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Introduction

Lately harmonic sums have become popular in particle physics. Several
categories of problems have found solutions by converting them from an
integration problem to a summation problem. Two examples are:

• The QCD three loop anomalous dimensions in deep inelastic scatter-
ing.

• The master integrals for two loop Bhabha scattering were solved by a
Mellin Barnes transformation, doing the then easy integrals and then
solving the sums.

When one is confronted with such new techniques there is much to be
discovered. And as it turns out, the mathematicians can help us only a
little bit. This means that much of the discovering will have to be done
by physicists.



In the framework of this talk we will concentrate on the results of sums
to infinity. Many of these are the result of calculating dimensionless
objects or basic Feynman diagrams, or a byproduct of (inverse) Mellin
transforms. The idea here is that if we don’t understand those objects
sufficiently, then we will never understand the more complicated multi-
parameter sums.
In other words: if you don’t understand the solution space, don’t start
calculating.
Many insights find their origin in looking at data. Hence we will attack
the problem with the application of brute force to generate as many
results as technology will allow us.
To apply this brute force we have to derive some new equations and con-
struct a relatively simple but yet amazingly powerful computer program.
The running of the programs gives us many Gigabytes of relations. We
study the outputs and try to see some new patterns in them. We do find
some.
This field is full of conjectures. We will add a few of our own.



For many results presented in this talk, we have made heavy use of
symbolic computation. This has been done with the system FORM and
its variety TFORM. TFORM is a parallel version which can use many
threads simultaneously. The bigger runs were done on a computer with
8 Xeon cores, running about 7 times faster than on a single core. Also
(T)FORM isn’t much limited by the size of the CPU memory (which
was 32 Gbytes) as it can use the disk rather efficiently (which was 4
Tbytes). Another advantage is that FORM has a very compact data
representation and is (not only because of that) very fast. This comes in
handy when you have to manipulate expressions of 109 terms.
Our worst example:

Time = 15720.03 sec Generated terms =1202653196013

FF Terms in output = 1508447974

substitution(7-sh)-7621 Bytes used = 36215474400



Notations

Physicists define harmonic sums by:

Sm(N) =
N∑

i=1

1

im

S−m(N) =
N∑

i=1

(−1)i

im

Sm,m2,···,mp(N) =
N∑

i=1

1

im
Sm2,···,mp(i)

S−m,m2,···,mp(N) =
N∑

i=1

(−1)m

im
Sm2,···,mp(i)

Mathematician use mostly i−1 for the argument of the S in the recursive
formula. Those sums we call Z-sums.
Sums that involve negative indices we call Euler sums and the ones that
have only positive indices we call Multiple Zeta Values (MZVs).
The S-sums and the Z-sums can be converted into each other. In any
decent symbolic system this is easily programmable.



Related functions are the harmonic polylogarithms (Hpl) which are de-
fined by:

H(0; x) = ln x

H(1; x) =
∫ x
0

dx′

1 − x′
= − ln(1 − x)

H(−1; x) =
∫ x
0

dx′

1 + x′
= ln(1 + x)

and the functions

f(0; x) = 1
x, f(1; x) = 1

1−x, f(−1; x) = 1
1+x

If ~aw is an array with W elements, all with value a, then:

H(~0w; x) =
1

W !
lnW x

H(a, ~mw; x) =
∫ x
0 dx′ f(a; x′) H(~mw; x′)



These functions are related by Mellin transforms:

M(f, N) =
∫ 1
0 dx xN f(x)

This is one way by which the harmonic sums enter in field theory, but in
the context of this talk, that is not what we are interested in. What we
ARE interested in is that the Hpl’s in one are related to the harmonic
sums in infinity.
We can define a unified notation as in:

H0,0,1,0,−1 = H3,−2

S7,−2,1 = S0,0,0,0,0,0,1,0,−1,1

The notation with the 0, 1,−1 we call integral notation and the other
notation we call sum notation. The number of indices in the integral
notation is the weight, and the number of indices in the sum notation is
the depth.
For MZVs we have Z~p(∞) = H~p(1) With Euler sums there can be signs.
Again: trivially programmable.



We will usually omit the argument of the S, Z and H functions. This
means that they are taken in ∞, ∞ and one respectively.



Multiple Zeta Values and Euler sums

The sums in infinity (or the Hpl’s in one) are called Multiple Zeta Values
when all indices are positive. When there are negative indices the sums
are called either alternating sums or Euler sums. There has been a
sudden interest inthem by mathematicians in the 1990’s, but then mainly
the MZVs. We (=physicists) also need the Euler sums. Gastmans and
Troost (1981) managed to give the relations for all weight 4 and a number
of weight 5 sums. We need basically weight = 2× (number of loops).
The number of Euler sums that exists is 2 × 3W−1 and there are 2W−1

MZVs. If we remove the divergent sums these numbers become 4×3W−2

and 2W−2 respectively. This means that for weight 6 there are 324 (16)
constants that we have to determine. One of them:

Z−4,−2 = −H−4,2 =
97

420
ζ3
2 −

3

4
ζ2
3



Example of an inverse Mellin transform of a weight 6 harmonic sum. We
omit the relations that exist between the Euler sums.

#define SIZE "6"

#include- harmpol.h

Off statistics;

.global

Local F = S(R(-1,3,-2),N);

#call invmel(S,N,H,x)

Print +f +s;

