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Anisotropic Principal Chiral Field

The Lagrangian density

L = —EEIEE; + 1 Q’z S]“ + hQ2
g1 29|
Qf = iTr(c*G1o,.G)

where G belongs to the SU(2) group and A is an
external “magnetic” field acting in the U(1)
sector.

The model is exactly solvable (Wiegmann 1984,
Kirillov and Reshetikhin 1984).



New limit

However! There is a limit which has never been
discussed:

h>M, gi/g—0
At h = 0 this limit leads to the O(3) sigma
model (Wiegmann 1985):

Q= (9,N)?, N*=1



Bethe ansatz
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At v > 1 the factor Sy(f) has poles at
¢ = —in(1 — 1/v) giving rise to the bound states
with the masses

m; = 2M sin(nj/2v), j=1,2,..v

We are interested in the limit v — oo, m; =
const.



Bethe ansatz for low-lying excitations
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B has a gap, f does not
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where m is the mass of the O(3) sigma model
particle. In the small () one can expand the
hyperbolic functions. Then the solution of the
second equation is

A
J(a)=ﬂ+¢m

The values of A, () is determined by two
equations:

/df?(:r(f?) =n/L,— A+ Q*/2=n/rL
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From the second equation it follows that

Q ~ exp(—L/mn)

which means that at small densities one can
neglect ( in comparison with A and treat

TR L i) In(1/Q) ~ mL/n
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The spectrum

s (k) = \/1+ Q2 sin’(k/2) — 1



