QUANTUM SYMMETRIES AND INTEGRABLE SIGMA MODELS

Abstract

We report upon the first steps of the development of a prografemthe systematic solution of cer-
tain classes of quantised integrable sigma models. Thesatmenableb initio calculations of the
spectra of models relevant to the AdS/CFT correspondenced&uéify algorithmically the underly-
INg quantum symmetry algebra of the sigma model and use s$hiseainput to the quantum inverse
scattering method for a lattice discretisation. Here westllate the progress of this programme with
non-trivial examples of integrable sigma models includimg sausage model and t88-model.

Background

It is well known that conformal field theories possess a “kiddquantum symmetry algebra which
can be seen manifestly in free field realisations. More gedgj thescreening operators of the free
field theory generate a representation of this quantum symgralgebra [1, Ch. 11]. Recall that these
operators appear in the correlators of the (deformed) thésr the Coulomb gas picture). Analo-
gously, perturbing a theory by quite general fields leadsrtolar insertions in the correlators. It is
therefore not unreasonable to regard such perturbatiogsasalised screening operators. This anal-
ogy becomes even more apt when one considers the integnalstmin of the perturbed system [2].
But do these generalised screening operators describéeaasting quantum symmetry algebra?
Our thesis is that when the perturbed systemmisgrable, the generalised screening operators pre
cisely describe the guantum symmetry algebra responsibléhis integrability. Recall that the key
Insight behind the quantum inverse scattering method isthi®integrable structure can be traced
back to the quasitriangularity of the quantum symmetry ladlge” (a Hopf algebra). Specifically,
there exists a universéd-matrix # € %« ® « satisfying an abstract Yang-Baxter equation [3] from
which the building blocks of integrability are obtained dyoosing representations @f. In partic-
ular, thetransfer matrices are recovered from an “evaluation representatiog(’A ) (A is the spectral
parameter) on a finite-dimensional auxiliary space and anite-dimensional representation on
the physical qguantum space:

Ta(A) = Tr (Th(A) @ 15) (%) (1)

Knowing the quantum symmetry algebra is therefore the foverdal requirement for implementing
the quantum inverse scattering method. Our strategy isédhesgeneralised screening operators t¢
make this identification for integrable sigma models (inrtdaal description). While these screening
operators may be used fog In some cases [4], in general this choice leads to ultravebletrgences.
We construct insteadlattice regularisation of such theories. This amounts to takirgto be a tensor
product of “discretised screening operator’ represeoieti one for each lattice site.

There is insufficient space to describe our programme inldetee; such a description will appear in
our upcoming article [5]. Instead, we content ourselve$ witowing how this programme works for
three important examples, each of which is viewed as a dgaiaimodel describing an integrable
deformation of a system of free bosons.

We will consider here three different integrable sigma medéhe sine-Gordon model, the sausage
model [6] and the&&S-model [7]. They each admit dual formulations with respextagrangians

Zie=7(0,9)" +gcos(By), (2)
Lrausags= % :(0;1 o)’ + (9, <0(2>)2} +gcos(a:1¢'Y) cos( '), (3)

7= [(0:0%)+ (0,0%)" + (2,07
+g {cos(alcp(” + 020'?) g0’ | cog a1¢'V — a,90?) e‘iO’S‘P(s)} , (4)

wherey;af = 1. It is clear that these models are one or two-parametermetions of one, two or
three free bosons. Expanding the cosines, we obtain 2, 4 gedidrbing terms, respectively, each
of which is a product of exponentials of classical bosonsar@@sing, these become products of the
usual vertex operatorga(') (z) Our task is now to determine the algebra generated by thesymond-
INng generalised screening operators. This follows fromstiaadard exchange relations of the vertex
operators:

70 (2) 1V (w) = ™57 (w) 7 (2) - (argz > argw). (5)
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For this model, we have one boson and two perturbing vertex operafgfs) = ¥z(z) and
Vi(z) = ¥ i5(2z). The exchange relations take the form

