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Poisson brackets are very important in classical mechanics,
in particular because they are the classical analogue of the
quantum mechanical commutators.

Integrable systems usually have many Poisson brackets
which satisfy some compatibility conditions. Actually, it is
enough to have two "compatible" Poisson brackets, and
then it is possible to generate an infinite family of them.

In my talk I will discuss this so-called "bihamiltonian
structure" for the classical string on a sphere (the nonlinear
sigma-model).
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The talk is based on my paper:
A.M., hep-th/0511069
and some work in progress.

There was a substantial earlier work, for example:
A. Doliwa, P.M. Santini, Phys. Lett. A185 (1994) 373-384
J.A. Sanders, J.P. Wang, math.AP/0301212
G. Marí Beffa, ...
S.C. Anco, nlin.SI/0512051,0512046
...
I. Bakas, Q-Han Park, H.-J. Shin, hep-th/9512030
...
I will use some ideas from these papers in my talk.
(Not to mention the old classical papers of Pohlmeyer,
Eichenherr, Rehren, Neveu, Papanicolaou.)
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I will first review the general definition of the symplectic
structure, and then describe the canonical Poisson brackets
for the nonlinear sigma-model (NLSM).
I will then discuss the "hidden" relativistic symmetry of the
NLSM equations and how it acts on the canonical
symplectic structure. For this I will need to introduce the
"generalized sine-Gordon model". The relativistic symmetry
leads to the existence of the non-standard symplectic
structures. I will discuss the relativistically invariant
non-standard symplectic structure and its geometrical
meaning from the point of view of the string worldsheet.
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Suppose that we have a classical field theory with the action

S =

∫
dτ+dτ−L[φ]

We usually compute the
action over infinite
space-time, but let us
suppose that we decided
to compute the action of a
given classical solution φcl
in a finite region of τ+, τ−.
How does the result of this computation depend on the
classical solution φcl? Suppose that we change the classical
solution by a small amount δφcl . We will get: δS =

∫
C a

where a is some 1-form on the worldsheet. Since a is linear
in δφcl , we can also say that a is a 1-form on the phase
space (the space of classical solutions). We will say that
this is a form of the type (dτ)(δφ).
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Let us consider ω = δa. This is a form of the type dτ(δφ)2.
We will assume that ω is defined unambiguously. In principle
we could add to a some a′ which is closed as a 1-form on
the worldsheet. But for a large class of theories if a′ is
dτδφ-type and d-closed then it is δ of some d-closed for of
the type (dτ) (a density of the local conserved charge).

Assuming that there are no d-closed forms a′ of the type
(dτ)(δφ), other than δ of something, we have ω = δa an
unambiguously defined form of the type (dτ)(δφ)2. Notice
that ω is d-closed.
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Now consider the theory either on a cylinder (periodic
boundary conditions on τ+ − τ−) or some other appropriate
boundary condition. The symplectic form is by definition:

This is a closed 2-form on the phase space.
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It is also sometimes useful to consider the “symplectic
potential” which is defined as:

α =

∮
C

a

such that
δα = Ω

(But we have to remember that α depends on the choice of
the contour C.)
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Principal chiral model (PCM)
and nonlinear σ-model (NLSM)

These models are both defined by the action of the type:

Sstr =

∫
dτ+dτ−U(∂+gg−1, ∂−gg−1)

where g is a group element belonging to some group G,
and U is some potential. For the PCM we have

U(∂+gg−1, ∂−gg−1) = −tr(∂+gg−1∂−gg−1)

For the NLSM we take g = Lie(G), g = g0̄ ⊕ g1̄,

U(∂+gg−1, ∂−gg−1) = −tr
(
(∂+gg−1)1̄(∂−gg−1)1̄

)
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We will consider g = so(N + 1) and g0̄ = so(N). In this
case we have:

g0̄ :



0 0 0 0 0 0
0 ∗ ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗ ∗


and

g1̄ :



0 ∗ ∗ ∗ ∗ ∗
∗ 0 0 0 0 0
∗ 0 0 0 0 0
∗ 0 0 0 0 0
∗ 0 0 0 0 0
∗ 0 0 0 0 0


This nonlinear sigma-model describes the target space
SO(N + 1)/SO(N) = SN .
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We introduce the notation

J± = −∂±gg−1

So, the action is
∫

dτ+dτ−U(J+, J−).

