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Motivation

When computing anomalous dimensions in N = 4 SYM theory from
two-point functions

〈O(x)O(y)〉 =
const

|x − y |2∆

two classes of Feynman graphs arise:

and

The first class is contained in the so-called Asymptotic Bethe Ansatz of
Beisert and Staudacher

The second class are ‘wrapping interactions’ which start to appear at order
g 2L (these are not contained in the Asymptotic Bethe Ansatz)

The computation of all wrapping graphs is (one of) the aim(s) of the TBA
systems proposed for the light-cone string sigma model in AdS5 × S5

see talks by Frolov, Kazakov, Gromov

We want to explore (still) first corrections to the Bethe Ansatz
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Motivation

The simplest operator nonprotected by supersymetry is the Konishi operator

tr Φ2
i ←→ tr Z 2X 2 + . . . ←→ tr ZD2Z + . . .

The wrapping correction appears first at 4 loops, and, on the string side, can
be computed from a single Lüscher correction ‘F-term’ graph [Bajnok,RJ]

∆
(8)
w ,Konishi = 324 + 864 ζ(3)− 1440 ζ(5)

Agrees with a direct perturbative computation of F.Fiamberti,
A.Santambrogio, C.Sieg and D.Zanon

We want to extend the string computation to 5 loops
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be computed from a single Lüscher correction ‘F-term’ graph [Bajnok,RJ]

∆
(8)
w ,Konishi = 324 + 864 ζ(3)− 1440 ζ(5)

Agrees with a direct perturbative computation of F.Fiamberti,
A.Santambrogio, C.Sieg and D.Zanon

We want to extend the string computation to 5 loops

Romuald A. Janik (Krakow) 5-loop Konishi 4 / 32



Motivation

The simplest operator nonprotected by supersymetry is the Konishi operator

tr Φ2
i ←→ tr Z 2X 2 + . . . ←→ tr ZD2Z + . . .

The wrapping correction appears first at 4 loops, and, on the string side, can
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Motivation

Why bother with 5 loops???

Two new features appear
— an infinite set of coefficients of the BES/BHL dressing phase

start to contribute
— the Asymptotic Bethe Ansatz quantization is modified by

virtual particles

The latter effect is sensitive to much finer structure of the proposed TBA
system than the F-term (4 loop result)
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Multiparticle Lüscher corrections

In contrast to relativistic theories the S-matrix cannot be written in a
difference form

S(p1, p2) 6= S(φ(p1)− φ(p2))

Consequently one cannot trade derivatives w.r.t. p1 for derivatives w.r.t. p2

as for relativistic theories where we have

∂θ1 S(θ1, θ2) = −∂θ2 S(θ1, θ2)

Perform a heuristic derivation of multparticle Lüscher correction without
assuming the difference property...

Romuald A. Janik (Krakow) 5-loop Konishi 6 / 32
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Multiparticle Lüscher corrections

Construct Thermodynamic Bethe Ansatz (TBA) for a hypothetical theory with a
single particle species which scatters with an S-matrix

S(p1, p2)

which does not have any difference property

Program:

1 Construct ground state TBA

2 Get excited state TBA from analytic continuation

3 Expand at large volume to get multiparticle Lüscher corrections
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Multiparticle Lüscher corrections

Consider the theory on a cylinder of size L and height R →∞
The partition function will be dominated by the ground state

Z (L,R) ∼
R→∞

e−RE0(L)

TBA: consider the same partition function in the theory with space and time
interchanged (‘mirror theory’):

The same partition function has the interpretation of a the mirror theory on a
very large cylinder of size R →∞ at nonzero temperature T = 1/L

Crucial advantage: virtual corrections to the Asymptotic Bethe Ansatz of the
mirror theory vanish as R →∞

Romuald A. Janik (Krakow) 5-loop Konishi 8 / 32
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Multiparticle Lüscher corrections

Start from the Asymptotic Bethe Ansatz for the mirror theory

e i p̃jR =
∏

k:k 6=j

S(p̃j , p̃k)

Introduce densities of roots ρ(z) and holes ρh(z)

2π(ρ(z) + ρh(z)) = Rp̃′(z)− φ ∗ ρ where φ ≡ ∂z log S(p̃(z), ·)

In order to determine ρ we need a second equation — extremize the free
energy

F = E − TS ≡
∫

Ẽ (z)ρ(z)dz − 1

L
S [ρ, ρh]

The above equations completely fix ρ(z).

