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We present the Bethe equations for generalized Hubbard models, based on the coordinate Bethe ansatz. We illustrate the results for various
examples corresponding to gl(n|m)⊕ gl(2) algebra. We give some hints how to deal with the general case.

gl(n|m) Hubbard model

I The generalized Hubbard model’s R-matrix comes from the coupling of two independent XX models.
I Two XX models can be based on two different (super)algebras and two different ”projectors” π↑ and π↓ defined below.

R12(λ) = Σ12 P12 + Σ12 sinλ + (I⊗ I− Σ12) P12 cosλ (1)
where P12 is the graded permutation operator and Σ12 = π1 π2 + π1 π2 .

I The projectors can be defined for some set of integers N : π =
∑

j∈N E jj , π = I− π
I the Hubbard model’s R-matrix is

RHub
↑↓ 12(λ1, λ2) = RXX

↑ 12(λ−12) RXX
↓ 12(λ−12) +

sinλ−12
sinλ+

12
tanh (h(λ1) + h(λ2)) RXX

↑ 12(λ+
12) C↑1 RXX

↓ 12(λ+
12) C↓1, Cσ = πσ − πσ (2)

where λ±12 = λ1 ± λ2 and function h(λ) is defined by the same relation as in original Hubbard R-matrix: sinh(2h) = U sin(2λ).
I The R-matrix (2) satisfies the Yang–Baxter equation.
I The L-site monodromy matrix and its transfer matrix are given by

Ta<b1...bL>(λ) = RHub
↑↓ ab1

(λ,0) . . .RHub
↑↓ abL

(λ,0) and t(λ) = traTa<b1...bL>(λ) (3)
I The generalized Hubbard Hamiltonian with periodic boundary conditions is

H =
d

dλ
ln t(λ)

∣∣∣∣
λ=0

=
L∑

k=1

((ΣP)↑ k ,k+1 + (ΣP)↓ k ,k+1 + U C↑k C↓k) (4)

Coordinate Bethe Ansatz for gl(2|1)⊕ gl(2) model

As an example we consider a model with 3 different types of
”particle”: 2 ↑,3 ↑ and 2 ↓ on a vacuum state with the choice
of projectors: C↑ k = E11

↑ k − E22
↑ k − E33

↑ k and C↓ k = E11
↓ k − E22

↓ k
We use the coordinate Bethe ansatz method similar to
Lieb-Wu:

φ[(A, α)] =
∑

x

Ψ[x, (A, α)]eA1 α1
x1

...eAN αN
xN

, (5)

(A, α) = {(2, ↑) ; (3, ↑) ; (2, ↓)}
with

Ψ(x) =
∑

P∈SN

Φ(P,QP−1)ei<Pk,Qx>, xq(1) < ... < xq(N) (6)

Periodic boundary conditions in the initial problem yield the
first auxiliary problem:

Sj+1j...SNjS1j...Sj−1jφ = Λjφ

Using again the coordinate Bethe ansatz and the periodicity
conditions, we find the second auxiliary problem with the
Hamiltonian being the chain of permutations. The obtained
Bethe equations resemble the Lieb-Wu ones with an
additional phase. We write them in the next panel.

gl(n|m)⊕ gl(2) model

Generalizing the previous model we take an example with n + m + 1 different
types of ”particle”: 2 ↑, ..., (n + m) ↑ and 2 ↓ on a vacuum state with the choice of
projectors: C↑ k = E11

↑ k −
∑n+m

a=2 Eaa
↑ k and C↓ k = E11

↓ k − E22
↓ k

The Bethe equations are

eikjL = (−1)K +N+1
K∏

m=1

i sin kj + iam + u
4

i sin kj + iam − u
4
, j ∈ [1,N] (7)

(−1)N
N∏

j=1

i sin kj + iam + u
4

i sin kj + iam − u
4

= Λ(~n(3))
K∏

l=1, l 6=m

iam − ial + u
2

iam − ial − u
2
, m ∈ [1,K ] (8)

Λ(~n(3)) = exp

2iπ
K

M∑
i=1

n(3)
i

 , 1 ≤ n(3)
1 < ... < n(3)

M ≤ K and M ∈ [0,K ] (9)

where
I L is the number of sites considered in the Hubbard model
I N is total number of 2 ↓,2 ↑, 3 ↑,...,(n + m) ↑ ”particles”.
I K counts the total number of excitations from 2 ↑ to (n + m) ↑
I M numbers the 3 ↑,...,(n + m) ↑ ”particles”.

The Bethe parameters n(k)
i , for each particle k ↑, 3 < k ≤ m + n, don’t show up in

the Bethe equations.

gl(2|2)⊕ gl(2) model

Now we take an example with a different choice of projectors from the previous examples: C↑ k = E11
↑ k + E22

↑ k − E33
↑ k − E44

↑ k and C↓ k = E11
↓ k − E22

↓ k and we
have 4 types of particle: 2 ↑, 2 ↓,3 ↑ and 4 ↑ on a vacuum state.
This choice of projectors means that together with Hubbard ”electron”-like particles we have another sort of ”heavy” particle in interaction. Using again
the coordinate Bethe Ansatz approach, we first introduce A = {a1,a2, . . . ,aN1} for some integers such that 1 ≤ a1 < a2 < ... < aN1 ≤ N . Then, the
Bethe equations can be written as

eikj(L−N2−N3) = (−1)N1−1 for j ∈ A, and eikjL = (−1)N+1−(N1+N2+N3)
N2+N3∏
m=1

i sin kj + ibm + u
4

i sin kj + ibm − u
4
, for j ∈ [1,N] \ A (10)

(−1)N−N1

N∏
j=1
j 6∈A

i sin kj + ibm + u
4

i sin kj + ibm − u
4

= Λ(~n)
∏
j∈A

e−ikj

N2+N3∏
l=1
l 6=m

ibm − ibl + u
2

ibm − ibl − u
2
, with Λ(~n) = exp

 2iπ
N2 + N3

N3∑
i=1

ni

 (11)

for m = 1, . . . ,N2 + N3, and 1 ≤ n1 < n2 < . . . < nN3 ≤ N2 + N3

where
I L is the number of sites considered in the Hubbard model
I N is total number of all 2 ↑, 2 ↓,3 ↑ and 4 ↑ ”particles”
I N1 counts 2 ↑ excitations, N2,N3 count respectively 3 ↑ and 4 ↑ particles.
We remark that with respect to the Bethe equations computed in the previous sections, the phase Λ(~n) has been changed to Λ(~n)

∏
j∈A e−ikj showing a

(partial) dependence on the momenta of the particles.
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