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Introduction

Wall-crossing phenomena in N=2 field theory
• Why a talk in this workshop?

• Two reasons:
• We explored SU(2) Hitchin system

– Related to Sinh-Gordon

– Applications to gluon scattering  Alday, Maldacena

– At least some methods should generalize

• We met some TBA-like equations (or Y-system-like)
– A coincidence? A hidden integrable system?

– In any case, it should be fun to study or solve those equations 

– We also have fun differential equations. Could they be useful?
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Outline

What is wall-crossing

Hyperkahler metrics and TBA-like equations

WKB analysis of SU(2) Hitchin system
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N=2 4d gauge theories

N=2 4d gauge theories in the Coulomb branch
• Gauge multiplet has adjoint scalar

• Expectation value Higgses to U(1)r

• r complex scalars u parametrize vacuum

• r electric charges qe, r magnetic charges qm.    

• <q,q’> = qe q’m - qm q’e 

• A BPS bound: M greater or equal to |Z(qe, qm)| 
• Z= qe a(u) + qm aD(u)

– periods (a,aD) determine massless Lagrangian

Interesting massive spectrum of BPS particles
• M = |Z(qe, qm)| 
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BPS spectrum

BPS particles sit in reduced SUSY multiplets
• To become non-BPS, they must recombine

• Define a BPS degeneracy Ω(q,u)
• Naively, it should not vary with u

Exception: walls of marginal stability
• two particle states continuum: M>M1 + M2

• q=q1 + q2;    Z(q,u)=Z(q1,u) + Z(q2,u)  

• wall defined by |Z(q,u)|=|Z(q1,u)| + |Z(q2,u)|  
• BPS states can ``decay’’ to continuum across walls     
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Wall-crossing

Are BPS spectra on the two sides of wall related?
• Near the wall, states which decay are very ``large’’ in size

• Effective IR Lagrangian might know about decay

Wall crossing formula
• First attempts: Denef, Moore for two-particle decay

• ΔΩ(q1 + q2) = <q1,q2> Ω(q1) Ω(q2)

• From related mathematical work, a full proposal
• Kontsevich- Soibelmann wall crossing formula
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KS wall crossing formula

Extremely surprising form
• Consider variables xq,  xq+q’= (-1)<q,q’>xq xq’ 

• KS  transformations      Kq: xp => xp(1-xq)<q,p>

• Π KqΩ(q)   in the order of arg Z(q)

• Overall product is unchanged across wall!
• wall: arg Z(q1) = arg Z(q2)
• Order of arg Z(q1) and arg Z(q2) changes at wall

• Kq1 and Kq2 do not commute

• Change in Ω(q) follows
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Example

Simplest wall:
• One electron, one monopole => electron,monopole,dyon

• K(1,0)K(0,1) = K(0,1)K(1,1)K(1,0)

• K(0,1): [x(0,1) , x(1,0)] => [x(0,1) , x(1,0)(1-x(0,1))]
• K(1,0): [x(0,1),x(1,0)] => [x(0,1)/(1-x(1,0)) , x(1,0)]
• K(1,1): [x(0,1),x(1,0)] => [x(0,1)/(1+x(0,1) x(1,0)) , x(1,0)(1+x(0,1) x(1,0))]

• A pentagon identity: Xn-1 Xn+1=1-Xn has period five

More interesting wall
• K(2,-1)K(0,1) = K(0,1) K(2,1) K(4,1) ..... K(2,0)-2 .....K(6,-1) K(4,-1) K(2,-1)

• Xn-1 Xn+1=(1-Xn)2 has no period, but relation ±∞ is K(2,0)-2 
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A circle compactification

Pure U(1) theory on R3 x S1

• 4d: scalar a, gauge field Ai

• moduli space: R2

• aD =τ a             τ is constant gauge coupling

• 3d: scalars a, t=A3, tD dual to 3d gauge field
• moduli space: R2 x T2

• It is (trivially) hyperkahler: S2 worth of complex structures
– complex coordinates in complex structure ζ?

» Xe= exp [ R/ζ a + i t + R ζ a* ]    xm = exp [ R/ζ aD + i tD + R ζ aD* ]  
» R2 x T2 is C* x C*

– Special ζ =0, ζ =∞
» a and tD - τ t are holomorphic, 

» R2 x T2 is C x elliptic curve 9



U(1) plus one massive particle

Loops of particle correct metric
• Correction strong when particle is light

• Correction shrinks tD circle

4d loops: running coupling constant
• τ = log a/L

• Singular at a=0, codimension 2

3d loops: instantons from particle around S1

• 3d masses: a, a*, t

• Codimension 3, and regular! ``periodic Taub-NUT’’10



Periodic Taub-NUT

Taub-NUT metric: hyperkahler circle fibration
• flat base space, fibration metric:

• ds2= V(x) dx2+ V(x)-1(dtD + A)2

• V(x) is harmonic. 