It is convenient (and standard) to introduce the pseudoenergy ε(z) through

ρ

ρ+ ρh
=

e−ε

1 + e−ε
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Multiparticle Lüscher corrections

Start from the Asymptotic Bethe Ansatz for the mirror theory

e i p̃jR =
∏

k:k 6=j

S(p̃j , p̃k)

Introduce densities of roots ρ(z) and holes ρh(z)

2π(ρ(z) + ρh(z)) = Rp̃′(z)− φ ∗ ρ where φ ≡ ∂z log S(p̃(z), ·)

In order to determine ρ we need a second equation — extremize the free
energy

F = E − TS ≡
∫
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Multiparticle Lüscher corrections

Start from the Asymptotic Bethe Ansatz for the mirror theory

e i p̃jR =
∏

k:k 6=j

S(p̃j , p̃k)

Introduce densities of roots ρ(z) and holes ρh(z)

2π(ρ(z) + ρh(z)) = Rp̃′(z)− φ ∗ ρ where φ ≡ ∂z log S(p̃(z), ·)

In order to determine ρ we need a second equation — extremize the free
energy

F = E − TS ≡
∫
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Multiparticle Lüscher corrections

Start from the Asymptotic Bethe Ansatz for the mirror theory

e i p̃jR =
∏

k:k 6=j

S(p̃j , p̃k)

Introduce densities of roots ρ(z) and holes ρh(z)

2π(ρ(z) + ρh(z)) = Rp̃′(z)− φ ∗ ρ where φ ≡ ∂z log S(p̃(z), ·)

In order to determine ρ we need a second equation — extremize the free
energy

F = E − TS ≡
∫
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Multiparticle Lüscher corrections

...

TBA equation for ε(z)

ε(z) = LẼ (z) +

∫
dw

2π
φ(w , z) log

(
1 + e−ε(w)

)
where

φ(w , z) ≡ 1

i
∂w log S(w , z)

Once ε(z) is known find the ground state energy from

E = −
∫

dz

2π
p̃′(z) log

(
1 + e−ε(z)

)
Transform this into TBA for excited states by making an analytical
continuation in the volume L as first proposed by Dorey,Tateo
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Multiparticle Lüscher corrections

During analytical continuation and deforming contours one encounters points
where 1 + e−ε(zi ) = 0

Their contribution can be evaluated by residues to give additional source
terms in the equations – sign depending on relative orientation of the contour

From the formula for the energy

E =

∫
dz

2π
p̃(z)∂z log

(
1 + e−ε(z)

)
we get

E = E (z1) + E (z2)−
∫

dz

2π
p̃′(z) log

(
1 + e−ε(z)

)
so that ∂z log

(
1 + e−ε(zi )

)
contributes -1.

This fixes uniquely the sign of the corresponding source terms in the
analytically continued TBA equation...
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Multiparticle Lüscher corrections

We get the TBA equation

ε(z) = iLp̃(z) + log S(z1, z) + log S(z2, z)︸ ︷︷ ︸
leading order

+

∫
dw

2πi

∂w S(w , z)

S(w , z)
log
(

1 + e−ε(w)
)

Plug the leading order term into the formula for the energy

E = E (z1) + E (z2)−
∫

dp̃

2π
e−LẼ S(z , z1)S(z , z2)

We get the Lüscher F-term integral! What about µ-terms??

