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Abstract

Superstrings in AdS5 × S5 background can be described through currents in the psu(2, 2|4)

algebra. Since those currents are not (anti) holomorphic, their OPE’s is not determined by

symmetry principles and its computation should be performed perturbatively. Using the pure

spinor sigma model for this background, we perform this computation in one-loop order.
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1. Introduction
It is not possible to describe the superstring in the AdS5 × S5 background using the Ramond-
Neveu-Schwarz formalism because of the Ramond-Ramond flux. On the other hand, using the
covariant Green-Schwarz formalism it is known how to describe this background [1], although
quantization can only be performed using the light-cone gauge, therefore missing the manifest
PSU(2, 2|4) covariance. Fortunately, there exist a suitable way to covariantly quantize the su-
perstring in this background, which is the pure spinor formalism [2]

In a flat target-space the pure spinor action for the superstring is quadratic, so the OPE’s of
the worldsheet fields are easly determined and can be used to compute scattering amplitudes.
On the other hand, when considering the AdS5 × S5 background, the action is written in terms
of left invariant currents under PSU(2, 2|4) transformations which are neither holomorphic nor
antiholomorphic. For that reason it is difficult to compute their OPE’s. One approach to this
problem is to compute them perturbatively. A first step in this direction was given in [4] [5] ,
where the OPE’s of the worldsheet currents is computed at tree level. The aim of this work is to
compute this OPE’s perturbatively at the one-loop level. As in the flat target-space, the answer
could be useful for computting scattering amplitudes in this background.

The structure of this poster is as follows. In section two review the pure spinor superstring in
AdS5 × S5 background. In section three we perform a perturbative expansion of the action. In
section four we compute some one-loop contributions to the OPE’s.



2. Review of the Pure Spinor Superstring in

AdS5 × S5

As was shown for the first time in [1] , the superstring in AdS5×S5 background can be described
using some currents defined in the superalgebra psu(2, 2|4). Those currents, which are defined in

a left-invariant way, are given by JA = (g−1∂g)A, J
A

= (g−1∂g)A for g an element in the coset
supergroup PSU(2, 2|4)/SO(4, 1) × SO(5). The index A denotes (a, α, α̂, [ab]) and a = 0, . . .4,
a′ = 5, . . .9, α = 1, . . .16, α̂ = 1, . . .16 and a denotes both a and a′. In the pure spinor formalism
there is also a description in terms of these current, given by the action [2] [6]
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the pure spinors and Sλ, S
λ̂
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constant of the order 1/R where R is the AdS radius in 2πα′ = 1 units. Because of their

definition, (JA, J
A

) satisfy the Maurer-Cartan identities ∂J
A − ∂JA + [J, J ]A = 0, so by making

a variation of the action and using those identities, we can find the equations of motion
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where ∇ = ∂+[J0, ] and ∇ = ∂+[J0, ]. We have supressed the index A and introduced a sub-

index 0, 1, 2, 3 for the currents. This notation stands for J0 = J [ab]Mab, J1 = JαQα, J2 = JaPa,

J3 = J α̂Q̂α̂ and similarly for the J currents. That is, we have written the currents in terms of
the generators of psu(2, 2|4), whose structure constants different from zero are
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This Z4 gradding for the superalgebra was noted in [7]. The pure spinors have also equations of

motion, given by ∇N = 1
2 [N, N̂ ] and ∇N̂ = −1

2 [N, N̂ ].

3. Background Field Expansion
We perform a background field expansion as in [7] and [8]. That is, we choose a classical back-
ground, given by an element g0 in the supergroup and parametrize the quantum fluctuations by
X as g = g0e

αX . Then, the currents can be written as

J = g−1∂g = e−αXJ0e
αX + e−αX∂eαX , (14)

J = g−1∂g = e−αXJ0e
αX + e−αX∂eαX . (15)



The exponentials in (14) can be expanded, giving rise to expressions involving commutators,
which can be evaluated by using the structure constants of the psu(2, 2|4) Lie superalgebra (8)
that is,
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α2

2
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([[∂X,X], X]+[[[J0, X], X], X])+..., (16)

and similarly for J . In the last expression J0 denotes the classical part of J and not the index of
the Z4 gradding. In the following, the expansion of the terms in the action 1 will be written up
to cubic terms in the quantum fields, since this is the order relevant for the one-loop computation
of the current’s OPE’S. We will write only the terms including the quantum fluctuations, since
the first term is always a completly classical piece.

Propagators After performing the expansion up to third order in the quantum fields,
the action can be written as a classical piece SCl, a linear piece in the quantum fields, which is
proportional to the equations of motion and therefore will be neglected, a piece from which can be
read-off the propagators Sp and another piece containing the second and third order contributions
in the quantum fields. The piece from which can be read-off the propagators is

Sp =
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which in momentum space can be written as

Xa(k)Xb(l)→ ηab
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4. One-loop corrections without classical field
From the expression for the expansion of the action, it can be found the following expression
containing three quantum fields and non classical field:
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From this equation, an integration by parts allow to find
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(22)
Using this expression we can find that the only OPE’s which receive corrections at first order

and with no classical fields are
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It is interesting to check that those corrections agree with the equations of motion derived from
the action. This aspect is being studied. The contributions to the OPE’s involving one classical
field are work in progress.
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