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PLAN OF THE TALK

e S-matrix and Hopf algebra

e Non-abelian symmetries and the Yangian

e Quest for universal R-matrix and the quantum Double
e Classical r-matrix

® A secret symmetry

e Yangian representations and the Bound State S-matrix

e Applications and Open problems

. a Journey through Symmetries E

!Sincere apologies to many beautiful papers which have not been included
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S-MATRIX and HOPF ALGEBRA

Elementary excitations (magnons) scatter through S-matrix

[Staudacher '04; Beisert '05]

R: ViV, — ViV

S = PR P = (graded) perm

V; carries a representation of (two-copies of) centrally-
extended psu(2|2) := A

S-matrix encodes info on dynamics, therefore
its symmetries are important

Action of symmetry generators on 2-particle states (‘in’)
given by ‘coproduct’

A: A— AR A

such that [A(a),A(0)] = A([a,0]) (homo) and

(PA)R = RA

PA is called the ‘opposite’ coproduct A (‘out’)



Integrability in Gauge and String Theory Golm, 2009

To begin with: LIE SUPERALGEBRA SYMMETRY

L2, Je] = 680 — 5650 R/, 1,] = 680, — 1871,
L1, 3] = —050° 4 5000° R, I7] = =3307 + 50,07
{Q., Q) = €a5€ab(c {Gao‘,Gbﬁ} = ¢*Pe, CT
{Qe, Gfg} =R, + 6L, + Lo H

Dynamical Spin-Chain Picture
Hlp) = €(p) Ip)

Clp) = c(p)lpZ™) C'lp) = elp) IpZ™)

Z*(-): one site of the chain is added (removed)

On 2-particle states the action is non-local:

C®1llp) @ |p2) =

Cx®1 Z eiP1n1+iP2n2|...ZZ¢1Z...Z¢QZ...>

ny<<ng no—mny—1
(rescaleny) = c(p1) €™ |p1) ® |pa)
SA(C> =5 [(C ®1+1® (C] =5 [eipzclocal 1+1® Clocal]

A((Clocal) = Clocal & eip +1® Clocal

[Gomez-Hernandez ’06; Plefka-Spill-AT '06]
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Similar coproduct arises for the other (super)charges,

controlled by a quantum number [[Q)]] s.t.

AQ =QelWlr+19Q

In the presence of central elements C', there is consistency
requirement:

PA(C)R = RA(C) = A(C)R

therefore

(coproduct is said to be co-commutative)

In our case, this is guaranteed by physical request

e?=rkC + 1

for a constant x [straightforw. proof]

e One can check all the axioms of Hopf algebras are
satisfied
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STRING WORLDSHEET PICTURE

Coproduct reproduced from Bernard-LeClair procedure

[Klose-McLoughlin-Roiban-Zarembo '06]

Alternative classical argument. Light-cone worldsheet
supercharges have non-locality

Q:/oodg J(o) ¢ [ d0' 050"

[Arutyunov-Frolov-Plefka-Zamaklar ’06]

Imagine two well-separated soliton excitations
(“scattering state”). Define semiclassical action of charge

(0.}
Q\pmfile - / do J(U)Iprofz’le Zf do’ 0™ (0" ) profite

0
_ / do J(O’)Bi J°. do' oz (o)
n /OO do J( ) zf do’ 0x~(a") ifoada’ax_(a’)
0

~ QL He"Qr — AQ)=Q®1+e”®Q
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CROSSING SYMMETRY

Hopf-algebra antipode ¥ : A — A is defined as

m (X ®1)AQ) = “0”
where
m(a®b) = ab
Derive from it antiparticle representation Q:
2@ = ¢ 1QtC
with C' charge-conjugation matrix.