For the NLSM we will use the notations J0̄ and J1̄:

J = J0̄ + J1̄, J0̄ ∈ g0̄, J1̄ ∈ g1̄

Let us consider the infinitesimal left shift of g:

δξg(τ+, τ−) = −ξ(τ+, τ−)g(τ+, τ−)

In terms of J:
δξJ = Dξ = dξ + [J, ξ]



Poisson
brackets in
AdS/CFT

A. Mikhailov

Introduction

Def. of Ω.

PCM and
NLSM
Definitions

Symplectic structure

Non-standard
symplectic
structures of
the NLSM
NLSM and
generalized
sine-Gordon

String on S2 and SG

θstr : straightforward
derivation

Better derivation of
θstr

Poisson brackets of
vector mKdV

Geometry of
θ0

We introduce the notation

J± = −∂±gg−1

So, the action is
∫

dτ+dτ−U(J+, J−).

For the NLSM we will use the notations J0̄ and J1̄:

J = J0̄ + J1̄, J0̄ ∈ g0̄, J1̄ ∈ g1̄

Let us consider the infinitesimal left shift of g:

δξg(τ+, τ−) = −ξ(τ+, τ−)g(τ+, τ−)

In terms of J:
δξJ = Dξ = dξ + [J, ξ]



Poisson
brackets in
AdS/CFT

A. Mikhailov

Introduction

Def. of Ω.

PCM and
NLSM
Definitions

Symplectic structure

Non-standard
symplectic
structures of
the NLSM
NLSM and
generalized
sine-Gordon

String on S2 and SG

θstr : straightforward
derivation

Better derivation of
θstr

Poisson brackets of
vector mKdV

Geometry of
θ0

Virasoro constraint

In string theory we use the NLSM with the additional
constraint:

tr(J1̄+)2 = tr(J1̄−)2 = −1 (1)

This is called Virasoro constraint
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Symplectic structure of PCM

For PCM the symplectic potential is:

αPCM(δξ) =

∮
tr ξ ∗ J

where ∗J = ∗(J+dτ+ + J−dτ−) = J+dτ+ − J−dτ−.
Calculation of δα gives:

Ω(δξ, δη) =

∫
dτ+tr

(
2ξ

∂

∂τ+
η + ξ[J+, η]

)
−

−
∫

dτ−tr
(

2ξ
∂

∂τ−
η + ξ[J−, η]

)
Hint: use the formula δα(v1, v2) = v1.α(v2)− v2α(v1)− α([v1, v2]) and
the fact that [δξ, δη] = δ[ξ,η].
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Symplectic structure of NLSM

For the NLSM the symplectic potential is:

αNLSM(δξ) =

∮
tr ξ1̄ ∗ J1̄ (2)

The symplectic form Ω evaluated on the vectors δξ and δη

defined by δξJ = dξ + [J, ξ] and δηJ = dη + [J, η] is:

Ω(δξ, δη) =

∫
dτ+tr(ξ1̄D0̄+η1̄)−

∫
dτ−tr(ξ1̄D0̄−η1̄) (3)

where
D0̄ = d + adJ0̄

When ξ ∈ g0̄, δξ is a gauge symmetry; it is in the kernel of Ω.
(Because Ω does not contain ξ0̄.)
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In our definition of the NLSM we used a group-valued field
g ∈ SO(N + 1). The current J was defined as J = −dgg−1.
In fact NLSM describes the minimal embeddings of the worldsheet to SN ,
and g(τ+, τ−) has a simple geometrical meaning:

It is the orthogonal matrix which
rotates some fixed x0 ∈ SN to
x(τ+, τ−). We have x = g−1x0.
Notice that g is defined up to
g ' g0g where g0 ∈ SO(N). This
corresponds to the gauge
transformation of J,
δξJ = dξ + [J, ξ] for ξ ∈ g0̄.

And the right shift g 7→ gC, C ∈ SO(N + 1), C = const corresponds to
the global rotations of SN ; notice that these global rotations do not
change J.
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NLSM symplectic form
in plain English.

