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I. The early AdS/CFT correspondence

The AdS/CFT conjecture, in its weakest form,
predicts the correspondence between KK states
in Type IIB SG on AdS5 × S5 and 1/2 BPS
short gauge invariant operators in the bound-
ary SCFT4 ofN = 4 super-Yang-Mills (SYM)
in the ‘t Hooft limit.

Gauge theory

N = 4 SYM contains the fields

φi, Aµ, ψr
α

i = 1, . . . , 6 and r = 1, . . . , 4 with action

S =
1

g2

∫
d4xTr

{
1

4
F 2

µν +
1

2
(Dµφ

i)2 + ψ̄γµDµψ

− 1

4

∑
ij

[φi, φj]2 − i

2
Γi[ψ̄, φi]ψ

}

This theory has a vanishing beta function and
is thus (super)conformal.
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One can prepare various gauge invariant com-
posites, in particular, the so-called 1/2-BPS
multiplets

O[0k0](x) ∼ Tr(φ(i1(x) · · ·φik)(x))

They transform in the [0k0] of the the R-symmetry
group SU(4) and are annihilated by half of the
supercharges. Superconformal symmetry fixes
their dimension ∆ = k.

Example: [020] is the stress-tensor multiplet

O20′(x)
N=4 SUSY

=⇒ Tµν ∼ Tr(∂µφi∂νφ
i) + . . .

AdS supergravity

Type IIB supergravity in D = 10 contains
the fields

(gMN , BMN , φ|CMN , AMNKL, χ)

plus fermions.
Compactification on S5 results in an infinite

tower of Kaluza-Klein (KK) modes K.
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Duality

All KK states of this type IIB compactifica-
tion are in correspondence (duality) with the
1/2 BPS operators of N = 4 SYM

O(xi) ⇔ K(xi, x0)

AdS/CFT predicts matching correlators of
dual states/operators:

〈O1(x1) . . .On(xn)〉 =
δ

δK1(x1)
· · · δ

δKn(xn)
SSG(K1, . . . , Kn)

What can we test by comparing gauge am-
plitudes to their gravity counterparts?

Problem: Two different perturbative expan-
sions in

λ = g2
Y MN and

α′
R2

= λ−
1
2

〈O . . .O〉gauge =
1

N 2
f1(λ) +

1

N 4
f2(λ) + . . .

〈O . . .O〉string =
1

N 2
h1(λ

−1
2) +

1

N 4
h2(λ

−1
2) + . . .
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Field theory expansion is around λ = 0 while
string expansion is around λ = ∞. Semi-
classical supergravity: λ = ∞ – inaccessible
in filed theory. Still, we can test a few things:

– Three-point functions of 1/2 BPS opera-
tors are fixed by conformal SUSY up to
dynamically determined normalization C(g2).
AdS calculations (Lie, Minwalla, Rangamani,
Seiberg) show that

C(g2) = C(g = 0)

Non-renormalization theorem on the CFT side
(D’Hoker, Freedman, Skiba; Howe, ES, West).

– Four-point functions of 1/2 BPS operators
have functional freedom, e.g., for the stress-
tensor multiplet

〈OI1
20′(x1) . . .OI4

20′(x4)〉 =

a(s, t)
δI1I2δI3I4

(x2
12x

2
34)

2
+ b(s, t)

CI1I3I2I4

x2
13x

2
14x

2
23x

2
24

+cyclic permutations of indices (2,3,4) .
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Here s, t are the conformal cross-ratios

s =
x2

12x
2
34

x2
13x

2
24

, t =
x2

14x
2
23

x2
13x

2
24

.

Partial non-renormalization theorem (Eden,
Petkou, Schubert, ES):

a(s, t) = b(s, t)

This property is a manifestation of CFT dy-
namics.