Possible to write down crossing symmetry of S-matrix

[Janik *06]

Eel)R= (1% " YR =R"'

directly from the dynamical generators: %(Q) = —e Q)

e Reformulation as a Faddeev-Zamolodchikov algebra

[Arutyunov-Frolov-Zamaklar '06]

A1 Ay = SA Ay
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YANGIANS

3 Lie superalgebra Q“. Suppose 3 additional charges @A

Q4 Q7] = ifd" Q° [Q*, QP = ifd? Q°

(plus Serre) with coproducts

AQYHY =" 91+1 Q" |
AQYH=Q'@1+10 Q" + 5 fQ" 8 Q°

[Drinfeld ’86]

(Inﬁnite) Spin-Chain  [Dolan-Nappi-Witten ‘03, Agarwal-Rajeev "04,
Zwiebel '06, Beisert-Zwiebel '07]

Classical String  [Mandal-Suryanarayana-Wadia 02, Bena-Polchinski-
-Roiban ’03, Hatsuda-Yoshida ’04, Das-Maharana-Melikyan-Sato '04]

S-matrix Yangian [Beisert "07]

We know modification
A(QA) _ QA Q1+ ei[[A]]p ® QA

Additionally, 3 centrally-extended psu(2|2) Yangian

AOY =041+ MIrg QA + %fé‘c QF ¢/l & (°
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REMARKS

e Evaluation representation:

O = uQt = gt + — — 1y

(satisfies comm. rel.s)

° fféc needs f(f}B and inverse Killing form G;&?

For psu(2]2), this does not exist, yet table of coproducts
can be fully determined (cf. extension by automorph.s

[Spill "dipl.thesis, Beisert ’06])
® Yangian coproduct is non-local

e Traditionally, Yangian symmetry in evaluation repre-
sentation implies difference form

S = S(Ul —UQ)

S-matrix is known NOT to possess this symmetry (u
depends on z¥), but let us keep it in mind...

e For higher bound-states, either YBE or Yangian sym-
metry have to be used to completely fix S-matrix

[Arutyunov-Frolov '08, de Leeuw '08|
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DO WE HAVE A CONTINUUM PICTURE?

Take a 2D classical field theory, with local currents

Jy=J} Ty o"J; =0 QA:/ dx J§'
satisfying flatness (Lax pair)

8oy — OvJo + [Jo, Ji] = 0

The following non-local current is conserved

) R z
Ji =€ N + 3 fhc Jf/ da' JE (')

d A d [ A

Prototype: Principal Chiral Model
L="Tr[0,g " 0"g) g € Lie

(left,right) global symmetry g — g, ge?

Noether current is flat

T = (0u9)97", 971 (Dug) € lie

10
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Let us repeat semiclassical argument:

dx JOB(x)/ da' JE (2)

—00

@~ [ st [

o —00

Evaluating on profile

0 . 0 x
AA A Loa
profile / Jl +§fBC/ JOB/ JOO
s [t e [ [
0 0 0

. 00 0
1
+§f§c/ Jég/ Joc
0 —00

[Luescher-Pohlmeyer '78, MacKay "92]

naturally brings to
A A A ?
AQRH=Q"®1+18Q" + 5 frcQ” ®Q°

Quantization of this action in absence of anomalies —
Hopf algebra rep on Hilbert space (see also [Luescher '78]).

[Something similar should happen for string w.sheet...]

11
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SOME EXPECTED CONSEQUENCES

Yangian is an infinite-dimensional non-abelian symmetry
algebra

e (Semiclassical and quantum) S-matrix gets very con-
strained

e Spectrum degeneracies are organized in Yangian irreps:
spectrum generating algebra [cf. angular momentum)|

HQW) = QH) = eQy)

e Transfer matrix may enjoy Kirillov-Reshetikhin benefits

—

e Whole mathematics of Yangian doubles and rational R-
matrices enters the game (quantum groups, in general)

{for rev}[Chari-Pressley 94, Etingof-Schiffman '98, MacKay '04, Molev '07]

—

12
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YANGIANS AND BETHE ANSATZ
[Kirillov-Reshetikhin ’86, "87]

Given a rational solution of YBE Rjs(u), Yangian Y can

be generated by TE, k>1 and 7,5=1,---N, s.t.