The geometrical “translation” of Eq. (3) is:

Ω =

∫
dτ+(δx, D0̄+δx)−

∫
dτ−(δx, D0̄−δx) (4)

Here we should understand D0̄ as the standard (Levi-Civita)
connection in the tangent space to SN .

This is the canonical symplectic form following from the
action

∫
dτ+dτ−(∂+x, ∂−x).
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Generalized sine-Gordon
Consider the space of solutions of the differential equations

∂+J1̄− + [J0̄+, J1̄−] = 0 (5)
∂−J1̄+ + [J0̄−, J1̄+] = 0 (6)
∂+J0̄− − ∂−J0̄+ + [J0̄+, J0̄−] + [J1̄+, J1̄−] = 0 (7)

with the gauge symmetry

δJ = dξ0 + [J, ξ0], ξ0 ∈ g0̄ (8)

and the constraint

tr(J1̄+)2 = tr(J1̄−)2 = −1 (9)

Definition. The system of equations (5),(6) and (7) with the
gauge symmetry (8) and the constraint (9) is called the
generalized sine-Gordon (GSG).
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In some sense, the generalized sine-Gordon is equivalent to
the NLSM. One only has to add g satisfying (d + J)g = 0
But this g is almost defined in terms of J, the only ambiguity
comes from the integration constants. (Which correspond to
g 7→ gC, C = const, it i.e. the global rotations of SN .)

In terms of J the symplectic structure Eq. (3) is nonlocal:

Ω =

∫
dτ+tr

(
(D−1

+ δJ+)1̄D0̄+(D−1
+ δJ+)1̄

)
− (+ ↔ −)

But if we add g satisfying (d + J)g = 0 we get the local
formula because

D−1
+ δJ+ = δgg−1

Ω =

∫
dτ+tr

(
(δgg−1)1̄D0̄+(δgg−1)1̄

)
− (+ ↔ −)
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In fact adding g is not the only way of getting the system
with the local symplectic structure out of the GSG. For
example, we can add the so(N + 1)-valued field Ψ satisfying

DΨ = ∗J1̄

and get the symplectic structure:

Ω =

∮
δΨδJ

This corresponds to the action

S =

∫
tr

(
Ψ(dJ + J2) + J1̄ ∧ ∗J1̄

)
The equation of motion for Ψ implies the existence of g such
that J = −dgg−1 and the action on-shell is equal to the
standard action

∫
dτ+dτ−tr

(
(∂+gg−1)1̄(∂−gg−1)1̄

)
and

therefore gives the same symplectic structure.
This could be thought of as a "T-dual" of the classical string.
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In any case, we have a classical string (or its T-dual) and go to
sine-Gordon by forgetting g: (J, g) 7→ J (or forgetting Ψ in the case of the
T-dual). Classical string had a local Poisson bracket, and the
corresponding Poisson bracket of GSG becomes nonlocal because we
forget some degrees of freedom:
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Relativistic symmetry of the
GSG

Equations of motion:

∂+J1̄− + [J0̄+, J1̄−] = ∂−J1̄+ + [J0̄−, J1̄+] = 0

∂+J0̄− − ∂−J0̄+ + [J0̄+, J0̄−] + [J1̄+, J1̄−] = 0

with the gauge symmetry δJ = dξ0 + [J, ξ0], ξ0 ∈ g0̄

and the Virasoro constraint tr(J1̄+)2 = tr(J1̄+)2 = −1.

There is an obvious symmetry under the constant shifts of
τ+ and τ−. But besides shifts, the GSG equations are also
symmetric under boosts:

J0̄±(τ+, τ−) 7→ λ±1J0̄±(λτ+, λ−1τ−)

J1̄±(τ+, τ−) 7→ J1̄±(λτ+, λ−1τ−)
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We we will use this relativistic symmetry to show that the
classical string has an interesting non-standard symplectic
structure.

First of all, we need to understand better the standard
symplectic form in terms of the currents J.

We start by considering the classical string on S2, which
corresponds to the usual sine-Gordon.
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Let us first concentrate on the special case of the S2

sigma-model, i.e. N = 2, g = so(3), g0̄ = so(2).

