g \rangle + 4f \stackrel{\leftrightarrow}{\partial_+} g \right)$$

In terms of q_+ :

$$\Omega = \int d\tau^+ \delta q_+ (\theta_0 + \theta_1)^{-1} \theta_1 (\theta_0 + \theta_1)^{-1} \delta q_+ \qquad (11)$$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

where θ_0 and θ_1 are some interesting integro-differential operators:

A. Mikhailov

Introduction

Def. of Ω .

PCM and NLSM Definitions Symplectic structure

Non-standard symplectic structures of the NLSM

NLSM and generalized sine-Gordon String on S² and S

 $\theta_{\it str}$: straightforward derivation

Better derivation of θ_{str} Poisson brackets of vector mKdV

Geometry θ_0

$$egin{aligned} & heta_0 = \partial_+ \ & heta_1 = \partial_+^3 + 4 \partial_+ q_+ \partial_+^{-1} q_+ \partial_+ \end{aligned}$$

Given some operator θ we can try to define a Poisson bracket by the formula

$$\{F,G\} = \int d au^+ rac{\delta F}{\delta oldsymbol{q}_+} heta rac{\delta G}{\delta oldsymbol{q}_+}$$

But if we want to call it a Poisson bracket we should verify that it satisfies the Jacobi identity $\{\{F, G\}, H\} + \text{cycl} = 0$. This leads to some differential equations on the coefficients of θ which are bilinear in θ . We will schematically write these equations as follows:

 $\llbracket \theta, \theta \rrbracket = 0$ (the Jacobi equation)

The Jacobi equation is equivalent to the statement that $\Omega = \theta^{-1}$ defines a closed 2-form:

$$\Omega = \int d\tau^+ \delta q_+ \theta^{-1} \delta q_+$$

For example, for θ_0 we have $\Omega_0 = \int d\tau^+ \delta \varphi \partial_+ \delta \varphi$, $\langle \overline{\varphi} \rangle$, $\langle \overline{\varphi$

A. Mikhailov

Introduction Def. of Ω. PCM and NLSM Definitions

Symplectic structure

Non-standard symplectic structures of the NLSM

NLSM and generalized sine-Gordon String on S² and S²

 θ_{str} : straightforward derivation

Better derivation of θ_{str} Poisson brackets of vector mKdV

Geometry of θ_0

It is rather obvious that $\theta_0 = \partial_+$ satisfies $\llbracket \theta_0, \theta_0 \rrbracket = 0$; in fact, θ_0 defines the standard Poisson bracket of the sine-Gordon model. But we also have:

$$\llbracket \theta_1 + 2\theta_0 + \theta_0 \theta_1^{-1} \theta_0 , \ \theta_1 + 2\theta_0 + \theta_0 \theta_1^{-1} \theta_0 \rrbracket = 0$$
(12)

Indeed, we have just shown that $(\theta_0 + \theta_1)^{-1}\theta_1(\theta_0 + \theta_1)^{-1}$ is the canonical symplectic structure of the classical string. And (12) is the corresponding Jacobi identity. (Which follows automatically from the fact that the symplectic form of the classical string is a closed form.)

Consider the <u>boost</u> $\varphi(\tau^+) \mapsto \varphi(\lambda \tau^+)$. We get $\theta_0 \to \lambda \theta_0$ and $\theta_1 \to \lambda^3 \theta_1$. The bracket [[,]] is homogeneous under the rescaling, and therefore we should have

$$\llbracket \theta_1, \theta_1 \rrbracket = \mathbf{0}$$
$$\llbracket \theta_1, \theta_0 \rrbracket = \mathbf{0}$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

A. Mikhailov

Introduction Def. of Ω. PCM and NLSM

Definitions Symplectic structure

Non-standard symplectic structures of the NLSM

NLSM and generalized sine-Gordon String on S² and S

 $\theta_{\it str}$: straightforward derivation

Better derivation of θ_{str} Poisson brackets of vector mKdV

Geometry of θ_0

This means that the phase space of the sine-Gordon theory has a family of the Poisson brackets of the form

 $\theta_0 + t\theta_1$

This satisfies the Jacobi identity

$$\llbracket \theta_0 + t\theta_1, \theta_0 + t\theta_1 \rrbracket = 0$$

for an arbitrary t. This is known as "bihamiltonian structure".

