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Chapter 0: An Overview

Preface

Since late 2002 tremendous and rapid progress has been made in exploring planar N =
4 super Yang–Mills theory and free IIB superstrings on the AdS5 × S5 background.
These two models are claimed to be exactly dual by the AdS/CFT correspondence, and
the novel results give full support to the duality. The key to this progress lies in the
integrability of the free/planar sector of the AdS/CFT pair of models.

Many reviews of integrability in the context of the AdS/CFT correspondence are
available in the literature. They cover selected branches of the subject which have
appeared over the years. Still it becomes increasingly difficult to maintain an overview
of the entire subject, even for experts. Already for several years there has been a clear
demand for an up-to-date review to present a global view and summary of the subject,
its motivation, techniques, results and implications.

Such a review appears to be a daunting task: With around 8 years of development and
perhaps up to 1000 scientific articles written, the preparation would represent a major
burden on the prospective authors. Therefore, our idea was to prepare a coordinated
review collection to fill the gap of a missing global review for AdS/CFT integrability.
Coordination consisted in carefully splitting up the subject into a number of coherent
topics. These cover most aspects of the subject without overlapping too much. Each
topic is reviewed by someone who has made important contributions to it. The collection
is aimed at beginning students and at scientists working on different subjects, but also
at experts who would like to (re)acquire an overview. Special care was taken to keep
the chapters brief (around 20 pages), focused and self-contained in order to enable the
interested reader to absorb a selected topic in one go.

As the individual chapters will not convey an overview of the subject as a whole,
the purpose of the introductory chapter is to assemble the pieces of the puzzle into a
bigger picture. It consists of two parts: The first part is a general review of AdS/CFT
integrability. It concentrates on setting the scene, outlining the achievements and putting
them into context. It tries to provide a qualitative understanding of what integrability is
good for and how and why it works. The second part maps out how the topics/chapters
fit together and make up the subject. It also contains sketches of the contents of each
chapter. This part helps the reader in identifying the chapters (s)he is most interested
in.

There are reasons for and against combining all the contributions into one article
or book. Practical issues however make it advisable to have the chapters appear as
autonomous review articles. After all, they are the works of individuals. They are
merely tied together by the introductory chapter on which all the contributors have
signed as coauthors. If you wish to refer to this review on AdS/CFT integrability as a
whole, we suggest that you cite (only) the introductory chapter:

N. Beisert et al.,
“Review of AdS/CFT Integrability: An Overview”,
Lett. Math. Phys. 99, 3 (2012), arXiv:1012.3982.

If your work refers to a particular topic of the review, we encourage you to cite the
corresponding specialised chapter(s) (instead/in addition), e.g.
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J. A. Minahan,
“Review of AdS/CFT Integrability, Chapter I.1: Spin Chains in N = 4 SYM”,

Lett. Math. Phys. 99, 33 (2012), arXiv:1012.3983.

Finally, I would like to thank my coauthors for their collaboration on this project.
In particular, I am grateful to Pedro Vieira who set up a website for internal discussions
which facilitated the coordination greatly: Drafts and outlines of the chapters were up-
loaded to this forum. Here, the contributors to the collection gave helpful comments and
suggestions on the other chapters. It is fair to say that the forum improved the quality
and completeness of the articles and how they fit together before they first appeared in
public. Also managing the final production stage would not have been nearly as efficient
without it. Thanks for all your help and prompt availability during the last week!

Niklas Beisert Potsdam, December 2010
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Introduction

An old dream of Quantum Field Theory (QFT) is to derive a quantitative description
of the mass spectrum of hadronic particles and their excitations. Ideally, one would be
able to express the masses of particles such as protons and neutrons as functions of the
parameters of the theory

mp = f1(αs, α, µreg, . . .), mn = f2(αs, α, µreg, . . .), . . . .

They might be combinations of elementary functions, solutions to differential or integral
equations or something that can be evaluated effortlessly on a present-day computer.
For the energy levels of the hydrogen atom analogous functions are known and they
work to a high accuracy. However, it has become clear that an elementary analytical
understanding of the hadron spectrum will remain a dream. There are many reasons why
this is more than can be expected; just to mention a few: At low energies, the coupling
constant αs is too large for meaningful approximations. In particular, non-perturbative
contributions dominate such that the standard loop expansion simply does not apply.
Self-interactions of the chromodynamic field lead to a non-linear and highly complex
problem. Clearly, confinement obscures the nature of fundamental particles in Quantum
Chromodynamics (QCD) at low energies. Of course there are non-perturbative methods
to arrive at reasonable approximations for the spectrum, but these are typically based on
effective field theory or elaborate numerical simulations instead of elementary analytical
QCD.