Let ~n(τ+, τ−) be the S2-part of the
string worldsheet.

The Virasoro constraints:
|∂+~n| = |∂−~n| = 1.

The angle 2ϕ between ∂+~n and ∂−~n
satisfies the sine-Gordon equation

∂+∂−ϕ = −1
2

sin 2ϕ

The function ϕ(τ+, τ−) determines
the shape of the string worldsheet.
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The sine-Gordon equation is the equation of motion in the
relativistic two-dimensional theory with the action

SSG =

∫
dτ+dτ−

(
∂+ϕ∂−ϕ +

1
2

cos 2ϕ

)
(10)

This action gives an exactly solvable relativistic quantum
field theory.

But the action (10) does not correspond to the action of the
classical string. Therefore the Poisson bracket of the
classical string is different from the Poisson bracket of the
sine-Gordon theory. In fact, the sine-Gordon theory has an
infinite family of symplectic structures on its phase space,
and the string symplectic structure corresponds to one of
them.

Which one? We will first give a pedestrian derivation of Ωstr
and then give a more scientific derivation.
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Ωstr in SG (a pedestrian approach)

The action of the classical string gives the following
symplectic structure:

Ωstr =

∮ [
dτ+(δ~n, ∂+δ~n)− (δ~n, ∂−δ~n)

]
We will concentrate on the left lightcone component:

Ωstr =

∫
C+

dτ+(δ~n, ∂+δ~n)
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Let us choose the following symplectic potential:

α =

∫
dτ+(δ~n, ∂+~n)

Ω = δα

Consider the O(3) invariant vector field on the phase space
defined by the functions f+ and f−:

(δf+,f−~n, ∂+~n) = f+, (δf+,f−~n, ∂−~n) = f−

We have a very simple formula for α:

α(δf+,f−) =

∫
dτ+f+

Now I want to compute Ω = δα(δf , δg). I will compute δα
using the general formula:

δα(v , w) = v .α(w)− w .α(v)− α([v , w ])
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δf n =
4

sin2 2ϕ
[(f+ − f− cos 2ϕ)∂+n + (f− − f+ cos 2ϕ)∂−n]

Equations of motion for ~n leads to the equations for δ~n which in turn
leads to the equations for f+ and f−:

f− = −sin 2ϕ

2q+
∂+f+ + f+ cos 2ϕ

f+ = −sin 2ϕ

2q−
∂−f− + f− cos 2ϕ

We can see that f− is expressed in terms of f+ and ∂+f+. This allows to
compute the action of δf+,f− on (∂+~n, ∂−~n) in terms of f+. It is convenient
to introduce q+:

q+ = ∂+ϕ

Direct computation shows:

δf q+ =
(
(1 + ∂2

+)q−1
+ ∂+ + 4∂+q+

)
f+
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Now the commutator [δf , δg] can be found by an explicit
calculation:

[δf , δg] = δ[f ,g]

where

[f , g] = −〈q−1
+ ∂+f 〉

↔
∂+ 〈q−1

+ ∂+g〉+ 4f
↔
∂+ g

Therefore the symplectic structure Ω(δf , δg) is:

Ω(δf , δg) =

∫
dτ+

(
−〈q−1

+ ∂+f 〉
↔
∂+ 〈q−1

+ ∂+g〉+ 4f
↔
∂+ g

)
In terms of q+:

Ω =

∫
dτ+δq+(θ0 + θ1)

−1θ1(θ0 + θ1)
−1δq+ (11)

where θ0 and θ1 are some interesting integro-differential
operators:
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θ0 = ∂+

θ1 = ∂3
+ + 4∂+q+∂−1

+ q+∂+

Given some operator θ we can try to define a Poisson bracket by the
formula

{F , G} =

∫
dτ+ δF

δq+
θ

δG
δq+

But if we want to call it a Poisson bracket we should verify that it satisfies
the Jacobi identity {{F , G}, H}+ cycl = 0. This leads to some differential
equations on the coefficients of θ which are bilinear in θ. We will
schematically write these equations as follows:

[[θ, θ]] = 0 (the Jacobi equation)