The Poisson structure of the classical string in terms of θ_0 and θ_1 becomes:

$$\theta_{str} = (\theta_0 + \theta_1)\theta_1^{-1}(\theta_0 + \theta_1)$$

We will now give a slightly more "scientific" derivation of this formula for θ_{str} which will be generalizable from S^2 to S^N .

A. Mikhailov

Introduction

PCM and NLSM Definitions Symplectic structure

Non-standard symplectic structures of the NLSM

NLSM and generalized sine-Gordon String on S^2 and SG θ_{str} : straightforward derivation

Better derivation of $\theta_{\it str}$

Poisson brackets o vector mKdV

Geometry of θ_0

Scientific approach to θ_{str}

An alternative derivation uses Eq. (2):

$$lpha(\delta_{\xi}) = -\int d au^+ {
m tr} \left(\xi J_{ar{1}+}
ight)$$

Remember that here δ_{ξ} is defined by $\delta_{\xi}J_{+} = D_{+}\xi$.

Let us choose the gauge where $J_{\bar{1}+} = const.$ In this gauge, when we compute $\delta \alpha$, we do not have to evaluate $\delta J_{\bar{1}+}$ because $J_{\bar{1}+}$ is a constant matrix. We get:

$$\Omega(\delta_{\xi_1}, \delta_{\xi_2}) = \int d\tau^+ \operatorname{tr}(J_{\overline{1}+}[\xi_1, \xi_2])$$
(13)

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

A. Mikhailov

Introduction Def. of Ω. PCM and NLSM

Definitions Symplectic strue

Non-standard symplectic structures of the NLSM

NLSM and generalized sine-Gordon String on S^2 and SG θ_{str} : straightforward derivation

Better derivation of $\theta_{\rm str}$

Poisson brackets of vector mKdV

Geometry of θ_0

So, let us fix the gauge so that

$$J_{ar{1}+}=\left(egin{array}{ccc} 0 & 1 & 0 \ -1 & 0 & 0 \ 0 & 0 & 0 \end{array}
ight)$$

Since we have choosen the gauge where $J_{\bar{1}+} = \text{const}$ we should have:

$$J_{+}=\left(egin{array}{ccc} 0 & 1 & 0 \ -1 & 0 & 2q_{+} \ 0 & -2q_{+} & 0 \end{array}
ight) \ J_{-}=\left(egin{array}{ccc} 0 & \cos 2arphi & \sin 2arphi \ -\cos 2arphi & 0 & 0 \ -\sin 2arphi & 0 & 0 \end{array}
ight)$$

(Remember that we should have $\partial_+ J_{\bar{1}-} + [J_{\bar{0}+}, J_{\bar{1}-}] = 0$ and also $\partial_- J_{\bar{1}+} + [J_{\bar{0}-}, J_{\bar{1}+}] = 0.$)

▲□▶ ▲圖▶ ▲画▶ ▲画▶ 三回 ● のへで

A. Mikhailov

Introduction Def. of Ω. PCM and

Definitions Symplectic struct

Non-standard symplectic structures of the NLSM

NLSM and generalized sine-Gordon String on S^2 and SG θ_{str} : straightforward derivation

Better derivation of θ_{str}

Poisson brackets of vector mKdV

Geometry of θ_0

Suppose that we have two variations $\delta_{\xi^{(1)}}$ and $\delta_{\xi^{(2)}}$ corresponding to two parameters $\xi^{(1)}$ and $\xi^{(2)}$, $\delta_{\xi^{(j)}}J = D\xi^{(j)}$:

$$\xi^{(1)} = \begin{pmatrix} 0 & \gamma^{(1)} & \alpha^{(1)} \\ -\gamma^{(1)} & 0 & \beta^{(1)} \\ -\alpha^{(1)} & -\beta^{(1)} & 0 \end{pmatrix}$$
$$\xi^{(2)} = \begin{pmatrix} 0 & \gamma^{(2)} & \alpha^{(2)} \\ -\gamma^{(2)} & 0 & \beta^{(2)} \\ -\alpha^{(2)} & -\beta^{(2)} & 0 \end{pmatrix}$$