.end

F =

- sign_(N)*H(R(1,0,0),x)*Htab2(0,-1)*[1+x]^-1

- sign_(N)*Htab5(0,-1,0,0,-1)*[1+x]^-1

- sign_(N)*Htab5(0,-1,0,0,1)*[1+x]^-1

+ sign_(N)*Htab5(0,-1,1,0,0)*[1+x]^-1

- 2*sign_(N)*Htab5(0,0,-1,0,1)*[1+x]^-1

- 3*sign_(N)*Htab5(0,0,0,-1,1)*[1+x]^-1

- 3*sign_(N)*Htab5(0,0,0,1,-1)*[1+x]^-1



- sign_(N)*Htab5(0,0,1,0,-1)*[1+x]^-1

+ sign_(N)*Htab5(0,1,-1,0,0)*[1+x]^-1

+ sign_(N)*Htab5(0,1,0,-1,0)*[1+x]^-1

+ sign_(N)*Htab5(0,1,0,0,-1)*[1+x]^-1

+ sign_(N)*Htab5(1,0,-1,0,0)*[1+x]^-1

+ 2*sign_(N)*Htab5(1,0,0,-1,0)*[1+x]^-1

+ 3*sign_(N)*Htab5(1,0,0,0,-1)*[1+x]^-1

- H(R(-1),x)*Htab4(0,0,-1,0)*[1-x]^-1

+ H(R(-1,-3,0),x)*[1-x]^-1

- H(R(-1,0),x)*Htab3(0,-1,0)*[1-x]^-1

- H(R(-1,0,0),x)*Htab2(-1,0)*[1-x]^-1

+ 6*Htab5(-1,-1,0,0,0)*[1-x]^-1

+ 5*Htab5(-1,0,-1,0,0)*[1-x]^-1

+ 3*Htab5(-1,0,0,-1,0)*[1-x]^-1

+ 4*Htab5(0,-1,-1,0,0)*[1-x]^-1

+ 3*Htab5(0,-1,0,-1,0)*[1-x]^-1

+ 2*Htab5(0,0,-1,-1,0)*[1-x]^-1

+ Htab5(0,0,-1,0,-1)*[1-x]^-1

+ Htab6(-1,0,-1,0,0,-1)

+ Htab6(-1,0,-1,0,0,1)

+ 2*Htab6(-1,0,0,-1,0,1)

+ 3*Htab6(-1,0,0,0,-1,1)

+ 3*Htab6(-1,0,0,0,1,-1)



+ Htab6(-1,0,0,1,0,-1)

+ 2*Htab6(0,-1,-1,0,0,-1)

+ 2*Htab6(0,-1,-1,0,0,1)

+ Htab6(0,-1,0,-1,0,-1)

+ 3*Htab6(0,-1,0,-1,0,1)

+ 2*Htab6(0,-1,0,0,-1,-1)

+ 5*Htab6(0,-1,0,0,-1,1)

+ 3*Htab6(0,-1,0,0,1,-1)

+ Htab6(0,-1,0,1,0,-1)

+ 4*Htab6(0,0,-1,-1,0,1)

+ 5*Htab6(0,0,-1,0,-1,1)

+ 3*Htab6(0,0,-1,0,1,-1)

+ Htab6(0,0,-1,1,0,-1)

+ 6*Htab6(0,0,0,-1,-1,1)

+ 3*Htab6(0,0,0,-1,1,-1)

;

The Htab objects are Hpl’s in one in which for instance Htab6(0,0,0,-
1,1,-1) stands for H−4,1,−1(1). These objects are related to the sums in
infinity.



And now the same program, but this time the Euler sums are reduced
to a set of independent objects:

F =

- 51/32*[1-x]^-1*z5

+ 3/4*[1-x]^-1*z2*z3

- 7/2*s6

+ 51/32*z5*ln2

- 33/64*z3^2

+ 9/4*z2*z3*ln2

+ 121/840*z2^3

- 51/32*sign_(N)*[1+x]^-1*z5

+ 3/4*sign_(N)*[1+x]^-1*z2*z3

- 1/2*sign_(N)*H(R(1,0,0),x)*[1+x]^-1*z2

+ 21/20*H(R(-1),x)*[1-x]^-1*z2^2

+ H(R(-1,-3,0),x)*[1-x]^-1

+ 3/2*H(R(-1,0),x)*[1-x]^-1*z3

+ 1/2*H(R(-1,0,0),x)*[1-x]^-1*z2

;

It is clear that reducing the Euler sums to an independent set gives a
much shorter answer.



Unfortunately there is no known constructive way to take one of these
constants and express it into a basis. Already there are problems in
determining what constitutes a good basis.
The only two ways to express them in an independent set that are cur-
rently known are:

• Write down all algebraic relations for these objects and solve the
system of equations. Then tabulate all MZV/Euler sums and use
table substitution afterwards.

• Guess a relation and fit the coefficients with a program like PSLQ
or LLL after computing all objects in the relation numerically to a
very large number of digits. Broadhurst has done much of this in the
1990’s.



There are several conjectures about the size of a basis. The best known
are the Zagier conjecture (MZVs), the Broadhurst conjecture (Euler
sums) and the Broadhurst-Kreimer conjectures (MZVs).
There even exist conjectures about how to construct some specific bases.
Due to time restrictions we will not dwell on this. We will just say that
currently there is no really good basis for the MZVs. The Broadhurst
conjecture provides one for the Euler sums.



Relations

The harmonic sums obey a ‘stuffle’ algebra which is based on properties
of sums:

Sa,b(N)Sc,d(N) = Sa,b,c,d(N) + Sa,c,b,d(N) + Sa,c,d,b(N)

+Sc,a,b,d(N) + Sc,a,d,b(N) + Sc,d,a,b(N)

−Sa+c,b,d(N) − Sa,c+b,d(N) − Sa,c,b+d(N)

−Sc,a,b+d(N) − Sc,a+d,b(N) + Sa+c,b+d(N)

For the Z-sums the minus signs should be replaced by plus signs.
The harmonic polylogarithms obey a ‘shuffle’ algebra as in

Ha,bHc,d = Ha,b,c,d + Ha,c,b,d + Ha,c,d,b

+Hc,a,b,d + Hc,a,d,b + Hc,d,a,b



When we take the limit N → ∞ or x → 1 the sums and the Hpl’s can
be expressed into each other and we obtain MZV’s. Hence the MZV’s
obey both relations. It should be noted that when there are negative
indices the sum of the indices becomes a bit more complicated:

a + b → σaσb(|a| + |b|) = σab + σba

in which σa is the sign of a.



For the Euler sums there are more relations.

Sn1,···,np(N) = 2n1+···+np−p ∑
±

S±n1,···,±np(2N)

They are called the doubling relations. When n → ∞ and the sums are
finite, this gives useful relations.
For the Euler sums there is yet another category of relations which we call
the generalized doubling relations (GDR’s). They are based on similar
principles but we have only a computer algorithm to generate them. No
closed formula.
The construction and its derivation are described in a (forthcoming) pa-
per. These equations can be lengthy.

It will be necessary to take divergent sums into account. The divergences
are rather mild and hence not difficult to regularize. They pose no special
problems.



Equipped with the above relations we want to construct a computer
program that generates all possible equations and then solves for the
MZV’s, leaving us in the end with a minimal set as remaining unknowns.

What are we up against?

For the MZVs sums there are 2W−3 objects to be determined (there is a
duality relation that cuts the number down by (roughly) a factor 2).



We would like to go beyond what M. Kaneko, M. Noro and K. Tsurumaki
managed. They treated this as a matrix problem (with a size of 2W−3 ×
2W−4) and went to W=20. Using calculus modulus a 15 bits prime they
needed about 18 Gbytes of memory and could not go beyond this.