The Jacobi equation is equivalent to the statement that Ω = θ−1 defines
a closed 2-form:

Ω =

∫
dτ+δq+θ−1δq+

For example, for θ0 we have Ω0 =
R

dτ+δϕ∂+δϕ.
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It is rather obvious that θ0 = ∂+ satisfies [[θ0, θ0]] = 0; in fact,
θ0 defines the standard Poisson bracket of the sine-Gordon
model. But we also have:

[[θ1 + 2θ0 + θ0θ
−1
1 θ0 , θ1 + 2θ0 + θ0θ

−1
1 θ0]] = 0 (12)

Indeed, we have just shown that (θ0 + θ1)
−1θ1(θ0 + θ1)

−1 is
the canonical symplectic structure of the classical string.
And (12) is the corresponding Jacobi identity. (Which follows
automatically from the fact that the symplectic form of the
classical string is a closed form.)

Consider the boost ϕ(τ+) 7→ ϕ(λτ+). We get θ0 → λθ0 and
θ1 → λ3θ1. The bracket [[, ]] is homogeneous under the
rescaling, and therefore we should have

[[θ1, θ1]] = 0
[[θ1, θ0]] = 0
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This means that the phase space of the sine-Gordon theory
has a family of the Poisson brackets of the form

θ0 + tθ1

This satisfies the Jacobi identity

[[θ0 + tθ1, θ0 + tθ1]] = 0

for an arbitrary t . This is known as “bihamiltonian structure”.

The Poisson structure of the classical string in terms of θ0
and θ1 becomes:

θstr = (θ0 + θ1)θ
−1
1 (θ0 + θ1)

We will now give a slightly more “scientific” derivation of this
formula for θstr which will be generalizable from S2 to SN .
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Scientific approach to θstr

An alternative derivation uses Eq. (2):

α(δξ) = −
∫

dτ+tr (ξJ1̄+)

Remember that here δξ is defined by δξJ+ = D+ξ.

Let us choose the gauge where J1̄+ = const. In this gauge,
when we compute δα, we do not have to evaluate δJ1̄+

because J1̄+ is a constant matrix. We get:

Ω(δξ1 , δξ2) =

∫
dτ+tr(J1̄+[ξ1, ξ2]) (13)
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So, let us fix the gauge so that

J1̄+ =

 0 1 0
−1 0 0
0 0 0


Since we have choosen the gauge where J1̄+ = const we
should have:

J+ =

 0 1 0
−1 0 2q+

0 −2q+ 0


J− =

 0 cos 2ϕ sin 2ϕ
− cos 2ϕ 0 0
− sin 2ϕ 0 0


(Remember that we should have ∂+J1̄− + [J0̄+, J1̄−] = 0 and also
∂−J1̄+ + [J0̄−, J1̄+] = 0.)
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Suppose that we have
two variations δξ(1) and
δξ(2) corresponding to two
parameters ξ(1) and ξ(2),
δξ(j)J = Dξ(j):

ξ(1) =

0
@ 0 γ(1) α(1)

−γ(1) 0 β(1)

−α(1) −β(1) 0

1
A

ξ(2) =

0
@ 0 γ(2) α(2)

−γ(2) 0 β(2)

−α(2) −β(2) 0

1
A

Then the value of the string symplectic form on these two
vectors is, according to (13):

Ω(δξ(1) , δξ(2)) =

∫
dτ+(α(1)β(2) − α(2)β(1))

Therefore the calculation of the symplectic structure is
reduced to solving the equation D+ξ = δJ+ for ξ:

∂+ξ + [J+, ξ] =

 0 0 0
0 0 2δq+

0 −2δq+ 0
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We can solve for α, β, γ in terms of δq+:

α = −2θ0(θ0 + θ1)
−1δq+

β = 2θ−1
0 θ1(θ0 + θ1)

−1δq+

γ = −2∂−1
+ q+α

Now the calculation of the classical string symplectic form
gives us:

Ω =

∫
dτ+α(δq+)β(δq+) =

=

∫
dτ+δq+(θ0 + θ1)

−1θ0(θ0 + θ1)
−1δq+

which is of course the same as Eq. (11).
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This method works also for the string on SN = SO(N + 1)/SO(N). In this
case g1̄ = so(N + 1) and g0̄ = so(N), J+ = J1̄+ + J0̄+. Let us fix the
gauge so that

J1̄+ =

0
BBB@

0 1 0 . . . 0
−1 0 0 . . . 0
...