Then the value of the string symplectic form on these two vectors is, according to (13):

$$\Omega(\delta_{\xi^{(1)}}, \delta_{\xi^{(2)}}) = \int d\tau^+ (\alpha^{(1)} \beta^{(2)} - \alpha^{(2)} \beta^{(1)})$$

Therefore the calculation of the symplectic structure is reduced to solving the equation $D_+\xi = \delta J_+$ for ξ :

$$\partial_+ \xi + [J_+,\xi] = \left(egin{array}{ccc} 0 & 0 & 0 \ 0 & 0 & 2\delta q_+ \ 0 & -2\delta q_+ & 0 \end{array}
ight)$$

A. Mikhailov

Def. of Ω. PCM and NLSM

Definitions Symplectic struct

Non-standard symplectic structures of the NLSM

NLSM and generalized sine-Gordon String on S^2 and SG θ_{str} : straightforward derivation

Better derivation of $\theta_{\rm str}$

Poisson brackets of vector mKdV

Geometry c θ_0

We can solve for α, β, γ in terms of δq_+ :

$$\alpha = -2\theta_0(\theta_0 + \theta_1)^{-1}\delta q_+$$

$$\beta = 2\theta_0^{-1}\theta_1(\theta_0 + \theta_1)^{-1}\delta q_+$$

$$\gamma = -2\partial_+^{-1}q_+\alpha$$

Now the calculation of the classical string symplectic form gives us:

$$\Omega = \int d\tau^+ \alpha(\delta q_+) \beta(\delta q_+) =$$

= $\int d\tau^+ \delta q_+ (\theta_0 + \theta_1)^{-1} \theta_0 (\theta_0 + \theta_1)^{-1} \delta q_+$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

which is of course the same as Eq. (11).

A. Mikhailov

Introduction Def. of Ω. PCM and NLSM

Definitions

Symplectic structure

Non-standard symplectic structures of the NLSM

NLSM and generalized sine-Gordon String on S^2 and SG θ_{str} : straightforward derivation

Better derivation of $\theta_{\rm str}$

Poisson brackets of vector mKdV

Geometry of θ_0

This method works also for the string on $S^N = SO(N+1)/SO(N)$. In this case $\mathbf{g}_{\bar{1}} = so(N+1)$ and $\mathbf{g}_{\bar{0}} = so(N)$, $J_+ = J_{\bar{1}+} + J_{\bar{0}+}$. Let us fix the gauge so that

$$J_{\bar{1}+} = \begin{pmatrix} 0 & 1 & 0 & \dots & 0 \\ -1 & 0 & 0 & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \dots & 0 \end{pmatrix}$$

There is a residual gauge freedom which allows to bring J_+ to the form:

$$J_+ = \left(egin{array}{ccccccc} 0 & 1 & 0 & \dots & 0 \ -1 & 0 & q_+^1 & \dots & q_+^{N-1} \ 0 & -q_+^1 & 0 & \dots & 0 \ dots & dots & dots & dots & dots & dots \ 0 & -q_+^{N-1} & 0 & \dots & 0 \end{array}
ight)$$

Again we have to find $D_{+}^{-1}(\delta J_{+})$ and calculate

$$\Omega = \int d\tau^{+} \mathrm{tr} \left(J_{\overline{1}+} [D_{+}^{-1}(\delta J_{+}), D_{+}^{-1}(\delta J_{+})] \right)$$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

A. Mikhailov

Introduction Def. of Ω. PCM and NLSM

Definitions

Non-standarc symplectic structures of the NLSM

NLSM and generalized sine-Gordon String on S^2 and θ_{str} : straightforwa derivation