Here we assumed that each physical particle is represented by a single root –
µ terms appear when several roots correspond to a single particle
[Dorey,Tateo; Bazhanov,Lukyanov,Zamolodchikov] see talk by Bajnok

The F-term integral is not sensitive to the convolution part of TBA
equations...

z1 and z2 have to be self-consistently determined by ε(zi ) = iπ + (2πn)i
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e−LẼ S(z , z1)S(z , z2)
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Multiparticle Lüscher corrections

Plug the leading order term into the quantization condition:

iπ = ε(z1) = iLp1 + iπ + log S(z2, z1)

This is just the Asymptotic Bethe Ansatz condition

We have to insert the subleading integral part also! This gives

0 = log{e iLp1 S(z2, z1)}︸ ︷︷ ︸
BY1

+

∫
dw

2πi
(∂w S(w , z1))S(w , z2)e−LẼ(w)︸ ︷︷ ︸

Φ1

0 = log{e iLp2 S(z1, z2)}︸ ︷︷ ︸
BY2

+

∫
dw

2πi
S(w , z1)(∂w S(w , z2))e−LẼ(w)︸ ︷︷ ︸

Φ2

Solve as corrections to the Asymptotic Bethe Ansatz values pi

∂BY1

∂p1
δp1 +

∂BY1

∂p2
δp2 + Φ1 = 0

∂BY2

∂p1
δp1 +

∂BY2

∂p2
δp2 + Φ2 = 0
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Φ1

0 = log{e iLp2 S(z1, z2)}︸ ︷︷ ︸
BY2

+

∫
dw

2πi
S(w , z1)(∂w S(w , z2))e−LẼ(w)︸ ︷︷ ︸
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Multiparticle Lüscher corrections

Final Multiparticle Lüscher corrections

E = E (p1) + E (p2)︸ ︷︷ ︸
ABA

+ E ′(p1)δp1 + E ′(p2)δp2︸ ︷︷ ︸
ABA modification

−
∫

dq

2π
e−LẼ S(z , z1)S(z , z2)︸ ︷︷ ︸

F-term

F-term is sensitive just to the source terms of TBA.

The integrand is essentially given by the transfer matrix

ABA modification terms depend on the convolution terms in TBA equations.
Not expressible directly in terms of transfer matrix

Natural generalization to nondiagonal scattering... [Bajnok,RJ]

– diagrammatic verification for single particle Lüscher corrections (completely
independent from TBA) [ Lukowski,RJ]

Interesting to explore for the proposed TBA systems

log YA = sourceA + KAB ∗ log(1 + YB)

c.f. talks by Frolov, Kazakov, Gromov
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e−LẼ S(z , z1)S(z , z2)︸ ︷︷ ︸

F-term

F-term is sensitive just to the source terms of TBA.

The integrand is essentially given by the transfer matrix

ABA modification terms depend on the convolution terms in TBA equations.
Not expressible directly in terms of transfer matrix

Natural generalization to nondiagonal scattering... [Bajnok,RJ]

– diagrammatic verification for single particle Lüscher corrections (completely
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independent from TBA) [ Lukowski,RJ]

Interesting to explore for the proposed TBA systems

log YA = sourceA + KAB ∗ log(1 + YB)

c.f. talks by Frolov, Kazakov, Gromov

Romuald A. Janik (Krakow) 5-loop Konishi 14 / 32
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Magnitudes

The magnitude of the integrals (F-term or the shift of the momentum w.r.t.
ABA δpi ) is governed by

e−LẼ ∼ g 2L for small g

For the Konishi the F-term appears at order g 8 (4 loops)

However the ABA modification term first appears at one order higher (5
loops)

E ′(p1)δp1 ∼ g 2 · g 2L ∼
Konishi

g 10

The S-matrix dressing factor in Lüscher corrections behaves like

σ2 ∼ e ig2·phase ∼ 1 + g 2 · (. . .)

due to the fact that one particle has mirror kinematics and the other physical
kinematics...

For the Konishi, both the dressing factor and the ABA modification appear at
5 loops
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Our goal:

Compute the 5-loop anoma-
lous dimension from string
theory using multiparticle
Lüscher corrections

How will we know that we get the correct result???
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Crosschecks

Ultimate crosscheck — direct perturbative computation
unfortunately seems very difficult

There are also nontrivial internal consistency crosschecks

The higher loop integrals in perturbative gauge theory have (here) a rather
simple transcendentality structure – a linear combination of (products) of ζ’s

Typical subexpressions from string theory involve much more complicated
structures like polygammas etc.