...
...

...
...

0 0 0 . . . 0

1
CCCA

There is a residual gauge freedom which allows to bring J+ to the form:

J+ =

0
BBBBB@

0 1 0 . . . 0
−1 0 q1

+ . . . qN−1
+

0 −q1
+ 0 . . . 0

...
...

...
...

...
0 −qN−1

+ 0 . . . 0

1
CCCCCA

Again we have to find D−1
+ (δJ+) and calculate

Ω =

Z
dτ+tr

�
J1̄+[D−1

+ (δJ+), D−1
+ (δJ+)]

�
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D−1
+ (δJ+) has the following form: 0 γ ~αT

−γ 0 ~βT

−~α −~β ∂−1
+ (~q+ ⊗ ~βT − ~β ⊗ ~qT

+)


where

~β = −(∂+ + ~q+∂−1
+ ~qT

+)~α

δ~q+ = −~α− (∂+ + ι(~q+)∂−1
+ ~q+∧)(∂+ + ~q+∂−1

+ ~qT
+)~α

Therefore

Ω =

∫
dτ+(~α(δ~q+), ~β(δ~q+)) = (14)

=

∫
dτ+δ~q(θ0 + θ1)

−1θ1(θ0 + θ1)
−1δ~q
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where

θ1 = θ0J θ0

J = ∂+ + ~q∂−1
+ ~qT

θ0 = will explain in a moment

Straightforward expression for θ0 following from (14) is somewhat clumsy;
I will explain θ0 on the next slide.
So, we have again the Poisson structure of the form:

θstr = (θ0 + θ1)θ
−1
1 (θ0 + θ1) = θ1 + 2θ0 + θ0θ

−1
1 θ0

The same scaling argument as for S2 shows that
[[θstr , θstr ]] = 0 implies

[[θ1, θ1]] = 0
[[θ1, θ0]] = 0

But this argument does not tell us that [[θ0, θ0]] = 0.
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What is θ0?

θ0 is the boost-invariant symplectic structure of the GSG.
To describe θ0, we use the symplectic structure of the WZW
model. The (chiral) phase space of the WZW is the space of
group-value functions G(τ+), and the symplectic structure
is:

ΩWZW =

∫
dτ+tr δGG−1δ(∂+GG−1)

The symplectic form θ−1
0 is the restriction of ΩWZW on the

space of functions G(τ+) satisfying

∂+GG−1 = −


0 q1

+ . . . qN−1
+

−q1
+ 0 . . . 0

...
...

...
...

−qN−1
+ 0 . . . 0

 (15)
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It is easy to see that Ω0 is closed:

δΩ0 =

∫
dτ+ 1

3
∂+tr(δGG−1)3 = 0

This implies the Jacobi identity [[θ0, θ0]] = 0 for θ0.

A slight disadvantage of this description of θ0 is that it
seems to be tied to a characteristic line C+ on a string
worldsheet.
But I will now explain how to rewrite it in terms of an
arbitrary contour on the worldsheet.
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Through every point on the string worldsheet Σ go two
lightlike curves. They form a “light cone” on the string
worldsheet. Let C+ and C− be the projections of these
directions to SN (=characteristics).
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to C+ and C−. We will call them K + and K−. Let C+ and
C− be the projections of these directions to SN .
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formed by those vectors of TSN which are orthogonal to TΣ.
Let C+ and C− be the projections of these directions to SN .
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Notice that N has dimension N − 2. Let us consider an
N − 1 dimensional bundle N ⊕ K+. Let C+ and C− be the
projections of these directions to SN .
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N ⊕ K−. Let C+ and C− be the projections of these
directions to SN .
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bundle TSN can be restricted to Σ, and the restricted bundle
is formally called i∗TSN .
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The Levi-Civita connection in TSN can be restricted to
i∗TSN , so we can parallel transport the vectors tangent to
SN along the curves in Σ. We call the corresponding
covariant derivative D0̄.
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Remember that a connection can be projected from a
bundle to a subbundle. Suppose that we have an orthogonal
vector bundle W with the connection ∇W . Consider a
subbundle V ⊂ W. For any vector v ∈ V we define

∇Vv = PV∇Wv

This is the definition of ∇V .