Periodic Taub-NUT
• R2 x S1 base: a, a*, t

• Single source at a=t=0. 
• Far away, V goes like log |a|/L, τ =log a/L

• Regular at a=t=0.
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Holomorphic functions
Complex coordinates in complex structure z?
• log xe = R/ζ a + i t + R ζ a*   

• log xm = R/ζ aD + i tD + R ζ aD* +

• Note resemblance with TBA equations

Good asymptotics
• xm picked to satisfy log xm = R/ζ aD+ ... at small ζ
• Price: discontinuity

• clockwise at R/ζ a<0:          xm => xm (1-xe)

• clockwise at R/ζ a>0:          xm => xm (1-xe-1)-1

• Same as KS factors for particle, antiparticle
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The most obvious way of constructing Xm would be to write out the Cauchy-Riemann
equations on M and look for a particular solution of the form (4.25). In the next section
we follow a different approach: we give a particular solution for Xm directly, in a form
which will be especially convenient for what follows, and then rather than checking the
Cauchy-Riemann equations we check (4.24) directly.

4.3 The solution for Xm

Now we specialize to our M. In this case we have

!(ζ) = !sf(ζ) + !inst(ζ) (4.26)

where

!sf(ζ) = − 1
4π2R

ξe ∧
[
idθm + 2πiAsf + πiV sf

(
1
ζ
da− ζdā

)]
, (4.27)

!inst(ζ) = − 1
4π2R

ξe ∧
[
2πiAinst + πiV inst

(
1
ζ
da− ζdā

)]
. (4.28)

If we neglect the instanton corrections, the desired magnetic coordinate is

X sf
m(ζ) = exp

[
−i

Rq2

2ζ

(
a log

a

Λ
− a

)
+ iθm + i

ζRq2

2

(
ā log

ā

Λ̄
− ā

)]
. (4.29)

This coincides with the expression (3.11) for the holomorphic coordinate X sf
γ in the semiflat

geometry, if we choose γ to be the unit magnetic charge, with Zγ = q2

2πi(a log a
Λ − a) and

θγ = θm. A direct computation verifies that

dX sf
m

X sf
m

=
[
idθm + 2πiAsf + πiV sf

(
1
ζ
da− ζdā

)]
− iq2

4π

(
log

a

Λ
− log

ā

Λ̄

) dXe

Xe
, (4.30)

and hence in particular

!sf(ζ) = − 1
4π2R

dXe

Xe
∧ dX sf

m

X sf
m

, (4.31)

as expected.
Notice that X sf

m has a nontrivial monodromy around a = 0: the monodromies of log a

and log ā combine with the monodromy of eiθm given in (4.16b) to give

X sf
m → (−1)qX q2

e X sf
m . (4.32)

Next we include the instanton corrections. As we will demonstrate below, we can give
the desired Xm obeying (4.24) by the integral formula

Xm = X sf
m exp

[
iq

4π

∫

$+

dζ ′

ζ ′
ζ ′ + ζ

ζ ′ − ζ
log[1− Xe(ζ ′)q]

− iq

4π

∫

$−

dζ ′

ζ ′
ζ ′ + ζ

ζ ′ − ζ
log[1− Xe(ζ ′)−q]

]
,

(4.33)
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General conjecture

If you had electron AND monopole
• log xe =R/ζ a  +i t  +R ζ a*  - k ⊗m log (1-xm) + k ⊗-m log (1-xm-1)

• log xm=R/ζ aD+i tD +R ζ aD*+ k ⊗e log (1- xe) - k ⊗-e log (1-xe-1)

• ⊗q is convolution along R/ζ Z[q]<0

For generic BPS spectrum include all particles
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the reality condition (5.4). Hence a solution of (5.11) is a solution of the Riemann-Hilbert
problem.14

Using the explicit form of the Kontsevich-Soibelman factors from (2.16), we have

(XS!)γ = Xγ

∏

γ′∈(Γu)!

(1− σ(γ′)Xγ′)Ω(γ′;u)〈γ,γ′〉 (5.12)

(with (Γu)! defined in (5.5)). Plug this into (5.11) to get the final integral equation for X :

Xγ(ζ) = X sf
γ (ζ) exp



− 1
4πi

∑

γ′

Ω(γ′;u)〈γ, γ′〉
∫

!γ′

dζ ′

ζ ′
ζ ′ + ζ

ζ ′ − ζ
log(1− σ(γ′)Xγ′(ζ ′))



 .

