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Introduction

Poisson brackets are very important in classical mechanics,
in particular because they are the classical analogue of the
quantum mechanical commutators.

Integrable systems usually have many Poisson brackets
which satisfy some compatibility conditions. Actually, it is
enough to have two "compatible" Poisson brackets, and
then it is possible to generate an infinite family of them.

In my talk | will discuss this so-called "bihamiltonian
structure" for the classical string on a sphere (the nonlinear
sigma-model).
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Introduction

The talk is based on my paper:
A.M., hep-th/0511069
and some work in progress.

There was a substantial earlier work, for example:

A. Doliwa, P.M. Santini, Phys. Lett. A185 (1994) 373-384
J.A. Sanders, J.P. Wang, math.AP/0301212

G. Mari Beffa, ...

S.C. Anco, nlin.SI/0512051,0512046

I. Bakas, Q-Han Park, H.-J. Shin, hep-th/9512030
| will use some ideas from these papers in my talk.

(Not to mention the old classical papers of Pohimeyer,
Eichenherr, Rehren, Neveu, Papanicolaou.)
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Introduction

| will first review the general definition of the symplectic
structure, and then describe the canonical Poisson brackets
for the nonlinear sigma-model (NLSM).

| will then discuss the "hidden" relativistic symmetry of the
NLSM equations and how it acts on the canonical
symplectic structure. For this | will need to introduce the
"generalized sine-Gordon model". The relativistic symmetry
leads to the existence of the non-standard symplectic
structures. | will discuss the relativistically invariant
non-standard symplectic structure and its geometrical
meaning from the point of view of the string worldsheet.
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Def. of Q.

Suppose that we have a classical field theory with the action

S— / drtdrL]d]

action over infinite

space-time, but let us

suppose that we decided C

to compute the action of a

given classical solution ¢ \\f——ﬁg,,,

in a finite region of 7+, 7. \j

How does the result of this computation depend on the
classical solution ¢? Suppose that we change the classical
solution by a small amount d¢¢. We will get: 6S = [, a
where a is some 1-form on the worldsheet. Since ais linear
in 0, We can also say that ais a 1-form on the phase
space (the space of classical solutions). We will say that
this is a form of the type (d7)(0¢).

We usually compute the 0S = 5ﬁc a
|
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Def. of Q.

Let us consider w = da. This is a form of the type d7(5¢)3.
We will assume that w is defined unambiguously. In principle
we could add to a some & which is closed as a 1-form on
the worldsheet. But for a large class of theories if &' is
drd¢-type and d-closed then it is 6 of some d-closed for of
the type (dr) (a density of the local conserved charge).

Assuming that there are no d-closed forms & of the type
(d7)(09), other than ¢ of something, we have w = da an
unambiguously defined form of the type (d7)(6¢)2. Notice
that w is d-closed.



Poisson
brackets in
AdS/CFT

A. Mikhailov

Def. of Q.

Definitions

Symplectic structure

6., straightforward

lerivation of

on brackets of

or mKdV

Now consider the theory either on a cylinder (periodic
boundary conditions on 7™ — 77) or some other appropriate
boundary condition. The symplectic form is by definition:

This is a closed 2-form on the phase space.



Poisson
brackets in
AdS/CFT

A. Mikhailov

It is also sometimes useful to consider the “symplectic
potential” which is defined as:

Symplectic structure o = f a
c

such that

Def. of Q.

oo =Q

(But we have to remember that o« depends on the choice of
the contour C.)
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A Hhetor and nonlinear o-model (NLSM)

These models are both defined by the action of the type:

Sstr = / drtdru(9.+997",0-997")

where g is a group element belonging to some group G,
and U is some potential. For the PCM we have

UW+99",0-997") = —tr(9+99 '9_gg ")

For the NLSM we take g = Lie(G), g = g5 & 97,

U(0+99~,0-997") = —tr (9997 ")5(0-997")7)
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This nonlinear sigma-model describes the target space
SO(N +1)/SO(N) = SN.
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Ji = —d:9g7"

So, the action is [ drTdr U(Jy,J-).