All these should cancel between the various parts of Lüscher expressions
coming from different sources - like ABA modification, dressing factor and
higher order expansion of F-term integrand

Another crosscheck – cancellation of µ-terms
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Crosschecks

Both the F-term and ABA modification terms have the structure∫
dq

(
4g 2

q2 + Q2

)4

︸ ︷︷ ︸
e−LẼ

· (∂)S(w , z1)S(w , z2)︸ ︷︷ ︸
S-matrices

The pole at q = iQ comes from the purely kinematical exponential factor

The product of the S-matrices involves additional poles in q associated to s
and t channel poles (≡ ‘dynamical poles’)

q = i(Q ± 1)± 1√
3

Since µ terms are not expected to appear at weak coupling, the contribution
of dynamical poles should cancel

Again the cancelation occurs only in the complete expression between the
various terms

Romuald A. Janik (Krakow) 5-loop Konishi 18 / 32
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4 loops

General features of the leading 4-loop wrapping corrections:

No contribution from the modification of the Asymptotic Bethe Ansatz

No contribution from the dressing phase

The whole contribution comes from the F-term integral which can be
expressed through the transfer matrix:

∆F
w = −

∞∑
Q=1

∫ ∞
−∞

dq

2π

(
z−

z+

)L∑
b

(−1)Fb [SQ−1(q, ui )SQ−1(q, uii )]
b(11)
b(11)

this can be rewritten using Y-system notation as

∆F
w = −

∞∑
Q=1

∫ ∞
−∞

dq

2π
YQ(q, u)

see talks by Kazakov, Gromov
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Konishi @ 4 loops

[Bajnok,RJ]

For the Konishi operator

YQ(q) =
16384g 8Q2(−1 + q2 + Q2 − 4u2)2

(q2 + Q2)4((q + i(Q + 1))2 − 4u2)((q + i(Q − 1))2 − 4u2)
×

× 1

((q − i(Q − 1))2 − 4u2)((q − i(Q + 1))2 − 4u2)
+ . . .

with

u =
1

2
√

3
+O

(
g 2
)

Perform the integral by residues...

Contribution of the dynamical poles cancels out after summation over Q

The whole result follows just from the kinematical pole:

∆(8)
w = −i

∞∑
Q=1

res
q=iQ

YQ(q) = 324 + 864ζ(3)− 1440ζ(5)

Romuald A. Janik (Krakow) 5-loop Konishi 20 / 32
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Twist two @ 4 loops

[Bajnok,RJ, Lukowski]

Twist two operators are operators composed of two scalar fields Z and M
covariant derivatives D along a light cone direction

tr ZDMZ + . . .

These operators get wrapping corrections at 4 loops

γ8(M) = γBethe
8 (M) + γwrapping

8 (M)

Their anomalous dimensions obey very strong constraints

Wrapping part should not have a piece proportional to log M (cusp
anomalous dimension should be unmodified)

Constraints on large M asymptotics from reciprocity

Maximal transcendentality principle of Kotikov, Lipatov. γ8(M) should have
transcendentality degree 7

γ(M) analytically continued to M = −1 + ω should have prescribed pole
structure from BFKL and NLO BFKL equations [KLRSV]
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Twist two @ 4 loops

[Bajnok,RJ, Lukowski]

Twist two operators are operators composed of two scalar fields Z and M
covariant derivatives D along a light cone direction

tr ZDMZ + . . .

These operators get wrapping corrections at 4 loops

γ8(M) = γBethe
8 (M) + γwrapping

8 (M)

Their anomalous dimensions obey very strong constraints

Wrapping part should not have a piece proportional to log M (cusp
anomalous dimension should be unmodified)

Constraints on large M asymptotics from reciprocity

Maximal transcendentality principle of Kotikov, Lipatov. γ8(M) should have
transcendentality degree 7

γ(M) analytically continued to M = −1 + ω should have prescribed pole
structure from BFKL and NLO BFKL equations [KLRSV]

Romuald A. Janik (Krakow) 5-loop Konishi 21 / 32



Twist two @ 4 loops

[Bajnok,RJ, Lukowski]

Twist two operators are operators composed of two scalar fields Z and M
covariant derivatives D along a light cone direction

tr ZDMZ + . . .