Better derivation of θ_{str}

Poisson brackets of vector mKdV

Geometry o θ_0

$$D_{+}^{-1}(\delta J_{+})$$
 has the following form:

$$egin{array}{cccc} & 0 & \gamma & ec{lpha}^T & \ -\gamma & 0 & ec{eta}^T & \ -ec{lpha} & -ec{eta} & -ec{eta} & \partial_+^{-1}(ec{m{q}}_+\otimesec{eta}^T-ec{eta}\otimesec{m{q}}^T) \end{array} \end{pmatrix}$$

where

$$\vec{\beta} = -(\partial_+ + \vec{q}_+ \partial_+^{-1} \vec{q}_+^T) \vec{\alpha}$$

$$\delta \vec{q}_+ = -\vec{\alpha} - (\partial_+ + \iota(\vec{q}_+) \partial_+^{-1} \vec{q}_+ \wedge) (\partial_+ + \vec{q}_+ \partial_+^{-1} \vec{q}_+^T) \vec{\alpha}$$

Therefore

$$\Omega = \int d\tau^{+}(\vec{\alpha}(\delta \vec{q}_{+}), \vec{\beta}(\delta \vec{q}_{+})) =$$
(14)
=
$$\int d\tau^{+} \delta \vec{q} (\theta_{0} + \theta_{1})^{-1} \theta_{1} (\theta_{0} + \theta_{1})^{-1} \delta \vec{q}$$

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 _ のへで

where

brackets in AdS/CFT A. Mikhailov

Poisson

Introduction Def. of Ω. PCM and NLSM Definitions

Symplectic structure

Non-standard symplectic structures of the NLSM

NLSM and generalized sine-Gordon String on S^2 and SG θ_{str} : straightforward derivation Better derivation of θ_{-tr} .

Poisson brackets of vector mKdV

Geometry of θ_0

$$egin{aligned} & heta_1 = heta_0 \mathcal{J} heta_0 \ & \mathcal{J} = \partial_+ + \vec{q} \partial_+^{-1} \vec{q}^T \ & heta_0 = & ext{will explain in a moment} \end{aligned}$$

Straightforward expression for θ_0 following from (14) is somewhat clumsy; I will explain θ_0 on the next slide.

So, we have again the Poisson structure of the form:

$$\theta_{str} = (\theta_0 + \theta_1)\theta_1^{-1}(\theta_0 + \theta_1) = \theta_1 + 2\theta_0 + \theta_0\theta_1^{-1}\theta_0$$

The same scaling argument as for S^2 shows that $[\![\theta_{str}, \theta_{str}]\!] = 0$ implies

$$\llbracket \theta_1, \theta_1 \rrbracket = 0$$
$$\llbracket \theta_1, \theta_0 \rrbracket = 0$$

But this argument does not tell us that $\llbracket \theta_0, \theta_0 \rrbracket = 0$.

A. Mikhailov

Introduction Def. of Ω. PCM and NLSM

Definitions Symplectic struct

Non-standard symplectic structures of the NLSM

NLSM and generalized sine-Gordon String on S^2 and SG θ_{str} : straightforward derivation

Poisson brackets of vector mKdV

Geometry of θ_0

What is θ_0 ?

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

 θ_0 is the boost-invariant symplectic structure of the GSG. To describe θ_0 , we use the symplectic structure of the WZW model. The (chiral) phase space of the WZW is the space of group-value functions $G(\tau^+)$, and the symplectic structure is:

$$\Omega_{WZW} = \int d au^+ \mathrm{tr} \; \delta G G^{-1} \delta(\partial_+ G G^{-1})$$

The symplectic form θ_0^{-1} is the restriction of Ω_{WZW} on the space of functions $G(\tau^+)$ satisfying

$$\partial_{+}GG^{-1} = -\begin{pmatrix} 0 & q_{+}^{1} & \dots & q_{+}^{N-1} \\ -q_{+}^{1} & 0 & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ -q_{+}^{N-1} & 0 & \dots & 0 \end{pmatrix}$$
(15)

A. Mikhailov

Introduction Def. of Ω. PCM and NLSM

Definitions Symplectic structu

Non-standard symplectic structures of the NLSM

NLSM and generalized sine-Gordon String on S^2 and SG θ_{str} : straightforward derivation

Better derivation of θ_{str} Poisson brackets of

Poisson brackets vector mKdV

Geometry of θ_0

It is easy to see that Ω_0 is closed:

$$\delta\Omega_0 = \int d\tau^+ \frac{1}{3} \partial_+ tr (\delta G G^{-1})^3 = 0$$

This implies the Jacobi identity $\llbracket \theta_0, \theta_0 \rrbracket = 0$ for θ_0 .