Rys(u) Ty (u 4 v) To(v) = To(v) Th(u + v) Ria(u)

T(w)=1+ > u"T}EY

with (EF"),; = 0.6/ and Hopf algebra coproduct

A(Ty(w)) = Tinu + v) © Tiy(u)

3 abelian subalgebra 7 generated by t;(u), obtained
antisymmetrizing k-th tensor product of T;;(u)

‘Quantum det’ ty(u) generates center of the Yangian

e Example: ¢I(N) Tij(u) = 045 +

Eij
U—v

Common eigenvectors of 7 are in one-to-one with
solutions of Bethe equations

7 commutes with gl(N) C Y, therefore it classifies
multiplicities of irreps in tensor products of gl(V)

13
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UNIVERSAL R-MATRIX

Given H non co-commutative Hopf algebra (PA # A),
suppose 1 abstract solution R € H ® H of

(PA)R = RA

Universal means independent of representations in each
factors of ®

Stand. Yangian is one such H: “There is so much symmetry,
that S-matrix can be written purely in terms of generators of
symmetry algebra!”

Theorem (Drinfeld): if R satisfies Quasi-Triangularity
(rep-independent version of bootstrap principle)

(A X 1)R = Ri3 Rog3
(1 X A)R = Ri3 Ry

then it also satisfies YBE and Crossing °

Direct proof of properties of S-matrix
Complete solution to scattering problem reduces to:

find the abstract tensor R given H, and then project it into your
favorite (bound-state) rep

14
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More than that: LeClair-Smirnov

Solve/Construct the model from universal R-matrix, its
intertwining properties, and the representation theory
of the associated quantum group

[LeClair-Smirnov '92]

Can we answer Staudacher’s last year question:
“What is ultimately the model we are diagonalizing?”

using the representation theory of the Yangian?

Hic sunt leones. What would Drinfeld do?

Study perturbation of YBE around identity, and classify
[Belavin-Drinfeld ’82]

Suppose

R~1®1 + hr + O(h?)

r € lie ® lie (cf. exponential map) is the classical r-matrix
and satisfies simpler equation to study: ClassicalY BE

(712, 713] + [r12, T23] + [r13,723) = 0

15



Integrability in Gauge and String Theory Golm, 2009

CLASSICAL r-MATRIX

Classical limit encodes info on quantum

Theorem (Belavin-Drinfeld): if r(u; — ug) € lie ® lie
solves CYBE and [...] has a simple pole in u; —us =0
with residue C; = quadratic Casimir of lie ® lie, then

— then r is unitary, i.e. rio(u; —us) = —roy(ug — uq),
meromorphic in plane u = u; — us, all poles are simple and

form a lattice I

e diml' =2 — elliptic r-matrix/elliptic q.group
o diml' =1 — trigonom. r-matrix/(affine) q.group
o diml'=0 — rational r-matrix/Yangian

How do we see this? Factorization:

Yang’s example (’67)

r= % solves CYBE (by def (5,0 ®1+1® Q4 =0)

A
S 02 _ Q ® QA _ Z QAU? ® QAUQ_n—l — Z Qﬁ ® QA77H71

Uz — Uz =t n>0 n>0

QA QB =i fA2QY.,,: loop algebra ... = classical Yangian

16
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Theorem 11I:
[Belavin-Drinfeld ’83]

if » not of difference form, but dual Coxeter number of

lie nonzero, 7 change of variables to difference form

REMARK

e r-matrix controls Poisson brackets of classical L-oper
and contains seed of quantization

(R~ 1® 1+ hr+ reconstructible)

WHAT ABOUT AdS/CFT S-MATRIX?

R~1®1 4+ hAhr in near BMN limit

e i1 is 1/g (with g related to 't Hooft coupling)

e 7 is tree-level string r-matrix

[Klose-McLoughlin-Roiban-Zarembo ’06]

e Classical representation variable

xi(m)x(\/l_QQ(l’l%)?ig(ﬂii%D -

[Arutyunov-Frolov '06]

17
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LET US TRY
[AT "07]

e Algebra tends to a limiting centrally-extended psu(2|2)

e Classical r-matrix is not diff-form (Belavin—Drinfeldﬂ

not applicable), nevertheless has a simple pole at origin

xr1 — w9 = 0 (diml’ = 0, suggests Yangians...)

e Th. [easy]|: To satisfy CYBE with such pole, residue
must be Casimir of lie ® lie

For centr-ext psu(2|2) we don’t have it...