W size time
16 72M 150
17 288M 880
18 1.2G 5000
19 4.6G 33000
20 18G 245000

Parameters of the Kaneko et al program on an 8 core computer.

All the program managed to determine was the size of a basis. The size
was according to the Zagier conjecture.
It should be noticed that the matrix is sparse. In our program the weight
20 expression has at its worst 4158478 terms (100 Mbytes) which means
that only one in 2000 entries of the matrix would not be zero.



For the Euler sums one needs to calculate 4×3W−2 objects. Results have
been reported in the past for W =8 by the Lille group and W =8, 9, 10
by JV. The results up to W = 9 have been available in the FORM
distribution.
To W = 7 the stuffles and the shuffles suffice. At W = 8, 9, 10 it is
sufficient to add the doubling relations. Starting at W = 11 the gener-
alized doubling relations are needed to obtain a minimal basis that is in
accordance with the Broadhurst conjecture.
For W =12 there will be 236196 Euler sums to be determined.



We will run three types of programs.

1. A full expression of all MZV’s in a minimal basis.

2. An expression of all MZV’s in a minimal basis modulus a prime num-
ber. We drop all terms that are products of lower weight objects.

3. An expression of all MZV’s in a minimal basis modulus a prime num-
ber. We drop all terms that are products of lower weight objects. We
consider only elements up to a given depth D.



Euler Sums

The Euler sums need the doubling (W ≥ 8) and the generalized doubling
(W ≥ 11) formulas. They are also needed if we want to obtain results
up to a given depth. Details are in the paper.

W variables eqns remaining size output time
4 36 57 1 4.3K 2.0K 0.06
5 108 192 2 21K 8.9K 0.12
6 324 665 2 98K 42K 0.37
7 972 2205 4 472K 219K 1.71
8 2916 7313 5 2.25M 1.15M 7.78
9 8748 23909 8 11M 6.3M 50
10 26244 77853 11 58M 36M 353
11 78732 251565 18 360M 213M 3266
12 236196 809177 25 3.1G 1.29G 47311

The size of the outputs becomes a bigger problem than the running time.



We have also runs with restricted depth. The most important ones are
where we limit the depth to 6 or less. In this case we have used modu-
lar arithmetic and dropped all terms that are products of lower weight
objects in an all out attempt to obtain W = 18, D ≤ 6.

weight constants remaining running time [sec] output [Mbyte]
13 56940 22 2611
14 90564 37 12716 51
15 138636 35 55204 87
16 205412 66 206951 214
17 295916 55 789540 288
18 416004 109 2622157 711

The last run was rather impressive. It took one month on an 8 core Xeon
machine, working its way through a combined total of more than 7×1012

terms or 7 TeraTerms!
Runs to depth 5 are to weight 21 and runs to depth 4 are to weight 30.



Runs for MZVs

In the first sequence of programs we try to see how far we can get. We
use a 31 bits prime (2147479273) and try to determine a minimal basis.
We drop all terms that are products of lower weight objects. We want
expressions for all MZV’s of the given weights in terms of the basis.

W Group size output CPU time Eff.
16 128 1.7M 1.2M 300 57 5.25
17 256 5.6M 3.2M 713 134 5.32
18 256 14.4M 7.2M 2706 465 5.82
19 512 39M 19M 6901 1206 5.72
20 512 104M 45M 30097 4819 6.25
21 1024 239M 114M 75302 12379 6.08
22 1024 767M 280M 449202 65644 6.84
23 2048 2.17G 734M 992431 151337 6.56
24 2048 8.04G 1.77G 9251325 1268247 7.29



At this point we noticed that all basis elements had a depth that fulfilled
D ≤ W/3. Hence assuming that this will be always the case we made a
few more runs. And in addition we made some ‘incomplete’ runs.

W D size output CPU real Eff.
23 7 1.55G 89M 61447 9579 6.41
24 8 673M 380M 536921 72991 7.36
25 7 6.37G 244M 369961 50197 7.37
26 8 38.3G 1160M 4786841 651539 7.35
27 7 12.7G 914M 2152321 277135 7.77
28 6 2.88G 314M 235972 30960 7.62
29 7 41.0G 3007M 8580364 1112836 7.71
30 6 6.27G 658M 829701 106353 7.80

It shouldn’t come as a great surprise that all the results of the above runs
are in agreement with the Zagier and Broadhurst-Kreimer conjectures.
More later.....



We also made complete runs. That is: over the rationals and including
products of lower weight objects. This gave the following:

W size output num CPU real Eff. Rat.
16 10.9M 10.6M 21 254 59 4.29 1.05
17 30M 29M 19 690 149 4.62 1.11
18 86M 77M 25 3491 700 4.98 1.51
19 218M 205M 27 9460 1855 5.10 1.54
20 756M 552M 31 65640 11086 5.92 2.30
21 1.63G 1.55G 39 165561 27771 5.96 2.24
22 8.05G 4.00G 36 2276418 326489 6.97 4.97

It should become clear by now that the size of the output becomes a
major obstacle. To store millions of expressions, each of them with quite
a number of terms, will take Gigabytes.