These operators get wrapping corrections at 4 loops

γ8(M) = γBethe
8 (M) + γwrapping

8 (M)

Their anomalous dimensions obey very strong constraints

Wrapping part should not have a piece proportional to log M (cusp
anomalous dimension should be unmodified)

Constraints on large M asymptotics from reciprocity

Maximal transcendentality principle of Kotikov, Lipatov. γ8(M) should have
transcendentality degree 7

γ(M) analytically continued to M = −1 + ω should have prescribed pole
structure from BFKL and NLO BFKL equations [KLRSV]

Romuald A. Janik (Krakow) 5-loop Konishi 21 / 32



Twist two @ 4 loops

[Bajnok,RJ, Lukowski]

Twist two operators are operators composed of two scalar fields Z and M
covariant derivatives D along a light cone direction

tr ZDMZ + . . .

These operators get wrapping corrections at 4 loops

γ8(M) = γBethe
8 (M) + γwrapping

8 (M)

Their anomalous dimensions obey very strong constraints

Wrapping part should not have a piece proportional to log M (cusp
anomalous dimension should be unmodified)

Constraints on large M asymptotics from reciprocity

Maximal transcendentality principle of Kotikov, Lipatov. γ8(M) should have
transcendentality degree 7

γ(M) analytically continued to M = −1 + ω should have prescribed pole
structure from BFKL and NLO BFKL equations [KLRSV]

Romuald A. Janik (Krakow) 5-loop Konishi 21 / 32



Twist two @ 4 loops

[Bajnok,RJ, Lukowski]

Twist two operators are operators composed of two scalar fields Z and M
covariant derivatives D along a light cone direction

tr ZDMZ + . . .

These operators get wrapping corrections at 4 loops

γ8(M) = γBethe
8 (M) + γwrapping

8 (M)

Their anomalous dimensions obey very strong constraints

Wrapping part should not have a piece proportional to log M (cusp
anomalous dimension should be unmodified)

Constraints on large M asymptotics from reciprocity

Maximal transcendentality principle of Kotikov, Lipatov. γ8(M) should have
transcendentality degree 7

γ(M) analytically continued to M = −1 + ω should have prescribed pole
structure from BFKL and NLO BFKL equations [KLRSV]

Romuald A. Janik (Krakow) 5-loop Konishi 21 / 32



Twist two @ 4 loops

[Bajnok,RJ, Lukowski]

Twist two operators are operators composed of two scalar fields Z and M
covariant derivatives D along a light cone direction

tr ZDMZ + . . .

These operators get wrapping corrections at 4 loops

γ8(M) = γBethe
8 (M) + γwrapping

8 (M)

Their anomalous dimensions obey very strong constraints

Wrapping part should not have a piece proportional to log M (cusp
anomalous dimension should be unmodified)

Constraints on large M asymptotics from reciprocity

Maximal transcendentality principle of Kotikov, Lipatov. γ8(M) should have
transcendentality degree 7

γ(M) analytically continued to M = −1 + ω should have prescribed pole
structure from BFKL and NLO BFKL equations [KLRSV]

Romuald A. Janik (Krakow) 5-loop Konishi 21 / 32



Twist two @ 4 loops

[Bajnok,RJ, Lukowski]

Twist two operators are operators composed of two scalar fields Z and M
covariant derivatives D along a light cone direction

tr ZDMZ + . . .