How to get away?
Residue at origin is quadr. Casimir of gl(2[2)!
Just on pole, borrow an extra generator B=diag(1,1,—1,—1)

from nearest non-degenerate superalgebra, to respect Th. [easy]

Away from residue B is broken

e Only on pole, 3 change of variables to diff-form (consis-
tent with Bel.-Drinf. Th. II)

Such borrowing reminds of math prescription for universal
R-matrices based on degenerate Cartan matrices

[Khoroshkin-Tolstoy "91]

Super-version — consult [Leites-Serganova 84]

18
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e Khoroshkin-Tolstoy prescription: universal R-matrix goes

+ - —lrri J - —+
R = H €E RF ea”H®H H 6E] QRF

roots roots

E* are roots of lie, H; Cartan generators and a;; Cartan
matrix

“If degenerate, add Hy’s until you can invert it”

e Expected we had to call in an H; = B soon or later

We may have a chance of factorizing —

e Remark: gl(2]2) Casimir is well-known from opposite

regime g = (

gl(212)
2

Rlloop ~1®1 + U1 — Uy

(up to twists). Yang’s quantum R-matrix, prototype for
QYBE

19
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YANGIAN DOUBLES

e Remember Yang

C: L Qe _
- :GAle—Q e =) GipQn©Qf

Uy — U e

a—

e 1 way (surpassed by history)

[Moriyama-AT ’07]

r=> G, Q% . -Q,eC . +H.oB .1 +B,®H .

n>0

+ (]Lg,n ® ]Lb - IL’I?,—n—l ® IE"Z,n) - (Rg,n ® ISRg,—n—l - IRg,—n—l ® Rg,n)

a,—n—1

for an enlarged Cartan matrix o' H'H’ = 4HB + L* — R
Bonus: B, = (2" —z ")diag(1,1,—1,—1) vanishes at n = 0

(indeed, 3 no such Lie algebra symmetry)

e For higher n (higher Yangian generators), suggests 3 of

additional (non-local) symmetry of B-type

Is this additional symmetry confirmed at quantum level?

YES

Matsumoto-Moriyama-AT ’07, Beisert-Spill 07

20
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SECRET SYMMETRY

3 (first level) Yangian symmetry of quantum S-matrix

L L
ZMBy;B®1+1®B+5?Gg®Qg+@g®G$
. .2
S(B) = —B + —H
g
.1
B = Z(;ﬁ +2” —1/x" —1/27) diag(1,1,—1,—1)

[Do not be misled by appearances: formula is exact Vg]

Generates through comm new type of Yangian susys.

Consistent with classical limits, both obsolete («+—)
and new

New [Beisert-Spill ’07]

T—B@H—H®3_2®H+H®E_H®H

y . 22"[1,1U2
i(up — us) 1Us Uy e

T =

T —9 (Rﬂa ® Raﬁ _ ]L'ba ® Lab + Gaa ® Qaa . Qaa ® Gaa)

-1 1
B=—
2 ad + bc

diag(1,1,—1,—1)

Nice classical double. Confirmed for bound states

[de Leeuw 08, Arutyunov-de Leeuw-AT ’09]

Interesting questions: By appears now explicitly, but how to make
it a symmetry? (Does it have to...?)
Connection wt [Dorey-Vicedo 06, Mikhailov - Schaefer-Nameki 08, Magro ’08]?