Fill htable22(0,0,1,0,1,0,1,0,1,0,1,0,0,0,0,0,0,1,1,0,1,1)=229121/1728*

z14z3z1z1z2z1+173609/576*z14z3z1z2z1z1+15692195/31104*

z14z3z2z1z1z1+3726961/31104*z14z4z1z1z1z1-56339/1152*z14z5z1z2

-3378973/13824*z14z5z2z1+1007419717/2488320*z14z6z1z1-3423/16*

z15z2z1z2z1z1+2073365/1296*z15z3z1z1z1z1-307559/216*z15z4z1z2-

666657535/165888*z15z4z2z1+2485272541/1658880*z15z5z1z1-

502565387/31104*z16z2z1z1z1z1-8240323/1728*z16z3z1z2-

50468588359/3317760*z16z3z2z1-4457267917/829440*z16z4z1z1-

188177646093889/8599633920*z16z6+193151925403/19906560*

z17z3z1z1+6998148491689/13271040*z18z2z1z1+5830492751924959/

6879707136*z18z4-64399622164350811/1911029760*z20z2-1415173/

43200*z5z3z3^2-141/4*z7z3*z8z2z1z1+15765715/62208*z7z3*z9z3+

108/25*z5z3*z5z3z3z3+2332219/48600*z5z3*z9z5+654535363/5702400

*z5z3*z11z3-30606548603/921600*z11*z5z3z3+4674331597474072633/

57330892800*z11^2+3646960903267/217728000*z9*z5z5z3-

26283756319/1451520*z9*z7z3z3+227618177777097021133/

1504935936000*z9*z13-54161081/10368*z7*z10z2z1z1z1-14895806515/

4644864*z7*z7z5z3+1810659173/497664*z7*z9z3z3+

14449204246820162557/120394874880*z7*z15+7516571189/1126400*

z7^2*z5z3-4571/5*z5*z5z3z3z3z3-27702313/5184*z5*z12z2z1z1z1+

1897913010697639/388949299200*z5*z7z5z5-737558452534697/

155579719680*z5*z7z7z3-8678023289443/13891046400*z5*z9z5z3+

65728422985853/11112837120*z5*z11z3z3+185458251647/136857600*

z5*z9*z5z3+655173768451/34836480*z5*z7*z7z3+

8980494081229019842921/134420877803520*z5*z17-3819/4*z5^2*

z8z2z1z1-271512575762737/20836569600*z5^2*z9z3-

15383546912254681/55564185600*z5^3*z7-2969/8*z3*z12z4z1z1z1+

126/25*z3*z5z3z5z3z3-163253/400*z3*z5z5z3z3z3+5677/16*z3*

z7z3z3z3z3-69740687/10368*z3*z14z2z1z1z1-374706432302269505/

41015642443776*z3*z7z7z5+559257961960828567/109863327974400*z3

*z9z5z5-675929428026804667/219726655948800*z3*z9z7z3+

472645097440330207/97656291532800*z3*z11z5z3+17405218743810383/

2048733388800*z3*z13z3z3+186/25*z3*z5z3*z5z3z3+560126822557/

8294400*z3*z11*z5z3+241944929861/4976640*z3*z9*z7z3-48533/32*

z3*z7*z8z2z1z1+3258424132907/44789760*z3*z7*z9z3+32205/16*z3*

z5*z5z3z3z3+62730931353098707/4069012147200*z3*z5*z9z5-

211693794294616819/4882814576640*z3*z5*z11z3-117303745103293/

164229120*z3*z5*z7^2-3785404660891098517/4394533118976*z3*z5^2

*z9-9794819446662314742864371/109375046516736000*z3*z19-150567/

1120*z3^2*z5z5z3z3+37369/224*z3^2*z7z3z3z3-76731/64*z3^2*

z12z2z1z1+5836777489/4257792*z3^2*z11z5-631656298061/56609280*

z3^2*z13z3-24/5*z3^2*z5z3^2-1476536914610227/4269957120*z3^2*

z7*z9-940205/1728*z3^2*z5*z5z3z3-63798454917713/181149696*z3^2

*z5*z11+89314457/907200*z3^3*z5z5z3-4391335/36288*z3^3*z7z3z3-

102881298198157/1045094400*z3^3*z13+2015873/25920*z3^3*z5*z5z3

+4771/112*z3^4*z7z3+178901285/1306368*z3^4*z5^2+129247787/

466560*z3^5*z7-188/5*z2*z5z3z3z3z3z3-838*z2*z14z2z1z1z1z1-

400090555909/130636800*z2*z7z3z5z5-860982225443/104509440*z2*

z7z7z3z3-410971121201/87091200*z2*z7z5z5z3+432991955441/

55987200*z2*z9z3z5z3-5561422085/1119744*z2*z9z5z3z3+

30038614163/2488320*z2*z11z3z3z3+12317476820806379/11287019520

*z2*z13z7-4814984387/46656*z2*z16z2z1z1-26973572103166541417/

3386105856000*z2*z15z5+650628965993715945353/11512759910400*z2

*z17z3+2703067/16128*z2*z7z3^2+15297217/51840*z2*z5z3*z9z3-

1967338523/116640*z2*z9*z5z3z3+4439711059374396945289/

3837586636800*z2*z9*z11+203331234901/16329600*z2*z7*z5z5z3-

2245163981/163296*z2*z7*z7z3z3+172861806934439936513/

213199257600*z2*z7*z13-2530*z2*z5*z10z2z1z1z1+221934828641/

37324800*z2*z5*z7z5z3-185137871143/18662400*z2*z5*z9z3z3+

2356857770584504644547037/6120950685696000*z2*z5*z15-

8784777689/466560*z2*z5*z7*z5z3-29339484871/12441600*z2*z5^2*

z7z3-946617250799/97977600*z2*z5^4+4388/5*z2*z3*z5z3z3z3z3-

2050*z2*z3*z12z2z1z1z1-2515919247697/1620622080*z2*z3*z7z5z5-

5508608353973/1620622080*z2*z3*z7z7z3-65616653437/19293120*z2*

z3*z9z5z3+4317757951/602910*z2*z3*z11z3z3+2459401/2880*z2*z3*

z9*z5z3-5826659/2268*z2*z3*z7*z7z3+1685897928474783669523733/

19824227181158400*z2*z3*z17-3112*z2*z3*z5*z8z2z1z1-

1913867931511/347276160*z2*z3*z5*z9z3-12126144556601/

2083656960*z2*z3*z5^2*z7-1086/5*z2*z3^2*z5z3z3z3-4867384441/

1088640*z2*z3^2*z9z5+71577340969/3991680*z2*z3^2*z11z3+

11050634658317/143700480*z2*z3^2*z7^2+449759798507/4490640*z2*

z3^2*z5*z9+128*z2*z3^3*z5z3z3-5793264895/139968*z2*z3^3*z11-