Definitions

Symplectic structure

For the NLSM we will use the notations Jj and J;:

J:J()—i-JT, J(—)eg(—), JTEQT
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Ji = —d:9g7"

So, the action is [ drTdr U(Jy,J-).
For the NLSM we will use the notations Jj and J;:
J:J()—i-JT, J(—)eg(—), JTEQT

Let us consider the infinitesimal left shift of g:

5£Q(T+, Tﬁ) = _g(TJrv Tﬁ)g(TJr’ 7—7)

In terms of J:
oed = D§ = d& + [J, €]
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Virasoro constraint

In string theory we use the NLSM with the additional
constraint:
tr(Jr)? =tr(Jy_)? = —1

This is called Virasoro constraint
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Definitions
Symplectic structure

Symplectic structure of PCM

For PCM the symplectic potential is:

apcm(de) = 7{“’ £ *dJ

where «J = x(Jy drt +J_dr7) = Jydrt — J_dr.
Calculation of §« gives:

Qe.6,) — [ ot (26t eldl) -

0
- /dT—tr <2£67—77+£[J’77]>

Hint: use the formula (v, v2) = vi.a(v2) — vaa(v4) — a([w1, V2]) and
the fact that [0¢, 6,] = dj¢ -
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For the NLSM the symplectic potential is:

anLsm(de) = 7{” &1 xJy (2)

Definitions
Symplectic structure

The symplectic form 2 evaluated on the vectors é¢ and 4,
defined by d;J = d¢ + [J, €] and 6,J = dn + [J, 7] is:

Q(5¢, 5,) = / dr (€5 Dy ) — / dr (D5 m7)  (3)

where
D() =d+ adJ6

When ¢ € g, d¢ is a gauge symmetry; it is in the kernel of 2.
(Because Q2 does not contain &;.)
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g € SO(N + 1). The current J was defined as J = —dgg~".
In fact NLSM describes the minimal embeddings of the worldsheet to SV,
and g(=*,77) has a simple geometrical meaning:
g * It is the orthogonal matrix which
, rotates some fixed xo € S" to
x(7",77). We have x = g~ "Xo.
Notice that g is defined up to
ey g ~ gog where go € SO(N). This
g & corresponds to the gauge
transformation of J,
ded = d€ + [J, €] for € € g5.

or mKdV

And the right shift g — gC, C € SO(N+ 1), C = const corresponds to
the global rotations of S; notice that these global rotations do not
change J.
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NLSM symplectic form
in plain English.

The geometrical “translation” of Eq. (3) is:

Q= /dr*(éx, D5+6x)—/d7(5x, D5_6x) (4)

Here we should understand Dj as the standard (Levi-Civita)
connection in the tangent space to SV.

This is the canonical symplectic form following from the
action [ drtdr~ (94X, 0_Xx).
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Generalized sine-Gordon

Consider the space of solutions of the differential equations

0udi+ [ ] =0 5)
8_JT+ + [J(‘)_, JT-I—] =0 (6)
Osdy —0-Jo, + oy o1+ 144, 1=0  (7)

with the gauge symmetry
0J = déo +[J, &), o € 9p (8)
and the constraint
tr(Jr)? =tr(Jj_)? = —1 (9)

Definition. The system of equations (5),(6) and (7) with the
gauge symmetry (8) and the constraint (9) is called the
generalized sine-Gordon (GSG).
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In some sense, the generalized sine-Gordon is equivalent to
the NLSM. One only has to add g satisfying (d + J)g =0
But this g is almost defined in terms of J, the only ambiguity
comes from the integration constants. (Which correspond to
g — gC, C = const, it i.e. the global rotations of SN.)