21



Integrability in Gauge and String Theory Golm, 2009

A STUBBORN BOY: THE DIFFERENCE FORM

e B= sz)dz'ag(l, 1,—1,—1) also goes B, ~u"B

1
Up—u2

e r has pretty s in nice places

e J Drinfeld’s second realization of the Yangian

Evaluation representation is still of type @, ~ (v +y)" Q

[Spill-AT 08]

e Connection with exceptional Lie algebra D(2, 1; «) should

help localizing u; — us dependence

[Beisert ‘05, Matsumoto-Moriyama 08, '09]

e Looks like difference form u; —us is almost there, because

Yangian calls for it (Th. Also Easy)

Upon rep, it is then masked by additional dependence
on u of representation labels a(u),b(u), c(u),d(u) entering

the S-matrix

o Universal R-matrixz should disentangle t!

Provocative rewriting of fundamental R-matrix [AT '08]

(like Khoroshkin-Tolstoy’s? What has future told?)

22
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THE BOUND STATE S-MATRIX
[Arutyunov-de Leeuw-AT ’09]

e On one hand, desire of complete set of finite dimen-
sional rep S-matrices, to figure out universal R-matrix
(dreaming of a group-theoretic solution with nice ensu-
ing math)

e On the other hand, we want finite-size. Integrability
dictates: finite-size is obtained once we know the entire
asymptotic data, including «all/ scattering matrices

e So far, powerful conjectures for transfer matrix eigen-
values based on standard treatments (cf. Bazhanov-
Reshetikhin)

[Beisert ‘07, Gromov-Kazakov-Vieira "09]
and superbe success of Luescher’s corrections
[Fiamberti-Santambrogio-Sieg-Zanon ’07, Bajnok-Janik '08, Bajnok-Janik-

-Lukowski '08]

have nurtured fascinating constructions

[Gromov-Kazakov-Vieira 09, Arutyunov-Frolov '09, Bombardelli-Fioravanti-

-Tateo '09, Frolov-Suzuki '09]

But centrally-extended psu(2|2) is very special, and a
complete mathematical proof is still missing... Can we
prove these conjectures through alternative path?

e Let us follow a direct S-matrix approach —

23
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EXPLICIT CONSTRUCTION

We use superspace formalism (atypical totally symm rep)

[Arutyunov-Frolov '08]

al...dyp_1«
Gy = " Mwg, .. Wy, + QTN MW, Wy, O+

b __ o) 1¢h o) _ 1 0
Ly" = Wagy, = 30aWegy; R.” = baz5; — 300030,
Qf=a Qa% +b eabeagwb% G, = dwaaa + ceabeo‘ﬂéﬁawb
C—ab(waa +‘90480> CT:cd<waa%a+(9a%>,

H = (ad + bc) (waa T 96“99 )

a=/Zn b
c= Vs i= Vi (1-%)

The integer ¢ is the number of bound-state constituents

[Dorey '06, Chen-Dorey-Okamura '06, Roiban ’06]



Integrability in Gauge and String Theory Golm, 2009

INVARIANT SUBSPACES

Because of su(2) x su(2) invariance, S-matriz is block-diagonal

Case I a,b: 2 x {1y vectors € V! (a,b for a = 3,4 resp.)

|k, l>I = Hawfl_k_lw’; ﬁavfrl_lvé

TV TV
Spacel Space2

Case Il a,b: 2x 4l vectors € VI (a,b for a = 3,4 resp.)

\k,l)? = Qaw?*kflwlg vfrlvé
- N

\k,l)g = wf“kw’; ﬁavfrl*lvé
———

Ik, 1)y = gawfl_k_lw’j 3931941)%2_1_11)%_1

kDT = \9394@0?—]“’_1@0’5% ?ava_l_lvé

-~ ~"

Case III: 61/, vectors € VI

m — bk k  l—l 1
kD7 = wy' wh v
m o bk k ly—1-1, 1—1
|k, l)s" = w]' "ws Y3040 vy
N—_—— . /
|k’ Z>IH = 0304w€1—k—1wk—1 ,Ufg—lvl
» Y/ 3 N 1 NG ! 2
TV WV
B, DY = 0500w M b g0 !
k05 = Ogwp g vy oy
e e I L

25
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S-matrix is of block-diagonal form