207/5*z2*z3^4*z5z3-162/5*z2*z3^5*z5+27/5*z2^2*z12z2z1z1z1z1-

984359/75600*z2^2*z7z5z5z1+2137981343/2721600*z2^2*z5z5z5z3-

11370756889/1814400*z2^2*z7z5z3z3+1301016437/233280*z2^2*

z9z3z3z3-7911180517/155520*z2^2*z14z2z1z1+336721679218271/

4528742400*z2^2*z13z5-63062146664878129/62705664000*z2^2*z15z3

+6644509/43200*z2^2*z5z3*z7z3-38514635023952878361/

1630347264000*z2^2*z9^2-15429815879/1944000*z2^2*z7*z5z3z3-

8274399031910863279/271724544000*z2^2*z7*z11+4208229059/544320

*z2^2*z5*z5z5z3-658253387/77760*z2^2*z5*z7z3z3-

8720289305450158267/952528896000*z2^2*z5*z13-50810851429/

5443200*z2^2*z5^2*z5z3+999/5*z2^2*z3*z10z2z1z1z1-45306816419/

2268000*z2^2*z3*z7z5z3+571783303/30375*z2^2*z3*z9z3z3+

987475763552340453762817/127441460450304000*z2^2*z3*z15-

670666193/72000*z2^2*z3*z7*z5z3-131835349/25920*z2^2*z3*z5*

z7z3+73744749319/6531840*z2^2*z3*z5^3+1593/10*z2^2*z3^2*

z8z2z1z1-5617847/40320*z2^2*z3^2*z9z3+113181386863/2177280*

z2^2*z3^2*z5*z7+186543726721/6531840*z2^2*z3^3*z9-951/100*z2^2

*z3^6+24711581/15120*z2^3*z5z5z3z3-234965329/136080*z2^3*

z7z3z3z3-146515315/6048*z2^3*z12z2z1z1-435261786095987/

7185024000*z2^3*z11z5+2456425078110467/7547904000*z2^3*z13z3+

12415031/252000*z2^3*z5z3^2+117865176559161139/1046139494400*

z2^3*z7*z9-226177577/45360*z2^3*z5*z5z3z3+

539396168698063586369/212366317363200*z2^3*z5*z11+1568719081/

661500*z2^3*z3*z5z5z3-811187497/317520*z2^3*z3*z7z3z3-

2684093632897050776681/953087845248000*z2^3*z3*z13-6731243/

2800*z2^3*z3*z5*z5z3+1080509/15120*z2^3*z3^2*z7z3+2009725/168*

z2^3*z3^2*z5^2+570093989/52920*z2^3*z3^3*z7+428519309/105000*

z2^4*z5z3z3z3+20548647742626947/411505920000*z2^4*z9z5-

910144972791054017/6035420160000*z2^4*z11z3-

13735751558384156149/12070840320000*z2^4*z7^2-

94688695713426099127/58342394880000*z2^4*z5*z9-141084539/78750

*z2^4*z3*z5z3z3+140544106016863793716739/2601929817527040000*

z2^4*z3*z11+17966741/252000*z2^4*z3^2*z5z3+5233954847/13608000

*z2^4*z3^3*z5-89747783/12474*z2^5*z8z2z1z1+42587330003873/

2235340800*z2^5*z9z3+19746145461233683237/53480528640000*z2^5*

z5*z7+1287323935999686801847583/3066560142085440000*z2^5*z3*z9

+1323224553841/1571724000*z2^5*z3^4+196664555715971051/

22884301440000*z2^6*z7z3+68980006289813849323/

11355698914560000*z2^6*z5^2+94971440713063356192982873/

1046463648486656400000*z2^6*z3*z7+313619248788976309/

44951306400000*z2^7*z5z3+90987156455422307279/1064596773240000

*z2^7*z3*z5+21641573024873924687/3863315055600000*z2^8*z3^2-

288994255199496099205383627006427/16273221799745710800000000*

z2^11;



We have of course more results when we restrict the depth. They are less
interesting from the viewpoint of this talk.



Data mining

The results of all the runs we made have been put together in a place
that will be publicly accessible. We call it the MZV datamine.
The format of the files is text (but in a notation that is most suited for
FORM). In some cases there may be binary FORM files for faster access.
There are also FORM programs that help to read the files. And there are
example files that show how one can manipulate the data. In particular
there are some programs that show how to change bases.
One should keep in mind that one needs more than the average laptop
to manipulate some of these files. Putting a 4 Gbyte file in an editor is
rather stressful for a computer.
The FORM binary files are easier to manipulate. Even laptops may do
in many cases.
For the bigger tables 32-bits processors may not work. FORM has some
restrictions there.
Of course, FORM and TFORM are freely available.



The first things we look up in the datamine are some relations that
Broadhurst discovered in the 1990’s with the use of PSLQ. Now we can
obtain ’formal’ proof of them. They are so-called push down relations in
which an object that has at least depth D as a MZV, can be expressed
in terms of depth D − 2 Euler sums.
The simplest example of such a push down relation is the following:

H8,2,1,1 = −
1593344

47475
H−11,−1 +

10624

28485
H−9,−3 +

56896

712125
H−7,−5

+
64

243
H4

−3 +
194772992

2421225
H−9H−3 +

56203264

712125
H−7H−5

+
21504

1583
ζ2H−9,−1 −

768

1583
ζ2H−7,−3 −

8660992

299187
ζ2H−7H−3

−
529216

39575
ζ2H

2
−5 +

512

171
ζ2
2H−7,−1 −

512

2565
ζ2
2H−5,−3

−
98624

12825
ζ2
2H−5H−3 −

352

315
ζ3
2H

2
−3 −

59755910459266246

18760001932546875
ζ6
2



The next one at W = 15 becomes already rather bad.