On the AdS side one can compute the dual
four-point amplitude for massless (k = 2) KK
modes (Arutyunov, Frolov)

〈K2K2K2K2〉
It has exactly the partially non-renormalized
form predicted and observed in CFT.
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What else can we learn from four-point cor-
relators? Operator product expansion (OPE):

〈O(1) . . .O(4)〉
=

∑

`,∆

∫

5,6
〈O(1)O(2)S`,∆(5)〉

〈S`,∆(5)S`,∆(6)〉−1〈S`,∆(6)O(3)O(4)〉
– OPE lead to the discovery of semishort

operators (Arutyunov, Frolov, Petkou) whose
protection is explained by CSUSY kinematics
(Arutyunov, Eden, ES)

– OPE gives information about the spectrum
of long twist-two operators, e.g.

Oj ∼ Tr
(
φi∂(µ1 . . . ∂µj)φi

)

in CFT. They are absent (too heavy) in AdS.

No direct quantitative AdS/CFT compari-
son seems possible because of the different per-
turbative regimes.

7



II. Modern AdS/CFT spectroscopy. Search for inte-

grability

Berenstein, Maldacena and Nastase (BMN)
made an important step forward by propos-
ing to study a particular class of operators in
SCFT.

Make two complex combinations

X = φ1 + iφ2 , Z = φ3 + iφ4

of the scalars φi (i = 1, . . . , 6) of N = 4 SYM
(Z has a charge under U(1) ⊂ SU(4)). Form
composites with many Z but few X (“impu-
rities”), e.g.

BMN ops: OJ ∼
J+2∑

k=0

ckTr(XZkXZJ+2−k)

This operator has charge J + 2 and canonical
dimension ∆ = J + 4. Without the impuri-
ties the operator is protected (no anomalous
dimension); the simplest example of an oper-
ator with anomalous dimension is J = 0 (a
member of the Konishi multiplet).
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BMN correspondence: consider the double-
scaling limit

J → ∞, N → ∞,
J2

N
→ fixed

The BMN operators are dual to string states
in a plane wave background. Their scaling di-
mension

∆ = (J + 4) + γ

should match the string energy

E = (J+2)+2
√

1 + λ′+O(
1

J
) = (J+4)+λ′+. . .

where

BMN coupling: λ′ =
λ

J2
=

g2
Y MN

J2

BMN scaling: the anomalous dimension γ is
analytic around λ′ = 0 ⇒ admits perturba-
tive expansion in g2

Y M . For the first time it
became possible to compare perturbative CFT
and string theory. BMN scaling has been ver-
ified at one loop (by BMN) and two loops
(Gross et al).
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Beisert, Kristjansen and Staudacher devel-
oped an algebraic way for determining anoma-
lous dimension using the so-called
dilatation operator (DO). This is a differential
operator (wrt the fields). Applied to a set of
bare composites, it produces a matrix whose
eigenvalues are the anomalous dimensions.

In the X, Z (or SU(2)) sector the two-loop
DO is fixed from symmetries (Beisert).
At three loops there remains a two-parameter
freedom. It can be fixed by the additional as-
sumption of compatibility with BMN scaling.
A direct three-loop computation (Eden, Jar-
czak, ES) for the two simplest operators from
the BMN family (J = 0, 1) allowed to un-
ambiguously determine the DO and thus to
indirectly confirm BMN scaling.

The question is presently open whether BMN
scaling breaks down at four loops?
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The DO in N = 4 SYM has the remark-
able property of integrability. Minahan and
Zarembo observed that the one-loop DO can
be identified with the Heisenberg spin chain
Hamiltonian known to describe an integrable
system with an infinite set of conserved charges
(a similar phenomenon in QCD has been known
since the pioneering work of Lipatov). This
crucial observation lead to the application of
the powerful Bethe Ansatz technique for find-
ing the BMN spectrum.