In terms of J the symplectic structure Eq. (3) is nonlocal:

Q- /dﬁtr ((D5160,)7 D5, (D5'50,)7) — (+ = )
But if we add g satisfying (d + J)g = 0 we get the local
formula because

DI'6J; = dgg~"

2~ [ ar'tr (599" )iDs. (399 ")) - (+ = )
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NLSM and
generalized
sine-Gordon

In fact adding g is not the only way of getting the system
with the local symplectic structure out of the GSG. For
example, we can add the so(N + 1)-valued field ¥ satisfying

DV = xJ;

and get the symplectic structure:

Q= %&UéJ

This corresponds to the action
S= /tr (\U(dJ +J2) + Ji A *JT>

The equation of motion for W implies the existence of g such
that J = —dgg~' and the action on-shell is equal to the
standard action [ drdr—tr ((0+g99")7(0-gg~')7) and
therefore gives the same symplectic structure.

This could be thought of as a "T-dual" of the classical string.
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Definitions

Symplectic structure

NLSM and
generalized
sine-Gordon

on brackets of

or mKdV

In any case, we have a classical string (or its T-dual) and go to
sine-Gordon by forgetting g: (J, g) — J (or forgetting W in the case of the
T-dual). Classical string had a local Poisson bracket, and the
corresponding Poisson bracket of GSG becomes nonlocal because we

forget some degrees of freedom:
classical string local O T-dual

| and ¢

generalized
sine-Gordon

non-local Q
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generalized
sine-Gordon

Relativistic symmetry of the
GSG

Equations of motion:

Opdi_ + oy il =0-Jy + [, i ] =0
O+dy_ — 0-Jo, + [Jpy, Jo_] + [Ur4, 7] =0

with the gauge symmetry §J = d&o + [J, %], & € 05
and the Virasoro constraint tr(J;,)? = tr(J;,)* = —1.

There is an obvious symmetry under the constant shifts of
7+ and 7~. But besides shifts, the GSG equations are also
symmetric under boosts:

J@i(7+,7_) — )\i1J6i()\T+, )\_17'_)

qu(7+,7_) — Jii()\TJr, /\_17'_)
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Better derivation of
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vector mKdV.

We we will use this relativistic symmetry to show that the
classical string has an interesting non-standard symplectic
structure.

First of all, we need to understand better the standard
symplectic form in terms of the currents J.

We start by considering the classical string on S?, which
corresponds to the usual sine-Gordon.
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AdS/CFT Let us first concentrate on the special case of the S2
AMinalov— gigma-model, i.e. N = 2, g = so(3), g5 = so(2).

Let ri(~+,77) be the S2-part of the
string worldsheet.

The Virasoro constraints:
|00 = |0_n] = 1.

The angle 2 between 9,7 and 0_ni
satisfies the sine-Gordon equation

1 .
010_p = 5 sin2¢

The function ¢(77, 77 ) determines
the shape of the string worldsheet.
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The sine-Gordon equation is the equation of motion in the
relativistic two-dimensional theory with the action

Ssg = /d7'+d7' <8+cp8_g0 + %COS 2(,0) (10)

This action gives an exactly solvable relativistic quantum
field theory.

But the action (10) does not correspond to the action of the
classical string. Therefore the Poisson bracket of the
classical string is different from the Poisson bracket of the
sine-Gordon theory. In fact, the sine-Gordon theory has an
infinite family of symplectic structures on its phase space,
and the string symplectic structure corresponds to one of
them.

Which one? We will first give a pedestrian derivation of Qg
and then give a more scientific derivation.
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The action of the classical string gives the following
symplectic structure:
Qo = 7{ (7 (57, 0..67) — (57, 0_577)]

We will concentrate on the left lightcone component:

tring on 5% and SG

0, : straightforward
derivation

Better derivation of
0y,

Poisson brackets of
vector mKdV

Ct
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Let us choose the following symplectic potential:
o = /d7'+(5ﬁ, 8+ﬁ)
Q =«

Consider the O(3) invariant vector field on the phase space
defined by the functions f, and f_:

((Sf‘ f ﬁ, a+ﬁ) = f+, ((Sf‘ A,f, ﬁ, 8_ﬁ) = f_

We have a very simple formula for a:

