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Abstract

We prove that integrable hierarchies of evolution
equations can be obtained from a unique gauge the-
ory by gauge fixing conditions. The bi - Hamiltonian
structures of these hierarchies are generated by the

corresponding Dirac brackets and deformations of a
BRST differential.



1 Introduction

In the present work we find new formulations
for the integrability conditions of Hamiltonian
systems of evolution equations.

Using a variational approach, we prove that:

e any Hamiltonian evolution equations can be
derived from a quantum BRST field theory.
The gauge fixing fermion determines the Pois-
son structure and its deformations the ex-
istence of an infinite number of compatible

brackets.

e Hamiltonian systems with an exact two form
are derived from a singular action with sec-
ond class constraints. The separation of this
system of constraints into first class and gauge
fixing ones can be used to prove the existence
of bi-Hamiltonian and thus integrable struc-

tures.



2 Hamiltonian systems and the ghosts

In this section we show that any Hamiltonian
system of evolution equations can be regarded
as a classical field theory with a BRST-anti-
BRST ezact effective Hamiltonian.

Notations:

Let F be the space of functionals R = J Rdx,
where the differential functions R (z, ¢) = R [¢)]
are defined on M C X x &, an open set of
the space of independent and dependent vari-
ables z = (z!, ..., 2P) and ¢ = (¢!, ..., ¢")

Let 2 : A" — A" be a n X n matrix skew-
adjoint differential operator which may also de-
pend on ¢; A - the algebra of differential func-
tions R [¢]| over M.



Theorem 1
The Poisson bracket defined for any two func-

tionals in F by the operator €2
{Ql, QQ}Q = /591 Q) 5g2d$ (1)

can be expressed in terms of a standard BRST
bracket {.,.} and/or of a Q, - bracket, on an ex-
tended space: M = X x®, with® = (¢, 7, C, P),

where m, C', P are auxiliary variables.

Q = /dxzC"r,
Qo = —J da (PamQ + ;P PC0.0")

The conjugated variables (¢, ) and (C,P)
satisfy:

(2)

{o" (@), m (y) }ho_yp = 630 (x — y) 3)
{C (), Py (y)} 00 = 050 (x — y)
{G1.Go}g, = 5 ({61, Qat {Q, Go}} -

: i g
H{G1.Q} . {Qn. G2}



Consequence:

If the charge QQ, defines a nilpotent differential
50. = {Qq; -}, {Qn, Qa} =0,

then: the differential operator (2 is Hamilto-
nian since the corresponding bracket (1) satisfies
the Jacobi identity.

Note also that: the BRST charge @ in (2) de-
fines a nilpotent differential s = {@Q,.} by con-

struction.

Theorem 2

Any system of Hamiltonian evolution equa-

tions: Do
= QP 5
5 vH ()] (5)
with a Hamiltonian functional ' H = | Hdzx is

given by the equations of motion:

6= {¢" HI} = {o" HIdl}g,  (6)
of a field theory having: H// = {Q, {H[¢], Qg }}
The equations of motion can be derived from
L) = pda LT with:

L =m, ¢ +P, O —HT (7)
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and:
HY = 7,Q%,H + P,C%;, (Q°6,H)  (8)

Geometrical interpretation: C*: basis of forms,
do® and P, : basis of vector fields.
Grading:

h(?)
gh (M [¢]) = gh (Heff)=0

Consequence: a conserved functional G satis-
fies:

5G QL 6H =0 (10)

{6 1} ={G, H}p, =0 (11)



In cohomological terms: sG belongs to the co-
homology of 5q at ghost number 1 (the groups of

the generators of non-trivial global symmetries).

3 Bi-Hamiltonians from gauge-fixing

In this section we prove that the bi-Hamaltonian
structures of an integrable system are obtained

from gauge fizing tnvariance of the associated

field theory.

Theorem 3

Let s,35y, Hy be the symmetries and the func-
tional defining the BRST field theory correspond-
ing to a given PDE system.

Let the theory be non - anomalous, i.e. the
cohomology groups of s and 5y are trivial for
ghost numbers > 1 and < —1, respectively.

If a one-parameter deformation of the symme-

try exists, so that:

S150H) =0 (12)
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then:

(i) the original system is bi-Hamiltonian, there
exists an infinite number of conserved functionals
Hi, Ho, ..., H,, ... and

(ii) the new gauge fixing $SgefHaef, Where
Haeyr is a complete deformation of Hy, does not
change the equations of motion.

Remark 1: if different deformations sy, of sy
exist, so that 51,50Hy = 0, then one may gener-

ate different hierarchies corresponding to:

S1aHm = SoHm+1 (13)

Remark 2: the existence of a recursion oper-

ator R implies:

{Qay F} = {Qriay F) (14)

Although each of the pairs Q,,, H,,_, corresponds

to different effective Hamiltonians:

M = —{Q.vn} = —{Q.{Qq,. Ho-m}]
and different equations of motions, the total de-

formed gauge-fixing term corresponds to the orig-
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inal path integral.

4 Examples

We give a few stmple but celebrated examples
of integrable hierarchies and their anti-BRST

transformations.

