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I Introduction

Central problem: How to quantise the string in AdSs; x S° background ?

It seems that this can be rephrased as the question of solving a particular
set of algebraic equations — quantum string Bethe equations.
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Basic ingredients for the Bethe equations:

o Infinite volume:

o exist set of elementary, asymptotic (one particle) excitations magnons with
exact dispersion relation £(p)
o multi-particle spectrum

Etor = Z 5(1%)

e m-body interaction — 2-body S-matrices S(pi,p;)
and py, p; do not change in scattering

@ Finite volume L:

o relevant parameters 1/L, Ajy/L
o leading 1/L effects from periodic boundary conditions on ¥(zq, ..., xn):

U(zq, ..., xn) = ¥Y(zo, ..., N, z1 + L) < Bethe equations

—>» constraints on py,

o all the rest the same as in infinite volume
o it may work exactly (e.g. XXX spin chain)



Bethe equations in string theory:

@ significant simplifications in infinite volumes
@ generic string state in finite volumes —>» complicated situation —»

not clear how much of Bethe will survive

@ Our goals:

o understand what is volume in string theory, how finite V" affects quantum
string Bethe “program”

o understand better nature of elementary excitation in V' < oo, in particular the
unusual dispersion relation
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(I) Setting the stage: volume in string theory

Uniform gauge—conserved charges @), is uniformly distributed along the
string world sheet —>» V ~Q,

@ Background with 2 isometries:

ds® = Gy dt* + Gypdd® + Gijdz'ds’
2 isometlriesx

instead of (t,¢) <« (zy,2_)

x_=¢ —t,zy=(1—-a)t+ag
't/- a-labels various “l.c.” coordinates

— \/X '

4

S = dodr P9, XM 9 XN Gy, P = V—hh?
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(I) Setting the stage: volume in string theory

e Imposing the gauge:

(1) isometries —>» charges
translation in (¢,¢) —» (E,J)

AT AT
E:—£ dop; , J:\/_/ dopg -
™ -Tr

-Tr

or translation in (z_,z4+) —» (P_,Py)

P_:Q/ d(j'p_:J—fC7 P_‘_:Q d0p+:(1—a)J+aE
2 J_, 2r J_,
(2) fixing the gauge:

(@) z4+ = 7+ amo a=23%

5 light-cone gauge

a =0 temporal gauge

™

(b) p+ =1 uniform —>» 2_\/5/ dops = Py D> r= ﬁer

string “size” set by charge P,

(proper size can be small, zero!)



(I) Setting the stage: volume in string theory

(3) first order form of action

\/X r . . i '701 1
S = 5 . dodr <p$+ +P+T- + Pt + Wcl + 200 CQ)
Ci = psal +paly + pat,

(4) solving constraints:

¥ = —amp_ — pa
o N [T
H = —p(aa",p) = H=2£/ deH=FE-J
; -
Hamiltonian for physical d.o.f. non-trivial equation for £
(r = 2Py = (1 - )] + F))

gauge fixed action:

S=-= / dodr (pid' — H)



(I) Setting the stage: how to isolate the magnon

@ world-sheet momentum
gauge-fixed S invariant under 0 — o + b with periodic boundary conditions

for z;,p; —> : :
Pws = — / dO’pifL‘,i = / a )
J—r J—r

@ closed string:  z_ periodic —>»

Ax_ =pyws=0, m=0 level-matching

Z total momentum of multi-magnon configuration



(I) Setting the stage: how to isolate the magnon

@ Hence, if want one-magnon only —>» need pys #0 —>» Az_ # 0!
—>» Solve closed string EOM dropping the level-matching condition:

i N
( — ) — N

—>» consider OPEN string

@ Remarks:
o this is NOT convenctional open string: x; periodic, ( = Axz_ = const.)
o all this was valid for ANY P, (finite or infinite)
o momentum does not vanish at string end points! Flows out and flows in . . .

e if r = 0o (i.e. J = 00) = finiteness of the energy = z, = 0 Neumann b.c. no
flow of momenta



(IT) Constructing the Giant magnon

@ consider action on R x S2

A T
S = _g do AT 4P (—0,tdpt + 0a X;05X)

X1 +iXo=1V1-22, X3=2, —-1<2z2<1

@ solve constraints imposing uniform-LC gauge —» S(z,7/, %)
@ make ansatz
z=2z(0c—v7)

w—1
l—a+aw

@ pluginto S —» conserved charge H,.q =
@ solving H,.q w.r.t. to 2’ get

12 1 22 ’ 22 Z?nm
e =
(1—a) (B —22)) 22, —2%

max




(IT) Constructing the Giant magnon

@ Solution characterised by three parameters (a,w, v)

0 <a <1, labels different gauges

1 <w< 2 1 1

<> “min )