5f+ /dT+f+

Now | want to compute Q = da(dy, dg). | will compute da
using the general formula:

da(v,w) = v.a(w) — w.a(v) — a[v, w])
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Definitions

Symplectic structure

0, : straightforward
derivation

Better derivation of
)

Poisson brackets of
vector mKdV

tring on 5% and SG

4
o= —5—[(fy — f-cos2¢)din + (f- — f, cos2¢)0_n]
sin“2¢
Equations of motion for 7i leads to the equations for 677 which in turn
leads to the equations for f, and f_:
sin2
f_ = — g084_f_~_‘i’f+0032(,0
29+
[ sin2p
T 2q

0_f_ +f_cos2p

We can see that 7 is expressed in terms of f; and 0. f;. This allows to
compute the action of 6,  on (8,7, 5—A) in terms of f.. It is convenient

to introduce g.-:
q+ =049

Direct computation shows:

0rQ+ = ((1 +03)q; 01 + 48+C7+) fe
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Now the commutator [d¢, d4] can be found by an explicit
calculation:

[0f, 6g] = I{1,g]
where

[f.9] = —(q:"04f) 0. (q;'049) +4F 0s g
Therefore the symplectic structure Q(d¢, dg) is:
Q01.05) = [ dr* (~(a;'01) 0. (@;'0.9) +41 0. g)
In terms of q-:
0 [artsq.(60+ 00) "6 (00 + 61) "o (1)

where 6y and 01 are some interesting integro-differential
operators:
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(90 == 8+
01 =03 + 40,907 g0

Given some operator 6 we can try to define a Poisson bracket by the
formula

(F.G}= [ar #0F oG
0+ 0g+
But if we want to call it a Poisson bracket we should verify that it satisfies
the Jacobi identity {{F, G}, H} + cycl = 0. This leads to some differential
equations on the coefficients of 6 which are bilinear in 6. We will

schematically write these equations as follows:
[6.6] =0 (the Jacobi equation)

The Jacobi equation is equivalent to the statement that Q = 6~ defines
a closed 2-form:

Q= / drtéq.0~0q,

For example, for 6, we have Qo = [ dr 50, d¢.
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It is rather obvious that 6y = J;. satisfies [6o, 6p] = O; in fact,
6y defines the standard Poisson bracket of the sine-Gordon
model. But we also have:

[61 + 2600 + 0067 0 , 01 + 200 + 600, 0] =0  (12)

Indeed, we have just shown that (6p 4 61)~101(6g +61)~ " is
the canonical symplectic structure of the classical string.
And (12) is the corresponding Jacobi identity. (Which follows
automatically from the fact that the symplectic form of the
classical string is a closed form.)

Consider the boost p(71) — p(ArT). We get 6y — Ao and
61 — X36;. The bracket [, ] is homogeneous under the
rescaling, and therefore we should have

[01,01] =0
[61,60] =0
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This means that the phase space of the sine-Gordon theory
has a family of the Poisson brackets of the form

0o + 101
This satisfies the Jacobi identity
[6o + t01,60 + t04] =0

for an arbitrary t. This is known as “bihamiltonian structure”.

The Poisson structure of the classical string in terms of 6
and 61 becomes:

Ostr = (00 + 01)07 " (60 + 01)

We will now give a slightly more “scientific” derivation of this
formula for A which will be generalizable from S? to SV,
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An alternative derivation uses Eq. (2):

a(be) = — / drttr (64,

Remember that here ¢ is defined by 6¢J; = D, €.