These operators get wrapping corrections at 4 loops

γ8(M) = γBethe
8 (M) + γwrapping

8 (M)

Their anomalous dimensions obey very strong constraints

Wrapping part should not have a piece proportional to log M (cusp
anomalous dimension should be unmodified)

Constraints on large M asymptotics from reciprocity

Maximal transcendentality principle of Kotikov, Lipatov. γ8(M) should have
transcendentality degree 7

γ(M) analytically continued to M = −1 + ω should have prescribed pole
structure from BFKL and NLO BFKL equations [KLRSV]

Romuald A. Janik (Krakow) 5-loop Konishi 21 / 32



Twist two @ 4 loops

[Bajnok,RJ, Lukowski]

Twist two operators are operators composed of two scalar fields Z and M
covariant derivatives D along a light cone direction

tr ZDMZ + . . .

These operators get wrapping corrections at 4 loops

γ8(M) = γBethe
8 (M) + γwrapping

8 (M)

Their anomalous dimensions obey very strong constraints

Wrapping part should not have a piece proportional to log M (cusp
anomalous dimension should be unmodified)

Constraints on large M asymptotics from reciprocity

Maximal transcendentality principle of Kotikov, Lipatov. γ8(M) should have
transcendentality degree 7

γ(M) analytically continued to M = −1 + ω should have prescribed pole
structure from BFKL and NLO BFKL equations [KLRSV]

Romuald A. Janik (Krakow) 5-loop Konishi 21 / 32



Twist two @ 4 loops

The F-term integrand is expressed through the Baxter polynomial of the
1-loop twist two state

The wrapping correction can be evaluated to

γwrapping
8 (M) = −640 S2

1 ζ(5)− 512 S2
1 S−2 ζ(3)+

+ 256 S2
1 (−S5 + S−5 + 2S4,1 − 2S3,−2 + 2S−2,−3 − 4S−2,−2,1)

where Sk ≡ Sk(M) =
∑M

n=1 1/nk , etc.

Has the correct large M asymptotics [Beccaria,Forini]

All terms have (maximal) transcendentality 7
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Twist two @ 4 loops

Leading singularities at M = −1 + ω

γwrapping
8 (ω) ∼ 256

(
2

ω7
+

0

ω6
− 8ζ(2)

ω5
+

9ζ(3)

ω4
+

59ζ(4)

4ω3
+O

(
1

ω2

))
Asymptotic Bethe Ansatz answer [Kotikov,Lipatov,Rej,Staudacher,Velizhanin]

γBethe
8 (ω) ∼ 256

(
−2

ω7
+

0

ω6
+

8ζ(2)

ω5
− 13ζ(3)

ω4
− 16ζ(4)

ω3
+O

(
1

ω2

))
Added together these give

γ8(ω) ∼ −256

(
4ζ(3)

ω4
+

5
4ζ(4)

ω3
+O

(
1

ω2

))

Exactly agrees with LO and NLO BFKL expectations for N = 4 SYM!
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Single impurity @ 4 loops

Suppose we analytically continue M → 1

We obtain a single impurity with p = π (rapidity u = 0)

Such an operator is unphysical in N = 4 SYM, but makes sense in
the β deformed theory with β = 1/2

The four loop wrapping becomes

∆
(8)
w ,single = 496 ζ(3)− 640 ζ(5)

This exactly agrees with a direct perturbative calculation by
Fiamberti,Santambrogio,Sieg and Zanon

In the Lüscher calculation, the same analytical continuation can be obtained
by neglecting fermionic virtual particles in the loop...

Romuald A. Janik (Krakow) 5-loop Konishi 24 / 32
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5 loops

General features of the subleading 5-loop wrapping corrections:

The dressing factor has to be taken into account

Modification of ABA starts to play a role

The F-term integrand has to be expanded to higher order in g

Romuald A. Janik (Krakow) 5-loop Konishi 25 / 32
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The BES/BHL dressing phase in the Lüscher kinematics

[Bajnok,Hegedus,RJ, Lukowski]

We have to evaluate σ2
BES(z±, x±) where x± is in the physical kinematics

while z± is in the mirror one, i.e.

x+ ∼ 1

g
x− ∼ 1

g
but z+ ∼ 1

g
z− ∼ g

This scaling upsets the estimates of the weak coupling beaviour of σ2
BES

In the expression for the phase (σ ∼ exp(iχ))