( \
2% 0
R= %
0 4
\ B
2 vi—V
k+l1
[k, ) = " 2k m k41— m)!
m=0
ag VH — VH
k+l 4 .
B = YN g m k- m)!
m=0 j=1

g . /I __ /10

k+l 6
[k, D Z Z gg;§;j|m, k+1—m)!

m=0 j5=1

Full S-matrix is two such copies times square of

So(p1,p2) = (x—i) (i—%) o(z1,x2) X
2

-1
x/G(ly — )Gl + 1) [ [ Glr — 1+ 29)
q=1
— . 1
G(f)zu1 2 u=i($++—++x‘+—_
’LL]_ — ’LL2 — 5 42 s X

26
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Case 111
Xy AGS
A(G'b ¢ a
AQ; AN LG
AGy AG?
AR%
Case 1Ia ~ Case IIb
AR
AQe | Aags AQs | Aaqe
AGY | |AGE AGY | |AG)
A]R{gARg
Case Ia ~ Case Ib
AREARE

THE DERIVATION

Case I looks easiest, we start there —

We need exact solution for Case I. First, define a ‘vacuum’

|0) = wfl v? e Yyt

such that R|0) =10), and then use A?R = RA :

Ro.0 — 7 ACYAGDIO) _ A%@)A(EYAD)

(CLQCl - 0102)5152 B (@201 - a102)£1€2

_ + B

5 10,0 = DJ0, 0)!

- )
:El _IQ eLQ

27
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Bound states are evaluation representations of Yangian,

with corresp. bound state parameter u
[de Leeuw '08]

One generates entire Case I from |0,0)!, using Yangian

1)t =
[T, [A@L) + =22 ALY T, [-A(LY) - H22n=tALY)]
[Ty (=) TTs (6 = ) T35 (Ou+ 2522 —g)

0,0)"

from which A?R = RA gives (for du = u; — us)

Rlk, ) = D x
[T, |A(LY) + S22t Aon(L)| T, | -A(LY) - H22azb o)
k-+l €1+e2 ’07 0>

(s —p) [T,2; (du+ 5= —q)

Hﬁ:1 by —) H;:l

Explicit computation produces

k+1

Rlk, ) =Y 2 n,k+1—n)!

n=0

[T (0 = OIS (e — 1)

2 =D
[y (b =) T (ﬁz—p) Hk”(&t“%—fn
k — n—m
XZ{([{; m) (n_ )H C;HUIC—;;H 6l~c+ln21p+2}
0 p=1 p=1—m p=1 p=1
0=/ . 0+ 7
cf;=5u:|:12 2 —m+1 ci=5ui1;2—m 1
0, =0 +1—2 0 =ly+1—2i

28
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Amplitude is restriction of Hypergeometric:

sin[(k — 6)w] Tl + 1)
sin[lym|sin[(k +1 — by —n)m] (1 — b+ 1)['(n + 1)
T(n+1—0) (I+5952 —n—0u) T (1 - 222 —6u)
T T (k- 5ER —gut )T (53R — ou)
U=ty by — 1
2 72

c%/'nk,l — (_1>k+n D

X

4F3(—k;,—n,5u+1— —5u;1—€1,€2—k—l,l—n—|—1;1)

Where 4F3($7 Y, z, t7 U, w; T) = 4F3(':U7 Y, z, t7 v, w; T)/[F(T)F(’U)F(w)]

LUCKY SITUATION:

Our 4F3(a;;b;;1) is ‘balanced’: > a; — ) bj = —1

— 6j-symbol

(=1)21HD (bo) T (b3) /T (1 —a1) T (1 —a2) T (1 — ag) y
I (1—b1)+/T (bg —a1)T (by — az)

VI (1 —ag)T (a1 —b1+1)T (a2 — b1 +1)T (a3 — by + 1) T (ag — by + 1) y
VT (ba —a3)T (ba —as) T (bs —a1) T (bg — a2) T (b — a3) T (b3 — as)

