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We present the Bethe equations for generalized Hubbard models, based on the coordinate Bethe ansatz. We illustrate the results for various
examples corresponding to g/(njm) & g/(2) algebra. We give some hints how to deal with the general case.

g/(n/m) Hubbard model

» The generalized Hubbard model's R-matrix comes from the coupling of two independent XX models.
» Two XX models can be based on two different (super)algebras and two different "projectors” m and w defined below.
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where P;» is the graded permutation operator and 212 = 71 T2 + 71 T2 .
» The projectors can be defined for some set of integers N': m = Zjej\/ EV . wm=1-—nx
» the Hubbard model's R-matrix is
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where \3, = A1 &= X2 and function h()) is defined by the same relation as in original Hubbard R-matrix: sinh(2h) = U sin(2)).
» The R-matrix (2) satisfies the Yang—Baxter equation.
» The L-site monodromy matrix and its transfer matrix are given by
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» The generalized Hubbard Hamiltonian with periodic boundary conditions is
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Coordinate Bethe Ansatz for g/(2|1) ® g/(2) model gl(njm) & g/(2) model
As an example we consider a model with 3 different types of Generalizing the previous model we take an example with n + m + 1 different
"particle”™. 2 1,3 T and 2 | on a vacuum state with the choice types of "particle”. 2 T, ...,(n+m) T and 2 | on a vacuum state with the choice of
of projectors: C; x = E}} — E — ES, and C x = E|} — E™, projectors: Cy x = El} — > 35 Ef%and C x = E} — E%,
We use the coordinate Bethe ansatz method similar to The Bethe equations are
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Periodic boundary conditions in the initial problem yield the K 1
first auxiliary problem: where
Sji1j..-SNS1j...Sj_1j0 = N » L is the number of sites considered in the Hubbard model
Using again the coordinate Bethe ansatz and the periodicity » N is total numberof 2 |,2 7,3 T,...,(n +m) T "particles”.
conditions, we find the second auxiliary problem with the » K counts the total number of excitations from 2 Tto (n+m) |
Hamiltonian being the chain of permutations. The obtained » M numbers the 3 7,...,(n + m) T "particles”.
Bethe equations resemble the Lieb-Wu ones with an The Bethe parameters n\, for each particle k 1, 3 < k < m +n, don’t show up in
additional phase. We write them in the next panel. the Bethe equations.

g/(2]2) & g/l(2) model

Now we take an example with a different choice of projectors from the previous examples: C; x = E/'} + E?5 — E>; — Ef and C, x = E|} — E7% and we
have 4 types of particle: 2 1,2 |,3 T and 4 T on a vacuum state.

This choice of projectors means that together with Hubbard "electron”-like particles we have another sort of "heavy” particle in interaction. Using again
the coordinate Bethe Ansatz approach, we first introduce A ={aj, a,...,an,} forsomeintegerssuchthat 1 <a;j<a <..<an < N.Then,the
Bethe equations can be written as
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where

» L Is the number of sites considered in the Hubbard model

» N is total numberofall2 1,2 |,3 T and 4 T "particles”

» N1 counts 2 7 excitations, N>, N3 count respectively 3 T and 4 1 particles.

We remark that with respect to the Bethe equations computed in the previous sections, the phase A(n) has been changed to A(n) [jca e~'% showing a
(partial) dependence on the momenta of the particles.
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