H6,2,5,1,1 = −
28009182704961773376996398903118174942184754265798529122596

305651913521473711081726272715815595332022071566091290625
ζ6

2
H−3

−
6868723880789436171485501864576122208348106977850627944

38707190153725780323875000478239018538890298220085625
ζ5

2
H−5

−
352620899448359235956708050628782983678844745342656

1013638012410208225330902212029919741212540974465
ζ4

2
H−7

−
450346189502746275947949624113680029363879966160832

1079689612216387207432665263440390701792806802375
ζ3

2H−9

+
2176

945
ζ3

2H
3

−3 −
2037950288768

2234346324525
ζ2

2H
2

−3H−5 +
176193784832

29791284327
ζ2

2H−3H−7,−1

−
19599298746371297483193212289321032985913744503680

47252298322881887195876644470567687184344015351
ζ2

2H−11

−
172882684928

446869264905
ζ2

2H−3H−5,−3 −
25300992

8296097
ζ2

2H−9,−1,−1 +
74885120

174218037
ζ2

2H−7,−3,−1

+
18508800

58072679
ζ2

2
H−7,−1,−3 −

111818752

871090185
ζ2

2
H−5,−5,−1 −

224668672

7839811665
ζ2

2
H−5,−3,−3

−
22126906767952017266176

61221143448164910105
ζ2H

2

−3
H−7 −

30664508461328784676096

43729388177260650075
ζ2H−3H

2

−5

+
363293986249102299136

323921393905634445
ζ2H−3H−9,−1 −

4369910014768059392

107973797968544815
ζ2H−3H−7,−3



+
1644070289092638208

1841625107486235
ζ2H−5H−7,−1 −

336178378033637888

5524875322458705
ζ2H−5H−5,−3

+
853627469707858391615100678967489449812221696

59713260168768803663122898102388653887725
ζ2H−13

−
58973326655000576

40925002388583
ζ2H−11,−1,−1 +

11777430067486720

122775007165749
ζ2H−9,−3,−1

+
20405818414364672

613875035828745
ζ2H−9,−1,−3 −

8406294596950016

613875035828745
ζ2H−7,−5,−1

+
1152979070087168

368325021497247
ζ2H−7,−3,−3 +

12273867025183744

613875035828745
ζ2H−7,−1,−5

−
2873606698310656

1841625107486235
ζ2H−5,−5,−3 −

1792

3645
H5

−3

−
4256896288848871864427599757056

34508279292586490964865596165
H2

−3H−9

+
390750819618975077368265702232899584

712288099409986982475670367743425
H−3H−5H−7

−
1208984451017729087145407744

375907181836454149944069675
H−3H−7,−5

+
3840626217263581248362959360

135326585461123493979865083
H−3H−9,−3

−
409378446382355312335204364288

676632927305617469899325415
H−3H−11,−1

+
224360652920825136173473713980416

1142178828829754987399963173875
H3

−5



−
666137612783380413012285076480

1015270070070893322133300599
H−5H−9,−1

+
879380015176193352870400256

37602595187810863782714837
H−5H−7,−3

−
28443425005763926538743367680

85300643916253197627118749
H−7H−7,−1

+
5688685001152785307748673536

255901931748759592881356247
H−7H−5,−3

−
2112533459510815147752919876950784

157610576986463474066739074985
H−15

+
85294165615990794439499776

71262024992692729847217
H−13,−1,−1

−
17490794990045584642269184

213786074978078189541651
H−11,−3,−1 −

12585531935942832720038912

213786074978078189541651
H−11,−1,−3

+
4671827710001491787653120

213786074978078189541651
H−9,−5,−1 +

4872424480684713720215552

1924074674802703705874859
H−9,−3,−3

+
862712257577949234710528

71262024992692729847217
H−9,−1,−5 −

510117151499171079299072

71262024992692729847217
H−7,−7,−1

−
474464980999666928489984

1924074674802703705874859
H−7,−5,−3 −

247377046826432734064128

641358224934234568624953
H−7,−3,−5

It just gives some more respect for Broadhurst who located these relations
with the help of PSLQ in the 90’s.



Verifying push downs isn’t necessarily a trivial lookup in the tables. For
example there are two MZVs at weight 17 and depth 5. There should
be one push down. It is however a linear combination of the two that
obtains the push down as in

H6,4,5,1,1 +
72

5
H5,3,3,3,3 → (D ≤ 3)

We do not show the right hand side as it involves 99 terms. Just one:
− 391637561921020510388495527693101233498239312730472192870557734150375516560722487938377037680200651787224018403770884822305866731511488

12096842033646879193852836812120840799898022503305835922565953025114624797521762549901601984894859006780341916995765114718351715625
ζ7

2H
−3

This means that checks of the more complicated push downs require quite
an amount of algebra first to get the ’non-push downs’ out of the way.



These push downs seem to exist because of the doubling and the gener-
alized doubling relations.
We checked this for the only system that we have complete control over:
W = 12. Here we have the object H8,2,1,1.
If we omit the doubling and the generalized doubling relations, there are
three extra undetermined objects. Two of depth 4 and one of depth 2.
The push down doesn’t take place.
If we use the doubling relations and we omit the generalized doubling
relations there is only one extra undetermined object of depth 4. And
the push down does take place.
Unfortunately we cannot test other push downs. The next one is at
W = 15 and if we omit the GDR’s we have to run nearly all depths.
Without the GDR’s many relations at a given depth are only obtained
by combining many relations at a greater depth!



A push down basis

Broadhurst and Kreimer gave a conjecture for the number of basis ele-
ments for each weight and depth for MZVs. They also gave a conjecture
for each weight and depth when the MZVs are expressed in terms of Eu-
ler sums. These conjectures are given on the next page. In red are the
numbers we explicitly verified.
From them one can see that there should be MZV basis elements that
have fewer indices when expressed in terms of Euler basis elements as we
have seen before. The push downs.
From the tables one can derive how many there should be, under the
assumption that a push down is only from D to D − 2.



W/D 1 2 3 4 5 6 7 8 9 10
1
2 1
3 1
4
5 1
6 0
7 1
8 1
9 1 0
10 1
11 1 1
12 1 1
13 1 2
14 2 1
15 1 2 1
16 2 3
17 1 4 2
18 2 5 1
19 1 5 5
20 3 7 3
21 1 6 9 1
22 3 11 7
23 1 8 15 4
24 3 16 14 1
25 1 10 23 11
26 4 20 27 5
27 1 11 36 23 2
28 4 27 45 16
29 1 14 50 48 7
30 4 35 73 37 2

W/D 1 2 3 4 5 6 7 8 9 10
1
2 1
3 1
4
5 1
6
7 1
8 1
9 1
10 1
11 1 1
12 2
13 1 2
14 2 1
15 1 3
16 3 2
17 1 5 1
18 3 5
19 1 7 3
20 4 8 1
21 1 9 7
22 4 14 3
23 1 12 14 1
24 5 20 9
25 1 15 25 4
26 5 30 20 1
27 1 18 42 12
28 6 40 42 4
29 1 22 66 30 1
30 6 55 75 15



In determining a nice basis for the MZVs we noticed that the number of
elements for each weight followed a prescription. They were equal to the
number of elements one obtains when making all Lyndon words out of
odd integers ≥ 3 in which the integers add up to the weight. Let us call
this set LW . The number of elements of a given weight and given depth
in this construction follows exactly the second Broadhurst-Kreimer table!
Next we tried to write as many basis elements as possible in terms of
elements of this set.
This would not cover the whole set. The remaining elements could be
obtained by allowing two even integers (say the first two indices) and
making the last two indices equal to one. These elements would match
the missing elements of our set if one would take away the ones and add
them to the even integers. We call such a basis PW .



Example: W = 12.

L12 : H9,3 H7,5

P12 : H9,3 H6,4,1,1

Example: W = 18.

L18 : H15,3 H13,5 H11,7 H9,3,3,3 H7,5,3,3 H7,3,5,3 H7,3,3,5 H5,5,5,3

P18 : H15,3 H13,5 H10,6,1,1 H9,3,3,3 H7,5,3,3 H7,3,5,3 H6,2,3,5,1,1 H5,5,5,3

The interesting thing is that each of these special elements seems to be
connected to a push down relation.
This is why we needed the run for Euler sums at W = 18, D = 6.