{1(—a1—a4+b3—1) l(—al—ag-l-bz—l) 1(a1+a2—b1—1)}
5(—&2—&34—()3—1) 5(—&2—@44-()2—1) 5(@34—&4—[)1—1)

aF5 (a1, a2,a3,a4;b1,b2,b3;1) =

The relevant 6j-symbol { ;,1 ;_2 ;,3 } has coefficients
4 J5 J6

'_1 €1_€2 ._1 €1+€2
31_2<k+l n—+ 5 +5u> 32—2( 5 2—1 6u>
1 R A )

R 1
35:2<122—1—k—l—|—n+5U> Jo =5 (t2=1)

29
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REMARKS

e Case I amplitude shows correct poles

e Case I states are highest weight w.r.t ‘fermionic’ su(2),
and carry a rep of the ‘bosonic’ su(2) Yangian

e Case I S-matrix has difference-form (apart overall fac-
tor), and is a 6j-symbol with (half-)integer coefficients
on physical poles (namely, this block exhibits standard fusion)

... Wait...

is it the representation of the universal R-matrix of the
Yangian of ‘bosonic’ su(2) in arbitrary evaluation repre-
sentations (times an overall factor)?

YES

[Arutyunov-de Leeuw-AT 09

e Since we are going to generate all other states and S-
matrix blocks from case I, it looks like one factor of the
full universal R-matrix is going to be:

Khoroshkin-Tolstoy’s su(2)- Yangian universal R-matriz, for the
IL-generators
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OTHER CASES
How do we generate the other cases’ S-matrix?

General strategy schematically as follows:

e one one hand

RA(Q)|Casell); = RQ;|Casel) = @Q; R|Casel)
= @Q;Z|Casel)

e on the other hand

RA(Q)|Casell); = A%(Q) R|Casell);
— RIA”(Q)|Casell); = R! Q5" |Casel)

From which
R = Q2 (@M

Before being more specific, notice:

This construction automatically provides a ‘factorizing twist’
for the concrete S-matrix

R = Fy F! [Drinfeld 90]
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FULL THERAPY - CASE 11

Define

4 k+l

S|k, ) = Y |m, k41— m)!
J

7j=1 m=0

and notice that

AQslk, 1) = Q;(k, )|k, 1)!

Apply general strategy:

4 ket
Yn, N —n| APQ3R |k, 1) =YY" 2% Yn, N — n| A%Q} [m, N —m)!!
7=1 m=0
4 ket
= ZZ@H]QOI’ m, N —m) Yn, N —n|m, N —m)!
7=1 m=0
4 .
— Z%]?Z?I;JQ;p(n,N—n)
j=1

I(n,N —n| AOpQéR \k,l)? = (n, N — n| RAQ}), |l~c,l>£I
N
= Qi(k,D)"(n, N —n| R |k,)" = Qi(k,1) Y~ 2N "n,N —n|m, N —m)'
m=0

= Q,(k, ) Z !
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This gives four linear equations. Similarly, using A”G}
gives other four. Not enough, need Yangian

. 2ALLA(Q2) 0y — by 4 2(N — 2n 4 uy + ug)
_ 1 2 3 . 1 2
A= A+ (14 0y — 2(N + 1+ 6u) 2001 + C3) — 4(N + 1+ 6u) ALAQ)
. 2ALIA(GY) 0y — by + 2(N — 2n + ug + ug)
A - A 4 2 1 ALlA 4
2 (G2)+€1+£2—2(N+1+5u) 2(01 + l3) — 4(N + 1 + bu) 2A(G1)

where N =k + [. These operators satisfy

4
Yn, N —n| AZ R |k, D' =" 25 Q¥ (n, N —n)

J=1

Yn,N —n| AR |k, D' =
4

k5 k5 klj ~—
S DEIQui(n, N —n) + ZQ (0, N —n) + Z.Q0 (n, N —

J=1

Yangian makes the matrix equation invertible:

