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AdSAdS/CFT:/CFT:
• is a realization of ‘t Hooft’s old conjecture: large-Nc
gauge theory at strong coupling = string theory.
• is our most precise definition of string theory*.  With 
AdS5 x S5 boundary conditions, 
we can calculate any process in
the bulk, e.g.
graviton + graviton at E >> MP

→ black hole
→ final state particles.

*Postscript: Smilga notes that we cannot be sure 
that 3+1 SYM exists at large λ, in the sense that 
we could simulate in on the lattice.  This is true, 
but one can resort to 2+1 SYM for a definition-
in-principle of string theory: this also has a 
duality, and is superrenormalizable.



The question `What is string theory?’ still does not have 
complete answer: in a holographic theory, changing the 
boundary conditions is more radical than in a local field 
theory.  Examples:
• AdS5 x perturbed S5, AdS5 x Sasaki-Einstein space are
different gauge theories.
• AdS4 x Calabi-Yau with flux solutions are numerous on the 
string landscape, but duals are unknown (string coupling is 
fixed, so dual has no classical limit).
• Replacing AdS with flat spacetime or eternally inflating 
spacetime probably requires new concepts.  So knowing 
string theory with AdS b.c. does not answer all important 
questions.



AdSAdS/CFT duality is still unproven, /CFT duality is still unproven, as are the many 
string theory dualities, and even purely field-theoretic 
dualities like Montonen-Olive (weak-strong N = 4 SUSY 
Yang-Mills).
• Maldacena’s `derivation’: assume that the following 
diagram commutes:

D3-branes Black 3-branes

N = 4 SYM AdS5 x S5

↔

↔

↔ ↔

High energy:

Low energy:

Weak coupling: Strong coupling:

Εxplained unexpected agreements between gravitational 
and Feynman graph calculations.



• Another derivation (Banks, Strominger): the assertion that a 
ten-dimensional string theory is the same a four-dimensional 
gauge theory is so audacious that if it were false you could 
disprove it in five minutes.
• Agreement in many regimes: exact SUSY, long strings, 
Regge, black holes (RHIC), some numerical tests (e.g. 
Antonuccio, Hashimoto, Lunin, Pinsky).
• String theory (if it exists!) in AdS5 x S5 defines a CFT on R4, 
via the Gubser-Klebanov-Polyakov/Witten dictionary. N = 4 
SYM is the only renormalizable field theory with this 
symmetry.
• Direct path integral manipulations (as in Ising duality) seem 
to need nowhere: this seems to point to the existence of deep 
new concepts (c.f. Riemann hypothesis).  Integrability?



From CFT to QCD:From CFT to QCD:
λ

1

Strong SYM /
Weak world-sheet
(small spacetime 
curvature).

Weak SYM /
Strong world-sheet
(large spacetime 
curvature). E (~ AdS r)

N=4

QCD

AdS/QCD

Break conf. inv.: Witten; JP+Strassler; Klebanov+Strassler
We can approach QCD as a limit: existence `proof’ that 
large-N gauge theory can be written as a string theory at 
strong world-sheet coupling. 3+1 problem becomes 1+1.

Approaching QCD



To understand strongly coupled world-sheet theories study 
first the N = 4 theory at small and intermediate λ.

• At small λ we know that the continuous string must behave 
like a set of pointlike partons. 

Heuristically the partons must be where the string is very 
close to the AdS boundary.  Hard to make this quantitative 
(e.g. Gopakumar).

Existence proof for higher symmetries of N = 4 S-matrix?! 



Can we solve a general λ?  If background fields were NS-NS 
instead of R-R, this would be a rational CFT and solvable by 
standard methods.  So it deserves to be exactly solvable.

• Higher charges: Bena, JP, Roiban (classical string); 
Berkovits (fully quantized string).

But to do with them? 



• Bethe Ansatz around relativistic state |0› rather than charged 

state |J› (Mann and JP, in OSp(m+2|m) analog model).  
Advantage: world-sheet Lorentz invariance manifest.  
Disadvantage: how to find S-matrix for AdS5 x S5 theory?  
Need massive integrable perturbation to find S-matrix by usual 
means.  

Of course, nonzero J does give mass to magnons.  The 
Lorentz-invariance (and conformal invariance) of the 
underlying theory are obscured - the S-matrix no longer 
depends on rapidity differences - but it should be possible to 
express them as constraints on the S-matrix (cf. Janik).
Another advantage (?): very large J is like a ferromagnetic 
state.



with R. Brower,  C.-I. Tan, M. Strassler; hep-th/0603115

The The Pomeron Pomeron in in AdSAdS/QCD/QCD

AdS/QCD is qualitatively similar to QCD at low energy 
but strongly coupled at high energy, differs from QCD in 
systematic ways.  However, it is solvable via string dual: 
everything that one would want to calculate in QCD one 
can calculate in AdS/QCD, and this is often an instructive 
exercise.  In particular, it gives simple insight into BFKL.



Regge Regge Behavior Behavior 

t

s

Regge limit: s → ∞, t fixed.