A slight disadvantage of this description of θ_0 is that it seems to be tied to a characteristic line C_+ on a string worldsheet.

But I will now explain how to rewrite it in terms of an arbitrary contour on the worldsheet.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ のQ@

 θ_{str} : straightforward derivation

 θ_{str} Poisson brackets of

vector mKdV

Geometry of θ_0

Through every point on the string worldsheet Σ go two lightlike curves. They form a "light cone" on the string worldsheet. Let C_+ and C_- be the projections of these directions to S^N (=characteristics).

Poisson brackets of vector mKdV

Geometry of θ_0

It is useful also to consider the directions in $T\Sigma$ orthogonal to C^+ and C^- . We will call them K^+ and K^- .

String on S² and SG θ_{str} : straightforward derivation

Better derivation of θ_{str} Poisson brackets of

Geometry of θ_0

There is also a normal bundle to Σ which we call N. It is formed by those vectors of TS^N which are orthogonal to $T\Sigma$.

Notice that \mathcal{N} has dimension N - 2. Let us consider an N - 1 dimensional bundle $\mathcal{N} \oplus K_+$.

θ_{str} Poisson brackets o vector mKdV

Geometry of θ_0

We will also need and N - 1 dimensional vector bundle $\mathcal{N} \oplus \mathcal{K}_{-}$.

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 _ のへで

 θ_0

generalized sine-Gordon String on S^2 and SG θ_{str} : straightforward derivation Better derivation of

θ_{str} Poisson brackets o

Geometry of θ_0

Let $i : \Sigma \to S^N$ denote the embedding map. The tangent bundle TS^N can be restricted to Σ , and the restricted bundle is formally called i^*TS^N .

Poisson brackets in AdS/CFT A. Mikhailov Introduction Def. of Ω. PCM and NLSM Definitions Symplectic structure

Non-standard symplectic structures of the NLSM

NLSM and generalized sine-Gordon String on S^2 and SG θ_{str} : straightforward derivation Better derivation of

 θ_{str} Poisson brackets of

Geometry of θ_0

The Levi-Civita connection in TS^N can be restricted to i^*TS^N , so we can parallel transport the vectors tangent to S^N along the curves in Σ . We call the corresponding covariant derivative $D_{\bar{0}}$.

A. Mikhailov

Introduction Def. of Ω. PCM and

Definitions Symplectic structu

Non-standard symplectic structures of the NLSM

NLSM and generalized sine-Gordon String on S^2 and SG θ_{str} : straightforward derivation Better derivation of θ_{str} Poisson brackets of

Geometry of θ_0

Remember that a connection can be projected from a bundle to a subbundle. Suppose that we have an orthogonal vector bundle \mathcal{W} with the connection $\nabla_{\mathcal{W}}$. Consider a subbundle $\mathcal{V} \subset \mathcal{W}$. For any vector $v \in \mathcal{V}$ we define

 $\nabla_{\mathcal{V}} \boldsymbol{v} = \boldsymbol{P}_{\boldsymbol{V}} \nabla_{\mathcal{W}} \boldsymbol{v}$

This is the definition of $\nabla_{\mathcal{V}}$. \mathcal{W}

Let us use the notation: $\nabla_{\mathcal{W}}|_{\mathcal{V}}$ for this induced connection $\nabla_{\mathcal{V}}.$

(ロ) (同) (三) (三) (三) (三) (○) (○)

A. Mikhailov

Introduction Def. of Ω .