0< <1 2 WQ
< vl < o Zmaw = 1 — U

@ integrate numerically

o It’s not smooth, but energy finite
o here J1< Jo < J3



(IT) Constructing the Giant magnon

z
1

0.8
0.6
0.4
0.2

3 2 -1 i 2 3
Target space shape of the magnon

@ to compute the dispersion relation

By YA [ e YA [T R
27 |2/

Zmin

—r 71_
- r smos
r:—P+:/ do:/ a
s Zmazx
Pws = — / dop.z =2 / dz|p:|
-r Zmin

E—J= f(zmimzma:c?a) = f(pw57 J; CL)




Properties of the solution

a=0gauge: x; =t=7=Az_=Ap (z_=¢p—1)

/sinezv sinf = v

Magnon

Magnon
sinf = % Path

Path sinf = L

Equator Equator

—> movies:



Properties of the solution

Limit J — oo,i.e. infinitely long “string-chain”

@ string becomes rigid, no wiggling!
@ dispersion relation

E—Jzezﬂ o dz%zﬂx/l—qﬂ,
T z 7T

Zmin

Zmazx
Pws = 2/ dz|p,| = 2arccosv .

Zmin

dispersion relation

€(pws) = Q |Sin% of. e(pr) = /1 + 2 sin® (&) — 1
s

2

see sine !
[Hofman, Maldacena]



Properties of the solution

Finite J ~ finite length “string-chain”

@ in general dispersion relation complicated

@ look at large J limit:

dispersion relation

E—J:Q‘sin

R

Pws
2

S11 €

|:1_i . 29Pws _R
e2 2

s

4
= sin? 1% <R2(1 + oS Pyws) + 2R(2 + 3 €oS pys + apsin pys)

+ 7 + 6 cOS Pys + 6aPsys SIN Pys + a2p3vs(1 — COSPWS))€_2R oo :|

2 J
= — +apwscot%.

\/X‘sinz% 2




Properties of the solution

Comments:

@ dispersion relation depends on a — gauge parameter
o the dependence on a disappears in J — oo limit
e if « # 0 = F — J not periodic in p,,s = a = 0 seems preferred

@ From R ~ Vol/A,;, Vol = %J:

o read-off “size” of magnon A;; ~ sin(p/2)
@ agrees with Hubbard [Rej,Serban,Staudacher; Minahan’s talk]
o BMN: Vol-finite and p ~ 1/vVA = Ay — 0= R — oo



Properties of the solution

@ Reconstructing closed string — multi soliton configuration

¢ in general non-trivial
o there still exists a simple superposition (cf. J = o)

multi-magnon open,
non-rigid string

multi-magnon closed,
rigid string !




Symmetry algebra at finite .J

@ key step: drop level matching condition

@ consider simpler example:
flat space L.C. gauge, dynamical generators of the Lorentz algebra

27
J™ = / do (x;@— —x_&;).
0

(non)-conservation

jie /O " 4o (2id— — Fyx_) = —a;(0) (3:_(27r) - :):_(0))

conserved for: (a) Neumann open string or

(b) closed string

o if J = oo have Neumann b.c. ——» all generators conserved
o if J-finite —>» dynamical generators broken!



Symmetry algebra at finite .J

@ strings in uniform a-gauge on R x S?

7 \/X " oo
TN == B dod, (7 3a33[A19€N]) = -

o=T

VA

21

(’Ymaaﬂﬂ[MﬂfN})

o=—T

get that:
Jis < ¢ is conserved

J13, Jo3 not conserved since xz_ not periodic (i.e. ¢ =7+ (1 —a)x_)
@ curiously all conserved when a =1 (i.e. ¢ = 7)

o N.B
For full model (in arbitrary “l.c.” gauge)

@ For J = co —> all generators conserved
o If relax level-matching, by explicit computation, one recovers
centrally extended su(2]2) x su(2|2) algebra

[G.Arutyunov, S.Frolov, J.Plefka and M.Zamaklar, to appear]



Finite J Giant magnon in conformal gauge

@ conformal gauge
Yuv = diag(—l, 1)
and the condition ¢t = 7 (close to a = 0 L.C. gauge)
@ motivated by L.C. analysis, impose boundary conditions
z(r,7) = 2(-=r,7) =0, A¢=¢(r,7) — ¢(—r,7) = p = const.,

i.e. open string with fixed separation of end-points
@ make ansatz

p=¢p—wt, p=plc—vwr), z=z(0c—vwT).

@ integrate analytically

\/1—112d (LO’—UT )
o NV
- 1 — w?v?
= w21 —v?)"



Finite J Giant magnon in conformal gauge

@ world-sheet solution smooth, unlike in L.C. gauges

= (0 gauge

@ target space picture agrees with a

0 gauge

@ dispersion relation etc. the same as for a

@ see that period goes to infinity as J — oo



Summary/outlook

Giant magnons — good laboratory for studying properties of isolated magnon:

@ seen sin: “lattice” - compactness of 5”

@ new prediction for the dispersion relation

@ size of magnon, and structure of exp corrections agrees with Hubbard
@ algebra broken at finite .J
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Questions:

@ Is Bethe going to survive finite .J?
@ Implication of the reduced algebra?

@ gauge dependence at finite ./ = a = 0 preferred?
(i.e. is finite .J Bethe/i.e. Hubbard possible only in particular gauge?)