Let us choose the gauge where J;, = const. In this gauge,
when we compute o, we do not have to evaluate dJ;7
because Jy is a constant matrix. We get:

Q0. de,) = / drttr(ds , [€1. &2]) (13)
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0 10
Ji,=(-100
0 0O
e Since we have choosen the gauge where J;, = const we
should have:
0 1 0
J+ = —1 0 2q_|_
0 -2g. O
0 Cos2p sin2¢
J = —cos2y 0 0
—sin2p 0 0
(Remember that we should have 0, J;_ + [J;,,J;_] = 0 and also

0_Ji, + [J5_, Jﬁ_] =0.)



e Suppose that we have 0 A L0
AASICRT two variations d(1) and D= v o p®
A. Mikhailov 55(2) Corresponding tO tWO _a(1) _ﬂ(1) 0
parameter?)g(” and ¢, 0 4@ 4@

] — Del)-
55(/)*] = D¢V @ =1 —,® 0 5@
—a® 3@

Then the value of the string symplectic form on these two
vectors is, according to (13):

Qb dete) /dT (5@ _ @30y

gd Therefore the calculation of the symplectic structure is
reduced to solving the equation D, ¢ = §J, for &:

0 0 0
O+ [Us 8= 0 0  20qy
0 —2/g+ O
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a = —20p(6p + 61) 7" 5q,
B = 20501 (60 + 61)5q.
y=-20.'q:a

Now the calculation of the classical string symplectic form
gives us:

2= [ drta(sa,)500:) -

de
Better derivation of
[

— /d7+5q+(90 +61) " 00(00 + 61)15q,

kets

which is of course the same as Eq. (11).
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This method works also for the string on SN = SO(N + 1)/SO(N). In this

case g7 = so(N + 1) and g5 = so(N), J; = J;, + Jg,. Let us fix the
gauge so that

0o 1 0 0
-1 0 O 0
iy = oo
0 00 ... 0
There is a residual gauge freedom which allows to bring J; to the form:
0 1 o ... 0
-1 0 g .. g
Jo=| 0 -4 0o ... 0
0o g o ... o0

Again we have to find D} '(5J;) and calculate

Q= /dr*tr (Jq+[DJ:1 (6J4), DJ:1 (5J+)])
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0 y al
—y 0 AT
—a - 974 28T-F®ql)

Symplectic structure Where

g= —(0+ + a+8l157b07
0Gy = —a — (03 + u(41)05 " Gy A)(01 + G207 )a

Therefore

0y,

Poisson brackets of
vector mKdV/

2 [ ort(alsq.). G(6.)) - (14

- /d¢+5é(90 +04) 7104 (60 + 61) 16
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where

01 =607 b0
J=0s++G07'q"
6o = will explain in a moment

Straightforward expression for ¢, following from (14) is somewhat clumsy;
| will explain 8, on the next slide.
So, we have again the Poisson structure of the form:

Ostr = (0o + 91)9171(90 +61) =01 + 200 + 90917190

The same scaling argument as for S2 shows that
I]:Hstr, 931‘/]] = O Imp|IeS

[61,011 =0
[94,00] = O

But this argument does not tell us that [y, 6p] = O.
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6o is the boost-invariant symplectic structure of the GSG.
To describe g, we use the symplectic structure of the WZW
model. The (chiral) phase space of the WZW is the space of
group-value functions G(7+), and the symplectic structure
Qwaw = / drtr 6GG16(9, GG)

The symplectic form 951 is the restriction of Q7w on the
space of functions G(71) satisfying

Ou - 1 N—1
rosntrt 0 & - &
- 0 ... O

0.GG ' =~

g 0o ... 0
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It is easy to see that € is closed:
60 = / dr+;8+tr(6GG1)3 =0
This implies the Jacobi identity [¢y, 6p] = 0 for 6.

A slight disadvantage of this description of 6 is that it
seems to be tied to a characteristic line C;. on a string
worldsheet.