Vi(2)V) (w) = g1V (w) Vi (2), (6)
whereq = e~ B andA = <_22 _22> is the Cartan matrix of] (2). The generalised screening opera-
torsQ; = 7{\4 (2) Zd_;l satisfy the fourth-ordeg-Serre relations 0¥, (57[(2)):

Qooo1— 3] Qoo10+ [3]4Qor00— Quo00=0 and Qi110— (3], Q101+ [3]Qr011— Qo111=0.  (7)

Here,Qq...c IS shorthand foQ,Qy - - - Q.. TheQ; satisfy no other independent relations (to order 7).
The generalised screening operators therefore form a reprasentéthe quantised enveloping al-
gebra of the nilpotent subalgebna of s{(2). This can be extended to the corresponding Bore
subalgebrab_ by using the zero-mode (momentum opera@f the free bosonKy = e 2" and

Ki = eZ"BPA. We therefore conclude that the quantum symmetry algebra of the sirgsGarodel

is %(b_(sl(2))). We have no realisation af,, nor do we expect one — for genuine screening
operators, such a realisation makes use of the conformal symmetry [1].

The quantum symmetry algebra becomes a Hopf algebra upon defining the dtemolarduct

AQ)=Q®1+K'oQ

counite (Q)) = 0 ande (K;) = 1, and antipod&s(Q;) = —K;Q; andS(K;) = K. *. Taking the two-
dimensional evaluation representationssf2) with generic spectral parameteksand i, and ex-
tending them ta74(s((2)), we recover the well-known form of the-matrix.

Sausage I

The sausage model has two bosons and four perturbing vertex OpGMIOfoVié?”//(Z) Vi =

1ap !
7/15,1)7/_(12;2 Vo = “//_(11;17/_(123,2 andVz = 7/_(112,1"//12,? The exchange relations then take the form

and A(Ki) = K ® K, (8)

Vi(2)V) (w) = =gV (w) Vi (2), (9)

whereq = e~2M91 andA is a Cartan matrix foﬁs\[ (2|2):
(O 1 0 —1\

1 0 -10
0 -1 0 1
\-1 0 1 0/

This suggests that the generalised screening operators should $disf 0, QuQ> + QQq =

Q:Q3+ Q:Q; = 0, and theg-Serre relations (listed in [8]) oc‘[?/q(ﬁs?[(Z\Z)) — indeed we find that
they do. However, we also find an additional relation,

Q1234+ Q2341+ Qsa12+ Qur23+ [2] (Qu32a— Q2413) — Qa214— Q2143— Quazz— Quz21=10,  (10)

A —

which is not listed in [8]. We have checked that this is a gengH$®rre relation ofz (Es\[(Z\Z)).
SettingKo = K, 1 = e@1PP+a2P®) gngK; = K1 = em@iP-aP?) e obtain a representation of the
corresponding Borel subalgebra (specified by the above Dynkin diagrang quantum symmetry
algebra of the sausage model is tl%@(b_(p/g\[(zm))). However, we may relax this conclusion
slightly and consider instead the quantised enveloping algebra cktiteal extensioﬁ[(2|2). This

IS convenient foR-matrix considerations as it possesses four-dimensional evaluagmssentations.
Note however that (10) is not a relation of this extended algebraRiimatrix is