Strong interaction and flat space 
string theory both show Regge 
behavior in Born approximation 
(one particle exchange):

A(s,t) ~ sα(t) .
Theories with a finite number 
of particles give 

A(s,t) ~ sj .
Fixed poles vs. Regge.

A(s,t)

1

2

3

4



E.g. Virasoro-Shapiro amplitude in flat spacetime.

Notes: 
• α(t) = 2 + α’t/4 is linear in t. 
• There are poles when α(t) = 2, 3, 4, … , corresponding 

to spins of physical particles. 



Trajectories are different in QCD:

α

t

Flat space string

QCD

BFKL

Notes:
• Particle poles at t > 0.
• t large and positive is 
nonperturbative (glueballs).
• t large and negative is 
perturbative (BFKL).

What can we learn from AdS/QCD?



Simpified model:
Scattering takes place in AdS5 (reduce on S5) with IR cutoff: 

Due to warping, momentum pμ seen by inertial observer is 
related to momentum pμ seen by 4-d observer via

˜
The AdS scale RAdS ~ λ1/4 α’1/2 is larger than the string length.

Hadrons (e.g. glueballs) are cavity modes in AdS (plane 
waves in xμ times normalizable function of r).  Treat 
scattering as approximately local in r and superpose 
amplitudes for scattering at different r.



Dominant contribution resembles QCD, but we can do better.

The Regge exponent is 
α(t) ~ 2 + α’t/4 = 2 + (RAdS/r)2α’t/4 .

That is, there is an effective α’(r) = (RAdS/r)2α’; again, r > r0.
Thus we see a superposition of many trajectories

˜



Vertex operator representation:

In Regge limit, small w dominates (after appropriate 
analytic continuations): sw ~ 1.  Thus we should be 
able to make the small-w approximation directly at 
the operator level, using the OPE.  



Usual OPE, w << 1:

Regge OPE, w << 1, ws ~ 1.

Integrate in operator form:

Here p1
− ~ s so the Regge behavior is explicit.

Point to note: fractional powers of              .



Interpretation: amplitude factorizes on Pomeron, vertex
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Pomeron

Pomeron has spin jP = α(t) = 2 + α’t/2.  It is not a physical 
particle: there are poles only for integer α(t).
The Pomeron lives in an unusual Hilbert space: the vertex 
operator factor            maps to the string excitation 
α+

−1 α+
−1, so there is fractional excitation number.

The Pomeron satisfies the physical state conditions.  Its
spin (and so the Regge exponent) is determined by

˜

0 = L0 − 1 = N + α’k2/4 − 1 = j/2 − α’t/4 − 1 .

operator VP =



Extend to AdS spacetime: wavefunctions, vertex operators 
now depend on AdS coordinate r as well, e.g.

Physical state condition like flat spacetime but with −k2

replaced by a covariant Laplacian Δ2
∗,

1 = L0 =

Pomeron propagator sj = sα’Δ2/4 .  Physical effects: running 
slope and diffusion with respect to ln r.  BFKL: sHBFKL gener-
ates diffusion with respect to size of the two-gluon state.
This is an important general property of AdS/CFT duality: 
a string state maps to a color singlet, whose size (dipole 
moment) is the fifth coordinate (color transparency).  

*Poor notation: not the same as operator dimension Δ.



Lowest eigenvalue gives highest trajectory, j = 2 − 1/(2λ1/2) .  
Τhis is the strong-coupling value of the BFKL exponent, 
whose weak coupling value is j = 1 + λ(ln 2)/π2 .

Asymptotics of Pomeron propagator sj = sα’Δ2/2 ,

−Δ2 ~ one-dimensional Schrodinger operator, potential

ln r

V



The BFKL operator and the anomalous dimensionThe BFKL operator and the anomalous dimension

In AdS/CFT, the vertex operators rκ( )j/2 map to
string states, which are dual to `twist two’ local operators; 
e.g. j = 2 is the graviton, which maps to Tμν .

An operator of spin j and dimension Δ gives a normalizable 
solution r2−Δ and a non-normalizable solution rD−2 .  The 
ground state of the analog potential model is r0, 
corresponding to Δ = 2.
The same physical state condition L0(j, Δ) = 1 determines 
both the dimension and the Regge exponent.  For the first, 
fix j and solve for Δ.  For the second, fix Δ = 2 and solve for 
j.



However, it’s not quite that simple.  At weak coupling 
L0(j,Δ) = 1 has at least two branches:

DGLAP (anomalous dimension): Δ − j − 2 = g2 f(j) .

BFKL: j − 1= g2 h(Δ) .

In both cases the function on the RHS has poles, from 
Ψ (Digamma) function, at the point where it intersects 
the other branch.

Thus, the field theory Hamiltonians on the two 
branches are very different, though each is integrable.



BFKL

DGLAP

At weak coupling the anomalous dimension operator and 
BFKL Hamiltonian represent different expansions, though 
both have integrable properties.
The BFKL calculation gives some all-orders information 
about the pole in the anomalous dimension at j = 1.

Pomerons with large R charge?



Conclusions