χ(x1, x2) = −
∞∑
r=2

∑
s>r

cr ,s(g)

(r − 1)(s − 1)

[
1

x r−1
1 x s−1

2

− 1

x s−1
1 x r−1

2

]
all c2,s will contribute! (recall cr ,s(g) ∼ g r+s−2)

This can be resummed to get

χ
( g

a1︸︷︷︸
z−

,
a2

g︸︷︷︸
x±

)
=

g 2

a2
(2γE + ψ(−ia1) + ψ(ia1)) +O

(
g 4
)
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Konishi @ 5 loops

Recall

E = E (p1) + E (p2)︸ ︷︷ ︸
ABA

+ E ′(p1)δp1 + E ′(p2)δp2︸ ︷︷ ︸
ABA modification

−
∫

dq

2π
e−LẼ S(z , z1)S(z , z2)︸ ︷︷ ︸

F-term

The ABA quantization condition will get modified at 5 loops

5i

2
δp1 −

i

2
δp2 + Φ = 0

− i

2
δp1 +

5i

2
δp2 − Φ = 0

where

iΦ =
∑
Q

∫ ∞
−∞

dq

2π

(
z−

z+

)L∑
b

(−1)Fb [(∂qSQ−1(q, ui ))SQ−1(q, uii )]
b(11)
b(11)

≡
∞∑

Q=1

∫ ∞
−∞

dq

2π
ΦQ(q, u)

We get δp1 = −δp2 = i
3 Φ
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Konishi @ 5 loops

We have to expand the F-term integrand up to 5 loops

This will involve expanding the transfer matrix up to g 10. We have to include
the following contributions:

1 Explicit g dependence coming from mirror particle z± in the S-matrix elements
2 We have to sum up subleading terms in the construction of the scalar factor in

the sl(2) sector for bound states
3 We have to include the contribution of the dressing phase

Y
(8)
Q (q, u) ·

»
− 32

1 + 4u2

“
γE +

1

2
ψ
`1

2
(−iq − Q)

´
+

1

2
ψ
`1

2
(iq + Q)

´”–
4 We have to include the effects of the two-loop Bethe Ansatz for the rapidities

of the constituents of the Konishi state

u = u0 + u2g
2 + . . . =

1

2
√

3
+

4√
3
g 2 + . . .
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Konishi @ 5 loops

We have to evaluate

∆(10)
w = −

∞∑
Q=1

∫ ∞
−∞

dq

2π

(
4√
3

ΦQ(q) + Y
(10,0)
Q (q) + Y

(8,2)
Q (q)

)
All terms have poles at q = iQ, and at dynamical poles

In addition the polygamma ψ functions appearing in the dressing factor
analytically continued to the Lüscher kinematics lead to an infinite sequence
of poles at q = i(Q + 2n)

After summation over Q, the residues of dynamical poles cancel out! (no
µ-terms at weak coupling)

...

Sums of the type
X
Q

R(Q)ψn(Q), cancellation of polygamma’s with nasty arguments...

...
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Konishi @ 5 loops

Our result:

∆(10)
w = −11340 + 2592 ζ(3)− 5184 ζ(3)2 − 11520 ζ(5) + 30240 ζ(7)

This gives for the total anomalous dimension:

∆ = 4 + 12 g 2 − 48 g 4 + 336 g 6 + 96(−26 + 6 ζ(3)− 15 ζ(5)) g 8

−96(−158− 72 ζ(3) + 54 ζ(3)2 + 90 ζ(5)− 315 ζ(7)) g 10
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Single impurity @ 5 loops

We performed the same computation for the L = 2 single impurity state with
p = π (should be physical in the β = 1/2 deformed theory)

Following our 4 loop observation, we assumed that fermionic virtual particles
cancel

Here ABA is not modified, but the dressing factor contributes in the same
way as for Konishi

Dynamical poles cancel and the final result has a similar transcendentality
structure

∆
(10)
w ,single = −4096 ζ(3) + 5120 ζ(5)− 1536 ζ(3)2 + 13440 ζ(7)
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