Agl—qu O 0 0 0 0 0 0 0 0 0 0 0 0 0 0
( 0 A—up 0 0 f(u) 0 0 0 0 0 0 0 0 0 0 0 \
0 0 A—pu O 0 0 0 0 f(u) O 0 0 0 0 0 0
0 0 0 A—pu O 0 0 0 0 0 0 0 f(u) O 0 0
0 f(A) 0 0 A-—up 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 ugl-Aq O 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 A-pu O 0 f(A) 0 0 0 0 0 0
R— 0 0 0 0 0 0 0 u—A O 0 0 0 0 f(A) 0 0 (11)
— 0 0 f(A) O 0 0 0 0 A—pu O 0 0 0 0 0 0 y
0 0 0 0 0 0 f(u) O 0 A—up 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 Agql-qu O 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 A-u O 0 f(A) 0
0 0 0 f(A) O 0 0 0 0 0 0 0 A—u O 0 0
0 0 0 0 0 0 0 f(u) O 0 0 0 0 u—A 0 0
\ 0 0 0 0 0 0 0 0 0 0 0 f(u) O 0 A—u 0 )
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ugl-Aqg

wheref (a) =a(q—q).
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SS-Model |

The SSmodel is atwo-parameter family of integrable sigma models built by perturbing three free
bosons with four vertex operatoié = ”//iéll)"// 2y 3) vy = ”//ié?“// 2) (3)3, Vo = 7/}33343?7/ (3)3 and

ias ~ 103 ? —iap " —id —ia

V3= v 4@ 43 The exchange relations then take the form

—i01 " —i0p " 143 °

PEINCING

Vi(2)V;(w) = —a;" 0, g5V (W) Vi (2), (12)

whereq = e 21 (soq0p03 = 1) and theA® are Cartan matrices fail (2|1) & sl (2|1):

(0100\ (0010\ /0001\
o [1000| ,, |0001 s [0010
A"=1ooo01|" A" |1000] ™ A" =10100 (13)
\0 010 \0 100 \1000
However, the generalised screening operators safi$fy 0 and four cubic ¢-Serre relations™:
(g1 — ;) (Quz0— Qoz1) + (G — ") (Qor2— Q210) + (Gs — 05 *) (Q201— Quo2) =0,
(a1 —d; ") (Quzo— Qoz1) + (G — ) (Qso1— Quoz) + (Gs— 05 +) (Qorzs— Qs10) =0,
-1 -1 -1 (14)
(oh— o) (Qso2— Q203) + (G2 — 03 7) (Q230— Qoz2) + (s — G5 ~) (Qozz— Qs20) =0,
(01— ;") (Qarz— Qo13) + (e — & ) (Quzz— Qs21) + (Gs — 03 7) (Q231— Qu32) = 0.

Note that these relations have no classical counterpart wheq thel. We have found no other
(independent) relations up to order 7.

This demonstrates that the quantum symmetry algebra o8$maodel is not related to any quan-
tum affine superalgebra, but rather forms the first example of a new, previousgcawered class of
algebras underlying integrability. Defining Cartan elemdftm the obvious way, we have verified
that the standard coproduct, counit and antipode define a Hopf algebra structure mewtguantum
symmetry algebra. Itis almost surely quasi-triangular, and work is athyren progress to verify this.
Finally, we mention that th8S-model formally reduces to the sausage model if wayset 1. At the
level of the symmetry algebras, we see that (14) then implie€@s + Q,Qp andQ1Qsz + Q3Q; are
central in the specialised algebra. This accords well with the fact that ttrmsbinations both vanish
In the symmetry algebra of the sausage. It would be very interesting tbteeeother Serre relations
of the sausage can be derived from (14) in this way.

Future Work

Our current goal is to use the results presented here to construct Lax aonseatscribing lattice
discretisations of these sigma models. This has been completed for sine-Gordas Linderway for
the sausage (results will appear in [5]). In a parallel effort, thesedonnections will be used to solve
for the sigma model spectrum by combining the method of separation of variakireQwiperator
technology. For sine-Gordon, this will be reported on in [9].

Moreover, we are still investigating the structure of the new quantum stmnalgebra of the&&s
model with the aim of generalising the conceptodndL-matrices to this case. We are also using
our formalism to construct new families of integrable sigma models witratimeof producing other
examples of symmetry algebras “beyond” quantum affine superalgebras. Weelibhd\a detailed
understanding of integrability in this context will require a solid matherah study of these more
general Hopf algebras.
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