(5.13)
In Appendix C we argue that (5.13) has a solution for sufficiently large R, and describe its
expansion as R →∞ for u away from the walls. The first nontrivial approximation is

Xγ(ζ) ∼ X sf
γ (ζ) exp



− 1
4πi

∑

γ′

Ω(γ′;u)〈γ, γ′〉
∫

!γ′

dζ ′

ζ ′
ζ ′ + ζ

ζ ′ − ζ
log(1− σ(γ′)X sf

γ′ (ζ ′))



 ,

(5.14)
and is essentially a linear superposition of the 1-instanton corrections that we found in the
abelian theory. Higher-order corrections involve multilinears in the Ω(γ′;u), and have an
R dependence which identifies them as multi-instanton contributions.

Our arguments in Appendix C are closely related to ones given in [?] in the finite-
dimensional tt∗ context. In fact, our approach leads to a simplification of the asymptotic
analysis even in the finite-dimensional case; hence in Appendix C we re-analyze that case
as well.

Global issues

By solving the Riemann-Hilbert problem, we have obtained a map X : M̃u → T̃u depending
on the choice of the local quadratic refinement σ(γ). This choice affects the Riemann-
Hilbert problem through the definition of the discontinuities Kγ . However, the solution
X depends on σ in a simple way. Recall that for any two refinements σ, σ′ there is some
c(σ, σ′) ∈ Γ∗

u/2Γ∗
u such that σ(γ)σ′(γ) = (−1)γ·c(σ,σ′). Given a solution X [σ] of (5.11) with

refinement σ, there is a corresponding solution X [σ′] with refinement σ′,

X [σ′]
γ (u, θ; ζ) = (−1)γ·c(σ,σ′)X [σ]

γ (u, θ + cπ; ζ). (5.15)

It follows that if we use the refinement to identify M̃u (Mu and also T̃u ( Tu, we obtain
X :Mu → Tu which is independent of the choice of refinement.

5.4 Constructing the symplectic form

So far, we have solved the Riemann-Hilbert problem to give a map X :Mu → Tu, obeying
the asymptotic conditions (5.3), the jump conditions (5.7), and the reality condition (5.9).

14Note that although the Riemann-Hilbert problem is invariant under diffeomorphisms of fMu the equa-

tion (5.11) is not; its solution is unique, not unique up to diffeomorphism.

– 37 –



General conjecture

Good asymptotics is important!
• log xq= R/ζ Z[q] + .....

• Discontinuity Kq Ω[q] across R/ζ Z[q]<0

• Compatible with asymptotics

Recovering the metric
• Kq preserves dlog xe ^ dlog xm 

• dlog xe ^ dlog xm = ω+/ζ +ω3 + ω- ζ
• hyperkahler forms ω determine metric
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Wallcrossing and hyperkahler 
metrics

Continuous discontinuities
• At Z(q,u)/ζ <0 discontinuity Kq Ω[q]

• As wall is crossed in u, lines merge and exchange

• Overall discontinuity is ordered product of Kq Ω[q]

• KS product!

Wall crossing formula: product is continuous
• integral equation is continuous

• solutions will be continuous

• metric will be continuous
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Differential equation and 
isomonodromy

Compatible differential operators in the angles t,tD etc. 
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equations of the form

∂ujX =
(

1
ζ
A(−1)

uj +A(0)
uj

)
X , (13.1)

∂ūj̄X =
(
A(0)

ūj̄ + ζA(1)

ūj̄

)
X , (13.2)

Λ∂ΛX =
(

1
ζ
A(−1)

Λ +A(0)
Λ

)
X , (13.3)

Λ̄∂Λ̄X =
(
A(0)

Λ̄
+ ζA(1)

Λ̄

)
X , (13.4)

R∂RX =
(

1
ζ
A(−1)

R +A(0)
R + ζA(1)

R

)
X , (13.5)

ζ∂ζX =
(

1
ζ
A(−1)

ζ +A(0)
ζ + ζA(1)

ζ

)
X . (13.6)

Here the various pieces of the connection A ♠bad notation, but which symbol to use? ♠
are morally vector fields on the torus fibres of M, i.e. differential operators in some basis
of angular coordinates θa evaluated at constant u, ū.