© " But I will now explain how to rewrite it in terms of an

Poisson brackets of

veor kY arbitrary contour on the worldsheet.
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Geometry of
0o

tring on 5% and SG

Through every point on the string worldsheet * go two
lightlike curves. They form a “light cone” on the string
worldsheet. Let C, and C_ be the projections of these
directions to SN (=characteristics).
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Definitions

Geometry of

% It is useful also to consider the directions in T% orthogonal
to CT and C~. We will call them K+ and K.
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Geometry of
%o

There is also a normal bundle to © which we call NV. It is
formed by those vectors of TSN which are orthogonal to Tx.
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Geometry of
%o

Notice that A has dimension N — 2. Let us consider an
N — 1 dimensional bundle N & K, .
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efinitior

Geometry of

& We will also need and N — 1 dimensional vector bundle
NaoK..
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Geometry of

% Let i : ¥ — SN denote the embedding map. The tangent
bundle TSN can be restricted to ¥, and the restricted bundle
is formally called i* TSN,
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The Levi-Civita connection in TSN can be restricted to
i* TSN, so we can parallel transport the vectors tangent to

SN along the curves in ¥. We call the corresponding
covariant derivative Dj.
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Geometry of
%o

Remember that a connection can be projected from a
bundle to a subbundle. Suppose that we have an orthogonal
vector bundle W with the connection Vyy. Consider a
subbundle V ¢ W. For any vector v € V we define

Vyv = P\/VWv

This is the definition of V.

V V

Let us use the notation: Vyy|y for this induced connection
Vy.
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Geometry of
%o

Let us restrict Dy on '@ K, and N/ @ K_ and denote the
resulting connections V- and V7:

vL = D(_)’NEBK+
VA = Dy|yex. (16)

It turns out that V- and V* are both flat:
Vi, vEl=0, [VE VA]=0

This follows from the string equations of motion.
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Let us introduce some trivialization of \/. A trivialization of
N is a choice of N — 2 sections eq, ...en_» of A" which form
an orthonormal system:

(e, €j) = dj

Notice that the trivialization of N defines the trivializations of
both N @& K, and N’ @ K_. Indeed, to get an orthonormal
system in N & K, we just add to eq, . . .en_» the unit vector
in K. (A different choice of the trivialization of N will give
the same answer for the symplectic form.)
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Let us introduce some trivialization of \/. A trivialization of
N is a choice of N — 2 sections eq, ...en_» of A" which form
an orthonormal system:

(e, €j) = dj

Notice that the trivialization of N defines the trivializations of
both N @& K, and N’ @ K_. Indeed, to get an orthonormal
system in N & K, we just add to eq, . . .en_» the unit vector
in K. (A different choice of the trivialization of N will give
the same answer for the symplectic form.)

Now, having the trivializations N’ @ K, ~ RN~ and

N @ K_ ~ RN=" we can consider the monodromies of the
flat connections VL and V7. The monodromies are just the
matrices gt and g/ such that:

vigt=0, VFAgh=0
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generalized sine-Gordon

Q = 7{ [85¢ + d5 o+ (17)
+tr (0010, )5(darg; ")) ~ tr ((99rgR")0(dgRgR"))]

where 2¢ is the angle between C* and C~.

T In this form it is relatively easy to prove that Q does not
st depend on the choice of the contour. (A calculation in
coordinates.)
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To prove that Eq. (17) is equivalent to Eq. (15) we notice
that the monodromy matrix g in the normal frame is related
to g, and gg in the following way:

cos2p —sin2yp 0
G:[1 01]!Sin2g0 CoS 2p 0] [1 0} (18)

This formula allows us to prove that Eq. (15) is equal to
Eqg. (17) using the Polyakov-Wiegmann type of identities
and the fact that dGG~' is of the form

0 % *x x =
« 00 00
dGG'=|+ 0000
« 00 00
+ 0000
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Notice that in our approach we constructed both the
canonical symplectic form Eq. (4) and the non-standard
form Eq. (17) in terms of the geometry of the string
worldsheet. (The generalized sine-Gordon was actully used
only to prove the compatibility.)

The non-standard symplectic form € is local only if we add
the additional fields g; and gg. It would be interesting to see
if they have any meaning in string theory.
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o e Generalize the construction of Qg to the full superstring

AdSs x S5.

e Are bihamiltonian structures useful in the quantum
theory of integrable models?

e Suppose that we can quantize the vector mKdV with
the boost invariant Poisson bracket #y. Can we then
translate the result of the quantization to the

quantization of Og;?

Geometry of
%o
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