Recently, Rej, Serban and Staudacher made
an all-loop proposal, the Hubbard model, com-
patible with BMN scaling. This model pre-
dicts, e.g., the four-loop anomalous dimensions
of the operators with J = 0, 1 - to be tested!
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III. Integrability and transcedentality

Kotikov, Lipatov, Onischenko and Velizhanin
came up with a remarkable conjecture about
the three-loop anomalous dimensions of the
twist-two operators. They extracted it from
the monumental QCD calculation of Moch,
Vermaseren, Vogt by simply keeping the ‘most
complicated’, i.e. the terms of maximal tran-
scedentality in the form of multiple harmonic
sums:

γ(3)(j) = 2 S−3 S2 − S5 − 2 S−2 S3 − 3 S−5 + 24 S−2,1,1,1

+6

(
S−4,1 + S−3,2 + S−2,3

)
− 12

(
S−3,1,1 + S−2,1,2 + S−2,2,1

)

−
(

S2 + 2 S2
1

)(
3 S−3 + S3 − 2 S−2,1

)
− S1

(
8 S−4 + S

2
−2

+4 S2 S−2 + 2 S2
2 + 3 S4 − 12 S−3,1 − 10 S−2,2 + 16 S−2,1,1

)

and Sa ≡ Sa(j), Sa,b ≡ Sa,b(j), Sa,b,c ≡ Sa,b,c(j) are harmonic

sums

Sa(j) =

j∑
m=1

1

ma
, Sa,b,c,···(j) =

j∑
m=1

1

ma
Sb,c,···(m), (1)

S−a(j) =

j∑
m=1

(−1)m

ma
, S−a,b,c,···(j) =

j∑
m=1

(−1)m

ma
Sb,c,···(m),

S−a,b,c,···(j) = (−1)j S−a,b,c,...(j) + S−a,b,c,···(∞)
(
1− (−1)j

)
.

12



Soon afterwards, Staudacher was able to con-
firm this result from a completely different point
of view, that of the factorized S-matrix, by us-
ing a perturbative asymptotic Bethe Ansatz.

In a parallel development, Bern, Dixon,
Kosower, Smirnov studied four-gluon scatter-
ing amplitudes in N = 4 SYM. The gluon
legs are put on the massless shell. The result-
ing infrared and collinear singularities contain
information about the asymptotic limit

lim
j→∞

γ(3)(j) ∼ ln j

which exactly matches the KLOV prediction.
Another confirmation of the KLOV formula

came from our calculation of γ(3)(j = 0) (Kon-

ishi). So, now we know γ(3)(j = 0) and γ(3)(j =
∞), but what happens in between? It is very
important to prove this formula - maximal tran-
scedentality is likely to be another manifesta-
tion of integrability (see recent work by Eden
and Staudacher).

How could we do this?
13



– Direct calculation of γ(3)(j) by QCD meth-
ods - seems too difficult (N = 4 SYM is more
complicated than QCD)

– OPE of 〈O20′(1) . . .O20′(4)〉. This has
been very successful at one and two loops (Eden,
Schubert, ES; Bianchi, Kovacs, Rossi, Stanev;
Dolan, Osborn). The three-loop calculation is
difficult but not impossible (under way?).

Alternatively, one may try to guess
〈O20′(1) . . .O20′(4)〉3 loop by putting together
conformal four-point integrals. The OPE con-
sistency conditions and crossing symmetry im-
pose strong restriction, so one might hope to
fix the possible form of the correlator. One and
two loops seem to suggest a simple pattern
- only the so-called ladder (scalar box) inte-
grals appear. Unfortunately, at three loops the
number of possible conformal integrals grows
very rapidly (we know at least 26 integrals),
and not all of them can be easily calculated.
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Another approach would be to compose the
correlator from harmonic polylogs of maximal
transcedentality. Two independent attempts
(Drummond, Smirnov, ES; Dolan, Heslop, Os-
born) have failed so far - it is easy to meet the
OPE requirements, but the KLOV formula is
not reproduced.

We need to know the truth!
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