It is possibly useful to extend the torus fibres to the larger torus dual to the full charge
lattice, and allow derivatives with respect to the em(3) parameters. A simple way to see
that is to notice that the monodromy parameters µi will have to satisfy the equations as
well, as they are products of X coordinates. As they are functions of m, m̄, m(3) depending
on R and ζ, A should include some simple terms of the form 1

2πid log µ∂m(3) . An alternative
possibility is not to extend the torus fibre, and do partial derivatives at fixed µi instead of
partial derivatives at fixed m, m̄, m(3), but it is a bit unnatural.

Notice that if any set of coordinates satisfy these equations, every other coordinate
system related to it by a R and ζ independent coordinate transformation will. So in
particular, if any set X ϑ

γ satisfy them, or any X T
E for some triangulation does, so will

more conventional coordinates sets, such as traces of monodromy matrices (as they can be
written as certain rational functions of X T

E ).
It is easy to derive such differential equations, simply from our asymptotic analysis.

The most important example is the ζ differential equation. Consider a basis of coordinate
functions Xi and angles θa. Define

Aζ = ζ
∂Xi

∂ζ

[
∂Xi

∂θa

]−1 ∂

∂θa
(13.7)

This definition is clearly independent both on the specific parametrization of the torus
fibre, and on the choice of coordinate system Xi, by the chain rule. The Jacobian is
invertible for a good coordinate system X , as M in any complex structure ζ away from
ζ = 0,∞ is locally the complexification of the torus fibre. Depending on which properties
of Aζ have to be determined, different choices of coordinate system X are appropriate.

To show that Aζ is holomorphic away from ζ = 0,∞, it is useful to use around each
value of ζ and point in M some coordinate system which is good around that point. As
long as no sections si coincide at the endpoint of some edge of T , X T

E is fine, but the traces
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Hitchin equations

Equations for SU(2) connection A,  adjoint (1,0)-form φ
• Flat        AA[ζ]= R/ζ φ + A + R ζ φ*   

• Moduli spaces of solutions are hyperkahler

• Monodromy data of AA[ζ] are holomorphic functions at ζ
• Examples: monodromies along some fixed paths

Monodromy data Mi[ζ] for fixed φ,A
• interesting function of ζ

• Can we compute it without solving Hitchin equations?

• The hk metric is easy to compute from Mi[ζ]!
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A simplified example

Holomorphic Schroedinger equation

•  [h2 d2 -V(w)] F(w)=0

• Polynomial potential V(w)=wk+.... 

Large w behavior

• log F(w) ∼ ± wk/2+1/h + .... 

• Generic solution grows exponentially 

• On each ray there is unique exponentially decreasing F
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Stokes data

Standard definition of Stokes data
• k+2 Stokes sectors Vi  

• Re[wk/2+1/h]>0 or Re[wk/2+1/h]<0

• Unique solution fi(w) asymptotically small in Vi

• fi(w) grows in Vi+1 and Vi-1     

• fi+1 - fi-1 = si[h] fi            
• si[h] is scattering data

• W[fi, fi+1]=1           

• si= W[fi+1, fi-1]
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Easy example

Linear potential V(w)=w
• Too easy: s1 = s2 = s3 = i 

Quadratic potential  V(w) =w2- 2 m

• log F(w) ∼ 1/2/h w2 - m/h log w

• f4= exp[2 π i m/h] f0        etc.       

• s3= - exp[2 π i m/h] s1         etc

• s1 s2 = -1-exp[-2 π i m/h] 

What are small h asymptotics of si[h]?

• WKB analysis!
20



WKB analysis

WKB asymptotic expansion 
• log f = S0/h +S1 + ....          (dS0)2 = V

• Integrate phase S0 along a path

Approximation is good or bad depending on path
• Good if Re[dS0/h]>0 always along path

• Can we find good paths for   si= W[fi+1, fi-1]?

• If so, log si = Zi /h + ... is true

Let’s look at good paths 
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WKB lines
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Setting up a RH problem

Upper half    log xe= 2 π i m/h        log xm= -log s1

Lower half    log xe= 2 π i m/h        log xm= log s2

• Discontinuities: KS factors! 
• clockwise at      i m/h<0       xm => xm (1+xe)

• clockwise at      i m/h>0       xm => xm (1+xe-1)-1

Answer can be written as contour integral 
• log xm = m/h log m + .......
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Comparison with exact solution
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s1 =
2 1

2+ m
h i
√

π

Γ( 1
2 + m

h )

s2 =
2 1

2−
m
h i
√

πeiπm

Γ( 1
2 −

m
h )

Exact answer from parabolic cylinder 

For Hitchin system Tr p2 = V(w) very similar
• singular both at z=0 and z = infinity 

• For V=w2-2m same functional relations as periodic TN