Let us use the notation: ∇W |V for this induced connection
∇V .
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Let us restrict D0̄ on N ⊕ K+ and N ⊕ K− and denote the
resulting connections ∇L and ∇R:

∇L = D0̄|N⊕K+

∇R = D0̄|N⊕K− (16)

It turns out that ∇L and ∇R are both flat:

[∇L
+,∇L

−] = 0, [∇R
+,∇R

−] = 0

This follows from the string equations of motion.
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Let us introduce some trivialization of N . A trivialization of
N is a choice of N − 2 sections e1, . . . eN−2 of N which form
an orthonormal system:

(ei , ej) = δij

Notice that the trivialization of N defines the trivializations of
both N ⊕ K+ and N ⊕ K−. Indeed, to get an orthonormal
system in N ⊕ K+ we just add to e1, . . . eN−2 the unit vector
in K+. (A different choice of the trivialization of N will give
the same answer for the symplectic form.)

Now, having the trivializations N ⊕ K+ ' RN−1 and
N ⊕ K− ' RN−1 we can consider the monodromies of the
flat connections ∇L and ∇R. The monodromies are just the
matrices gL and gR such that:

∇LgL = 0, ∇RgR = 0
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Let us introduce some trivialization of N . A trivialization of
N is a choice of N − 2 sections e1, . . . eN−2 of N which form
an orthonormal system:

(ei , ej) = δij

Notice that the trivialization of N defines the trivializations of
both N ⊕ K+ and N ⊕ K−. Indeed, to get an orthonormal
system in N ⊕ K+ we just add to e1, . . . eN−2 the unit vector
in K+. (A different choice of the trivialization of N will give
the same answer for the symplectic form.)

Now, having the trivializations N ⊕ K+ ' RN−1 and
N ⊕ K− ' RN−1 we can consider the monodromies of the
flat connections ∇L and ∇R. The monodromies are just the
matrices gL and gR such that:

∇LgL = 0, ∇RgR = 0
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The symplectic structure of the
generalized sine-Gordon

Ω =

∮
[8δϕ ∗ dδϕ+ (17)

+tr
(
(δgLg−1

L )δ(dgLg−1
L )

)
− tr

(
(δgRg−1

R )δ(dgRg−1
R )

)]
where 2ϕ is the angle between C+ and C−.

In this form it is relatively easy to prove that Ω does not
depend on the choice of the contour. (A calculation in
coordinates.)
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To prove that Eq. (17) is equivalent to Eq. (15) we notice
that the monodromy matrix g in the normal frame is related
to gL and gR in the following way:

G =

[
1 0
0 g−1

R

] cos 2ϕ − sin 2ϕ 0
sin 2ϕ cos 2ϕ 0

0 0 1

[
1 0
0 gL

]
(18)

This formula allows us to prove that Eq. (15) is equal to
Eq. (17) using the Polyakov-Wiegmann type of identities
and the fact that dGG−1 is of the form

dGG−1 =


0 ∗ ∗ ∗ ∗
∗ 0 0 0 0
∗ 0 0 0 0
∗ 0 0 0 0
∗ 0 0 0 0
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Notice that in our approach we constructed both the
canonical symplectic form Eq. (4) and the non-standard
form Eq. (17) in terms of the geometry of the string
worldsheet. (The generalized sine-Gordon was actully used
only to prove the compatibility.)

The non-standard symplectic form Ω0 is local only if we add
the additional fields gL and gR. It would be interesting to see
if they have any meaning in string theory.
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Open questions

• Generalize the construction of Ω0 to the full superstring
AdS5 × S5.

• Are bihamiltonian structures useful in the quantum
theory of integrable models?

• Suppose that we can quantize the vector mKdV with
the boost invariant Poisson bracket θ0. Can we then
translate the result of the quantization to the
quantization of θstr ?
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