H10,6,1,1+46630979 H5,5,5,3+122713096 H7,5,3,3+1002156999 H9,3,3,3

→ 672686306 H−17,−1+72010179 H−15,−3−705663559 H−13,−5

+817296192 H−11,−7 + · · ·



The complete recipe is:

1. Write basis elements always with the lowest depth possible.

2. Generate the set LW of all Lyndon words of odd-only ≥ 3 indices.

3. Starting at the lowest depth D, write as many elements of the basis
as elements of LW . Keep the remaining elements.

4. At the next depth D+2 write as many elements of the basis as elements
of LW . Extend the elements of LW that remained at D according to
prescription A1 and write as many basis elements as possible as these
‘extended’ elements.

5. Do the same at D+4, fill with elements at D+2, extended with A1 and
possibly with elements still remaining from D, extended according to
prescription A2

6. Keep raising the depth till there is no more and a complete basis has
been obtained.

Prescription An: Of a list of indices, subtract one from the first 2n
elements and add 2n ones to the end of the list.



Note 1: it may be necessary to backtrack. The selections in the steps 3-5
are not unique and one may have to alter the selection when at a later
stage things don’t work out.
Note 2: the result of prescription An should be a Lyndon word. If not,
this element is not eligible for extension and note 1 applies.

Conjecture: It is always possible, with a suitable choice of steps 3 and
following, to obtain a basis.

Conjecture: The elements with added pairs of ones correspond to push
downs and the number of ones indicate the units in depth that the push
down corresponds to.



Example, W = 26:
The basis, as determined by the computer program has a depth distri-
bution of (4,20,27,5) for D=(2,4,6,8). The depth distribution of set L26

is (5,30,20,1).
We start with D = 2 and see that we have one element left in L26.
Next at D = 4 we can write 19 basis elements as elements of L26. This
means that there is one element still to be determined. We take the
element that remained at D = 2 and extend it with A1 to depth 4. This
gives us for instance the element H14,10,1,1. If the 19 other elements have
been selected properly this one completes the D = 4 part of P26. There
are 11 elements of L26 remaining at D = 4.
Next we try the same at D = 6. 16 elements can be written as elements
of L26. For the remaining 11 we can take the A1-extended elements we
had left at D = 4. It is very unlikely that this ’fits’ immediately and one
may have to go back to the previous step to make a different selection
for the 19 elements of L26 at the onset of that step. Eventually it fits.
There are 4 elements left at D = 6 in L26.



Finally at depth D = 8 there is one element in L26 and the A1-extension
of the 4 elements that were left in the previous step complete the 5 basis
elements that we need.

P26 = H17,9, H19,7, H21,5, H23,3, H7,7,7,5, H9,5,9,3, H11,3,9,3, H11,5,3,7,

H11,5,5,5, H11,5,7,3, H11,7,3,5, H11,7,5,3, H11,9,3,3, H13,3,3,7, H13,3,5,5,

H13,3,7,3, H13,5,3,5, H13,5,5,3, H13,7,3,3, H15,3,3,5, H15,3,5,3, H15,5,3,3,

H17,3,3,3, H14,10,1,1, H5,5,5,3,5,3, H5,5,5,5,3,3, H7,3,3,5,5,3, H7,3,5,3,5,3,

H7,3,5,5,3,3, H7,3,7,3,3,3, H7,5,3,3,5,3, H7,5,3,5,3,3, H7,5,5,3,3,3,

H7,7,3,3,3,3, H9,3,3,3,3,5, H9,3,3,3,5,3, H9,3,3,5,3,3, H9,3,5,3,3,3,

H9,5,3,3,3,3, H11,3,3,3,3,3, H8,2,7,7,1,1, H8,4,5,7,1,1, H8,4,7,5,1,1,

H8,6,3,7,1,1, H8,6,5,5,1,1, H8,6,7,3,1,1, H8,8,3,5,1,1, H8,8,5,3,1,1,

H10,2,3,9,1,1, H10,2,5,7,1,1, H10,2,7,5,1,1, H5,3,3,3,3,3,3,3,

H6,2,3,3,5,5,1,1, H6,2,3,5,3,5,1,1, H6,2,5,3,3,5,1,1, H6,4,3,3,3,5,1,1



Similarly one obtaines for P27:

H27,H11,7,9,H13,11,3,H15,3,9,H15,5,7,H15,7,5,H15,9,3,H17,5,5,H17,7,3,

H19,3,5,H19,5,3,H21,3,3,H7,5,5,7,3,H7,5,7,3,5,H7,7,3,7,3,H7,7,7,3,3,

H9,3,9,3,3,H9,5,3,5,5,H9,5,3,7,3,H9,5,5,3,5,H9,5,5,5,3,H9,5,7,3,3,H9,7,3,3,5,

H9,7,3,5,3,H9,7,5,3,3,H9,9,3,3,3,H11,3,3,3,7,H11,3,3,5,5,H11,3,3,7,3,H11,3,5,3,5,

H11,3,5,5,3,H11,3,7,3,3,H11,5,3,3,5,H11,5,3,5,3,H11,5,5,3,3,H11,7,3,3,3,H13,3,3,3,5,

H13,3,3,5,3,H13,3,5,3,3,H13,5,3,3,3,H15,3,3,3,3,H10,8,7,1,1,H10,10,5,1,1,

H12,2,11,1,1,H12,4,9,1,1,H12,6,7,1,1,H12,8,5,1,1,H16,2,7,1,1,

H5,3,5,3,5,3,3,H5,5,3,3,3,5,3,H5,5,3,3,5,3,3,H5,5,3,5,3,3,3,H5,5,5,3,3,3,3,

H7,3,3,3,3,3,5,H7,3,3,3,3,5,3,H7,3,3,3,5,3,3,H7,3,3,5,3,3,3,H7,3,5,3,3,3,3,

H9,3,3,3,3,3,3,H6,4,5,5,5,1,1,H6,6,3,5,5,1,1,H6,6,5,3,5,1,1,H6,6,5,5,3,1,1,

H8,2,3,5,7,1,1,H8,2,3,7,5,1,1,H8,2,5,3,7,1,1,H8,2,5,5,5,1,1,H8,2,5,7,3,1,1,

H8,2,7,3,5,1,1,H8,2,7,5,3,1,1,H8,4,3,3,7,1,1,

H7,5,7,5,3 →?H6,4,6,4,3,1,1,1,1,H7,5,3,3,3,3,3 →?H6,4,3,3,3,3,3,1,1

The last two elements are guessed from the remaining odds-only elements.
One seems to indicate a double push down!