PCM and NLSM Definitions Symplectic structure

Non-standard symplectic structures of the NLSM

NLSM and generalized sine-Gordon String on S^2 and SG θ_{str} : straightforward derivation Better derivation of θ

Poisson brackets o vector mKdV

Geometry of θ_0

Let us restrict $D_{\bar{0}}$ on $\mathcal{N} \oplus \mathcal{K}_+$ and $\mathcal{N} \oplus \mathcal{K}_-$ and denote the resulting connections ∇^L and ∇^R :

$$\nabla^{L} = D_{\bar{0}}|_{\mathcal{N} \oplus \mathcal{K}_{+}}$$
$$\nabla^{R} = D_{\bar{0}}|_{\mathcal{N} \oplus \mathcal{K}_{-}}$$
(16)

▲□▶▲□▶▲□▶▲□▶ □ のQ@

It turns out that ∇^L and ∇^R are both flat: $[\nabla^L_+, \nabla^L_-] = 0, \quad [\nabla^R_+, \nabla^R_-] = 0$

This follows from the string equations of motion.

A. Mikhailov

Introduction Def. of Ω. PCM and NLSM

Definitions Symplectic structu

Non-standard symplectic structures of the NLSM

NLSM and generalized sine-Gordon String on S² and SG θ_{sb} : straightforward derivation Better derivation of θ_{sb} Poisson brackets of vector mKdV

Geometry of θ_0

Let us introduce some trivialization of \mathcal{N} . A trivialization of \mathcal{N} is a choice of N - 2 sections $\mathbf{e}_1, \dots \mathbf{e}_{N-2}$ of \mathcal{N} which form an orthonormal system:

$$(\mathbf{e}_i,\mathbf{e}_j)=\delta_{ij}$$

Notice that the trivialization of \mathcal{N} defines the trivializations of both $\mathcal{N} \oplus \mathcal{K}_+$ and $\mathcal{N} \oplus \mathcal{K}_-$. Indeed, to get an orthonormal system in $\mathcal{N} \oplus \mathcal{K}_+$ we just add to $\mathbf{e}_1, \dots \mathbf{e}_{N-2}$ the unit vector in \mathcal{K}_+ . (A different choice of the trivialization of \mathcal{N} will give the same answer for the symplectic form.)

Now, having the trivializations $\mathcal{N} \oplus K_+ \simeq \mathbf{R}^{N-1}$ and $\mathcal{N} \oplus K_- \simeq \mathbf{R}^{N-1}$ we can consider the monodromies of the *flat* connections ∇^L and ∇^R . The monodromies are just the matrices g^L and g^R such that:

$$\nabla^L g^L = \mathbf{0}, \quad \nabla^R g^R = \mathbf{0}$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ □ のへぐ

A. Mikhailov

Introduction Def. of Ω. PCM and NLSM

Non-standard symplectic structures of the NLSM

NLSM and generalized sine-Gordon String on S² and SG θ_{str} : straightforward derivation Better derivation of θ_{str} Poisson brackets of vector mKdV

Geometry of θ_0

Let us introduce some trivialization of \mathcal{N} . A trivialization of \mathcal{N} is a choice of N - 2 sections $\mathbf{e}_1, \dots \mathbf{e}_{N-2}$ of \mathcal{N} which form an orthonormal system:

$$(\mathbf{e}_i, \mathbf{e}_j) = \delta_{ij}$$

Notice that the trivialization of \mathcal{N} defines the trivializations of both $\mathcal{N} \oplus \mathcal{K}_+$ and $\mathcal{N} \oplus \mathcal{K}_-$. Indeed, to get an orthonormal system in $\mathcal{N} \oplus \mathcal{K}_+$ we just add to $\mathbf{e}_1, \dots \mathbf{e}_{N-2}$ the unit vector in \mathcal{K}_+ . (A different choice of the trivialization of \mathcal{N} will give the same answer for the symplectic form.)