From: gauge fixing term s5,H,: €2 = d¢® A
o' (), (for k= a, 3,7 and a,b = 1,2), with:

Q= -2 =0 (15)
for k = «, B and:
Qf = -3 = —Tg (16)

where T is the Schroedinger operator and

Q2= =1 (17)

Qof =1 (18)



where T is differently defined (as Tkqy, or This
or Tyq) for (complex) KAV, non linear Schroedinger

or sine-Gordon hierarchies, respectively.

For the non - linear Schroedinger hierarchy:
TH = —04+2¢°D7 1% T?? = —0+ 20! D1},
T2 — 902D~ 1¢l T2 = —26' D142 with
D™t =10 +1,).

linear Schrodinger

T 53

%—‘f = —it) (from 5y = S,)

higher NL Schrodinger
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5 Integrability without ghosts: the

role of constraints

In this section we show that when the Pois-
son two form € is exact, the Dirac analysis of
constraints gives us the conditions for a sec-

ond Hamiltonian operator to exist.

Property 1
The variational principles for the following ac-

tions are equivalent [1]:
(1)
Se — /dt(ﬂ'¢ o H(ﬂ-a ¢7 t) o )‘axa) (19)

where x,(m, ¢) = 0 are second class constraints.
(i)

§=[di(An—h(m) ()
where we denote by 7 all the fields on the reduced
phase space.

The reason is that the inverse €2 of 0;4; —0; A,
coincides with the two form induced by the Dirac

bracket on the constraint surface.
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Consequences

(c1) A bi-Hamiltonian system 7 = (€),,y0,7h1 =
(€24)pyy 0,y ho is obtained from a unique, singular
action S = [ dtL(¢,d,t) which in turn can be
written as (19).

(c2) Since the system of second class constraints
Yo can be transformed into a system of first class
constraints ¢} plus gauge fixing constraints ¢35,
the integrability, by Magri’s theorem, is trans-

lated into gauge fixing invariance.

(c3) the integrability conditions are equiva-
lent to the fact that there exist infinitely many

choices of the gauge fixing constraints gb§<k), SO

that: {hk, hj}Qa =0 and Q,0h; = Qﬁaha+k_ﬁ.

Here, hy, = H|,—¢ for the system of constraints
Xq With ¢ and a choice k of the fixing ¢Z<k> and
(), 1s the inverse of the matrix of constraints
{xi,x;} for a specific choice cbz(k). The field
configurations are related to each other by a D-

transformation [2].
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6 No ghost examples

In this section we give a few examples of bi-
Hamiltonian structures which arise as a result

of changing the gauge fixation.
Example 1 The KdV hierarchy

We can read the two form and the Hamilto-
nian h of the reduced action directly from a first

order action for the potential U, = wu, which is
indeed of the type (20):

1 1
= [dt(zU,U, — (U> + ~U? 21
We find: b = —U? + 1UZ%, and O(z,y) =
(SU(S@)U;C(:U) — 5U5(a;)Uy<y) = dy(x—y)—0,(y—x).
Its inverse is #(z — y) and gives, in terms of u,
the well known Hamiltonian operator %. The

constraints here are of the type x = 7y — f(U).

Example 2 Duality invariant systems
The reduced phase space actions of free elec-

tromagnetism or linearized gravity are of the type
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S = [ dt(an — h(n)). For free electromagnetism
we have [5] n = AT hy = [dPz5f*(A) and
a; ~ fi(A) for an infinite number of choices
of the functions f;, related to each other by (2
and the recursion operator, which all satisfy (c3).

Here, too, the constraints are of the type y =

T — f(A).

7 Conclusions

In this work, we expressed the bi-Hamiltonian in-
tegrability conditions as gauge fixing invariance
in two different ways. The former translates into
cohomological conditions for the BRST differen-
tial. The latter translates into constraints’ anal-

ySIs.

Appendix: proof of Theorem 3
We denote Ay = SyHy Then equation (12)
becomes: 51y = 0 and we can write Ay = s1H)

which implies:
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So\1 =551 Hy = —S150Hy =0 (22)

[f the cohomology of 5 is trivial at ghost number
—1, thus any s - closed form is exact, then it
exists a Hy so that Ay = Sy’H; Moreover, the

functional ‘H; is conserved:

(ML M} = (M, Hodg,, = {H1 Holg, =0

(23)
One continues then to construct Ay = s7H; and
apply the same argument to prove that a term
Hs exists. After m steps one obtains a whole set

of equalities of the form:

Am+1 =51 Hpm = SoHm-1 (24)

In order to prove the second part of the theo-
rem, we note that the deformed BRST-antiBRST

symmetry is given by Sg.r = s + 540y where:

Saef = 50 — A5 (25)



and the complete gauge-fixing term is s5gcf Hge s
with Haer = Ho+ MHy + AN Hao + A Hs + ..., for
real A. The invariance of the path integral re-

duces, modulo s-exact terms, to (Sp — As1) Hgef =
SoH. Then:

50 (Haef — Ho) = (A51) Haef (26)

5150Hger =0 (27)

and includes the “initial conditions” (12). Us-
ing the nilpotency of the 54, differential, 595, +
5150 = 0 and (24), obtains (ii). q.e.d.
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