P7 = H7

P8 = H5,3

P9 = H9

P10 = H7,3

P11 = H11, H5,3,3

P12 = H9,3, H6,4,1,1

P13 = H13, H7,3,3, H5,5,3

P14 = H11,3, H9,5, H5,3,3,3

P15 = H15, H7,5,3, H9,3,3, H6,2,5,1,1

P16 = H11,5, H13,3, H5,5,3,3, H7,3,3,3, H8,6,1,1

P17 = H17, H7,7,3, H9,3,5, H9,5,3, H11,3,3, H5,3,3,3,3, H6,4,5,1,1

P18 = H13,5, H15,3, H5,5,5,3, H7,3,5,3, H7,5,3,3, H9,3,3,3, H10,6,1,1, H6,2,3,5,1,1

P19 = H19, H9,5,5, H9,7,3, H11,3,5, H11,5,3, H13,3,3,

H5,3,5,3,3, H5,5,3,3,3, H7,3,3,3,3, H6,6,5,1,1, H8,2,7,1,1



P20 = H13,7, H15,5, H17,3, H7,5,5,3, H7,7,3,3, H9,3,3,5, H9,3,5,3,

H9,5,3,3, H11,3,3,3, H10,8,1,1, H5,3,3,3,3,3, H6,2,5,5,1,1, H6,4,3,5,1,1

P21 = H21, H9,9,3, H11,3,7, H11,7,3, H13,3,5, H13,5,3, H15,3,3,

H5,5,3,5,3, H5,5,5,3,3, H7,3,3,5,3, H7,3,5,3,3, H7,5,3,3,3, H9,3,3,3,3,

H8,4,7,1,1, H8,6,5,1,1, H10,4,5,1,1, H6,2,3,3,5,1,1

P22 = H15,7, H17,5, H19,3, H7,5,7,3, H9,3,5,5, H9,3,7,3, H9,5,3,5,

H9,5,5,3, H9,7,3,3, H11,3,3,5, H11,3,5,3, H11,5,3,3, H13,3,3,3, H12,8,1,1,

H5,3,5,3,3,3, H5,5,3,3,3,3, H7,3,3,3,3,3

H6,4,5,5,1,1, H6,6,3,5,1,1, H6,6,5,3,1,1, H8,2,3,7,1,1,

P23 = H23, H11,7,5, H11,9,3, H13,3,7, H13,5,5, H13,7,3, H15,3,5, H15,5,3,

H17,3,3, H5,5,5,5,3, H7,3,7,3,3, H7,3,5,5,3, H7,5,3,5,3, H7,5,5,3,3,

H7,7,3,3,3, H9,3,3,3,5, H9,3,3,5,3, H9,3,5,3,3, H9,5,3,3,3, H11,3,3,3,3,

H8,6,7,1,1, H8,8,5,1,1, H10,2,9,1,1, H10,4,7,1,1,

H5,3,3,3,3,3,3H6,2,3,5,5,1,1, H6,2,5,3,5,1,1, H6,4,3,3,5,1,1,



P24 = H17,7, H19,5, H21,3, H7,7,7,3, H9,7,3,5, H9,7,5,3, H9,9,3,3,

H11,3,3,7, H11,3,5,5, H11,3,7,3, H11,5,3,5, H11,5,5,3, H11,7,3,3, H13,3,3,5,

H13,3,5,3, H13,5,3,3, H15,3,3,3, H12,10,1,1, H14,8,1,1, H5,5,3,3,5,3,

H5,5,3,5,3,3, H5,5,5,3,3,3, H7,3,3,3,5,3, H7,3,3,5,3,3, H7,3,5,3,3,3, H7,5,3,3,3,3,

H9,3,3,3,3,3, H6,6,5,5,1,1, H8,2,5,7,1,1, H8,2,7,5,1,1, H8,4,3,7,1,1, H8,4,5,5,1,1,

H8,4,7,3,1,1, H6,2,3,3,3,5,1,1

P25 = H25, H11,11,3, H13,5,7, H13,7,5, H13,9,3, H15,3,7, H15,5,5, H15,7,3,

H17,3,5, H17,5,3, H19,3,3, H7,3,7,3,5, H7,5,3,7,3, H7,5,7,3,3,

H9,3,3,3,7, H9,3,3,5,5, H9,3,3,7,3, H9,3,5,3,5, H9,3,5,5,3, H9,3,7,3,3,

H9,5,3,3,5, H9,5,3,5,3, H9,5,5,3,3, H9,7,3,3,3, H11,3,3,3,5, H11,3,3,5,3,

H11,3,5,3,3, H11,5,3,3,3, H13,3,3,3,3, H8,8,7,1,1, H10,4,9,1,1,

H10,6,7,1,1, H10,8,5,1,1, H12,2,9,1,1, H5,3,3,5,3,3,3, H5,3,5,3,3,3,3,

H5,5,3,3,3,3,3, H7,3,3,3,3,3,3, H6,2,5,5,5,1,1, H6,4,3,5,5,1,1, H6,4,5,3,5,1,1,

H6,4,5,5,3,1,1, H6,6,3,3,5,1,1, H6,6,3,5,3,1,1, H6,6,5,3,3,1,1



Currently we don’t know how to work the prescription backward. Start-
ing from the complete set of Lyndon words we don’t have a way of telling
which elements should be selected to remain as they are and which ones
should be extended, and by how much.
This means that we cannot predict the complete basis and we need the
computer runs.
Yet it looks like progress.
It seems important to have more insight in the embedding of the MZVs
in the Euler sums. The role that the doubling relations and the GDR’s
play here is crucial and should be understood.



Conclusions

We have now complete and partial tables for the MZV’s and Euler sums
that will cover many more values of the weight and depth than were
previously available.
These results will be publicly accessible soon under the name ”MZV
Datamine”. It should be linked in the FORM pages and the home pages
of the authors of the paper (http://www.nikhef.nl/∼form).
FORM programs to allow one to manipulate this data are available in
the Datamine as well. So is FORM. One is advised to use computers
with a 64-bits architecture for this.
We have conjectured a new type of basis which seems to be connected to
an embedding of the MZVs in the Euler sums.
The holy grail in the field of MZV’s is an algorithm to express each MZV
into an unique basis in a constructive way. That way we would have a
(hopefully) small procedure rather than giant tables. Thus far this has
not been found.