Now, having the trivializations $\mathcal{N} \oplus \mathcal{K}_+ \simeq \mathbf{R}^{N-1}$ and $\mathcal{N} \oplus \mathcal{K}_- \simeq \mathbf{R}^{N-1}$ we can consider the monodromies of the *flat* connections ∇^L and ∇^R . The monodromies are just the matrices g^L and g^R such that:

$$abla^L g^L = \mathbf{0}, \quad
abla^R g^R = \mathbf{0}$$

 θ_0

A. Mikhailov

Introduction

PCM and NLSM Definitions Symplectic structur

Non-standard symplectic structures of the NLSM (

NLSM and generalized sine-Gordon String on S² and SG θ_{str} : straightforward derivation Better derivation of θ_{str} Poisson brackets of

Geometry of

Geometry θ_0

The symplectic structure of the generalized sine-Gordon

$$\Omega = \oint \left[8\delta\varphi * d\delta\varphi + (17) + \operatorname{tr}\left((\delta g_L g_L^{-1}) \delta (dg_L g_L^{-1}) \right) - \operatorname{tr}\left((\delta g_R g_R^{-1}) \delta (dg_R g_R^{-1}) \right) \right]$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ のQ@

where 2φ is the angle between C^+ and C^- .

In this form it is relatively easy to prove that Ω does not depend on the choice of the contour. (A calculation in coordinates.)

A. Mikhailov

Introduction Def. of Ω. PCM and

Definitions Symplectic structur

Non-standarc symplectic structures of the NLSM

NLSM and generalized sine-Gordon String on S² and SG θ_{str} : straightforward derivation Better derivation of θ_{str}

Poisson brackets of vector mKdV

Geometry of θ_0

To prove that Eq. (17) is equivalent to Eq. (15) we notice that the monodromy matrix g in the normal frame is related to g_L and g_R in the following way:

$$\mathbf{G} = \begin{bmatrix} \mathbf{1} & \mathbf{0} \\ \mathbf{0} & g_R^{-1} \end{bmatrix} \begin{bmatrix} \cos 2\varphi & -\sin 2\varphi & \mathbf{0} \\ \sin 2\varphi & \cos 2\varphi & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{1} \end{bmatrix} \begin{bmatrix} \mathbf{1} & \mathbf{0} \\ \mathbf{0} & g_L \end{bmatrix}$$
(18)

This formula allows us to prove that $\underline{Eq. (15)}$ is equal to $\underline{Eq. (17)}$ using the Polyakov-Wiegmann type of identities and the fact that dGG^{-1} is of the form

$$dGG^{-1} = \begin{bmatrix} 0 & * & * & * & * \\ * & 0 & 0 & 0 & 0 \\ * & 0 & 0 & 0 & 0 \\ * & 0 & 0 & 0 & 0 \\ * & 0 & 0 & 0 & 0 \end{bmatrix}$$

A. Mikhailov

Introduction

Def. of Ω

PCM and NLSM Definitions Symplectic structure

Non-standard symplectic structures of the NLSM

NLSM and generalized sine-Gordon String on S^2 and S θ_{str} : straightforwar derivation Better derivation of

Poisson brackets of vector mKdV

Geometry of θ_0

Notice that in our approach we constructed both the canonical symplectic form Eq. (4) and the non-standard form Eq. (17) in terms of the geometry of the string worldsheet. (The generalized sine-Gordon was actully used only to prove the compatibility.)

The non-standard symplectic form Ω_0 is local only if we add the additional fields g_L and g_R . It would be interesting to see if they have any meaning in string theory.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ のQ@

Open questions

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

- Generalize the construction of Ω_0 to the full superstring $AdS_5 \times S^5$.
- Are bihamiltonian structures useful in the quantum theory of integrable models?
- Suppose that we can quantize the vector mKdV with the boost invariant Poisson bracket θ_0 . Can we then translate the result of the quantization to the quantization of θ_{str} ?

A. Mikhailov

Poisson brackets in

AdS/CFT

- Def. of Ω .
- PCM and NLSM Definitions Symplectic structu

Non-standard symplectic structures of the NLSM

- NLSM and generalized sine-Gordon String on S^2 and SG θ_{str} : straightforward derivation
- Better derivation o θ_{str}

vector mKdV

Geometry of θ_0