@k’,l — n;1
n - k,0;3 k,0;3 k,0;3 k,0;3
@n;l g/n,Q LJ”/n;i% Lg’l/n 4
k,l;4 k,l;4 k,l;4 k,l;4
%;1 %;2 %;3 % 4
as as 0 az ai 0

n)

ca ¢ 0 0 k,l c2 a 0 0 + grk+1,1—1 — k=141 k,l
- AW = BT Z, +B~Z, + BZ,

as a3 0 0 a2 a1
cy C3 0 0 c2 C1
B4
N—n—{ 0 % %
4 - 0 fi—n 2,43 234 __
(N—n—0)(M—3u) (n—01)s T34 (Ju—Ag;lgz)JM 6u+1\/1+£1jf§2343234
(N—n—:)(01.743)  (61—n)(Bu-t+ M) M—&u—egfgl 234234 (6u+1»g;i1)ﬂ43
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00 0 0 00 0 O
L 2=k =1c_, [ o0 o o 206 —=1—=1)ct ;[ 0o 0 0 o
= P S12 = ~— 1
N Lo Z2 oo ¢y 0 00 25
<21
00 55— 0 0k 0 P
B2 1
-ty 0 s =
1 B
_ 0 b=k 22 Q?; _
(1762)(1\[751/4) (@1716)@2]12 (N76u71222).,¢12 N76u74171622212=@12
Su—N+01 2152 £ Su—N+4L1) Z
(b2—1)(£1521)  (£1—K)(5u—N) Ottt ( ;121) 21
0 0 0 0
0 0 0 0
—9 | tatntk—t1)(—£9) 0 (1—t5)(14n+k—1£1) F10 (£1—k)(1+N—n+1—L5)
N i n212 ¢ n221
0 E(1+N—n+l—£s)(k—L£7) (I—t9)(A+n+k—_7) (00 —k)(14+N—n+1l—Ls).Foq
N i N221 212
where we introduced
M=k+1—-2n

QZ’]’ = CLZ‘Cj — ajci

gi]‘ = bzd] — d]bl

%j = aidj — bjCZ'
Define

2
Q?A

da=det A
(n — fl)(N — N — fg)

—A5u* + (fl — 52)2 + 4010y 34943

= —4CTC1_ + 4010y F34. S35
then
N—n—{Ly 0 0 0
A—l — 3 O 7L—1€1 O O X
oa 0 0 245 0
0 0 0 94
%_[M"Fel;h”q"'elf&lj@] f34(%_[M+Z1552]51+) ¢, +01 34543 ¢ s
o (- [M+852]e) (MO [ eSS - T S I
761 |:M+€1;€2]j43 %*CT[M‘{‘%] £1j43 c-li-
oy [M+252] o[ M+952).7, —c7 o Ty
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Therefore, final result

232 231

234 234 0 0
242 241
kl _ 1-1]| 2, 2 0 0 k41,01 ot k—1,04+1 >— k.l
@yl = A T e o {2, BT+ 2 B~ + %,'B}
234 234
0 242 24
243 243
REMARKS

e (Apart perhaps from overall factor) final result purely
depends only on du, 2;;, 2;;,’H;; and combinatorial fac-
tors involving integer bound-state components

[Still, putting this in a universal formula remains hard]

[but you never know]

e Case III is similarly generated from Case II.

S-matrix is uniquely determined

e We reproduce known S-matrices in the limit of small
bound state numbers [Beisert ’05, Arutyunov-Frolov ’08, Bajnok-
Janik ’08]

e One can compute transfer matrix eigenvalues in arbi-
trary bound state representations via Algebraic Bethe
Ansatz — by restriction, conjectures of [Beisert ’07] on
quantum characteristic function are nicely confirmed!

[Arutyunov-de Leeuw-Suzuki-AT arXiv:0906.4783]
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CONCLUSIONS

— A deep mathematical structure is there, in some as-
pects almost reducible to standard, in some others
seemingly so much harder

— Nevertheless, blooming of developments allowed to
unveil some of the most useful bits of it

— More progress expected as one digs deeper and deeper.

Role of secret symmetry, derivation of quantum double,
maybe one day universal R-matriz ?

— Fascinating connections with Yangian and dual su-
perconformal symmetries of scattering amplitudes
await to be fully investigated

[Talk by Jan — Thursday]

... Thank You
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