Spectrum of Scaling Dimensions. We shall use the above hadronic spectrum as an
analog to explain the progress in applying methods of integrability to the spectrum of
planar N = 4 super Yang–Mills (SYM) theory.1 The analogy does not go all the way,
certainly not at a technical level, but it is still useful for a qualitative understanding of
the achievements.

First of all, N = 4 SYM is a cousin of QCD and of the Standard Model of particle
physics. It is based on the same types of fundamental particles and interactions — it is a
renormalisable gauge field theory on four-dimensional Minkowski space — but the details
of the models are different. Importantly,N = 4 SYM has a much richer set of symmetries:
supersymmetry and conformal symmetry. In particular, the latter implies that there are
no massive particles whose spectrum we might wish to compute. Nevertheless, composite
particles and their mass spectrum have an analogue in conformal field theories: These are
called local operators. They are composed from the fundamental fields, all residing at a
common point in spacetime. As in QCD, the colour charges are balanced out making the
composites gauge-invariant objects. Last but not least, there is a characteristic quantity
to replace the mass, the so-called scaling dimension. Classically, it equals the sum of
the constituent dimensions, and, like the mass, it does receive quantum corrections (the
so-called anomalous dimensions) from interactions between the constituents.

1Please note that, here and below, references to the original literature can be found in the chapters
of this review collection where the underlying models are introduced.
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In the planar N = 4 SYM model and for scaling dimensions of local operators the
particle physicist’s dream is coming true. We know how to express the scaling dimension
DO of some local operator O as a function of the coupling constant λ

DO = f(λ).

In general this function is given as the solution of a set of integral equations.2 What is
more, in particular cases the equations have been solved numerically for a wide range
of λ’s! These equations follow from the so-called Thermodynamic Bethe Ansatz (TBA)
or related techniques (Y-system). In a certain limit, the equations simplify to a set of
algebraic equations, the so-called asymptotic Bethe equations. It is also becoming clear
that not only the spectrum, but many other observables can be determined in this way.
Thus it appears that planar N = 4 SYM can be solved exactly.

Integrability. With the new methods at hand we can now compute observables which
were previously inaccessible by all practical means. By studying the observables and
the solution, we hope to get novel insights, not only into this particular model, but
also into quantum gauge field theory in general. What is it that makes planar N = 4
SYM calculable and other models not? Is its behaviour generic or very special? Can
we for instance use the solution as a starting point or first approximation for other
models? On the one hand one may view N = 4 SYM as a very special QFT. On the
other hand, any other four-dimensional gauge theory can be viewed as N = 4 SYM
with some particles and interactions added or removed: For instance, several quantities
show a universal behaviour throughout the class of four-dimensional gauge theories (e.g.
highest “transcendentality” part, tree-level gluon scattering). Moreover this behaviour is
dictated by N = 4 SYM acting as a representative model. Thus, indeed, selected results
obtained in N = 4 SYM can be carried over to general gauge theories. Nevertheless it is
obvious that we cannot make direct predictions along these lines for most observables,
such as the hadron spectrum.

The miracle which leads to the solution of planar N = 4 SYM described above is
generally called integrability. Integrability is a phenomenon which is typically confined
to two-dimensional models (of Euclidean or Minkowski signature). Oddly, here it helps
in solving a four-dimensional QFT.

AdS/CFT Correspondence. A more intuitive understanding of why there is inte-
grability comes from the AdS/CFT correspondence [1], see also the reviews [2] and [3].
The latter is a duality relation between certain pairs of models. One partner is a con-
formal field theory, i.e. a QFT with exact conformal spacetime symmetry. The other
partner is a string theory where the strings propagate on a background which contains
an Anti-de-Sitter spacetime (AdS) as a factor. The boundary of an AdSd+1 spacetime
is a conformally flat d-dimensional spacetime on which the CFT is formulated. The
AdS/CFT duality relates the string partition function with sources φ for string vertex

2As a matter of fact, the system of equations is not yet in a form which enables easy evaluation.
E.g. there are infinitely many equations for infinitely many quantities. It is however common belief that
one can, as in similar cases, reduce the system to a finite set of Non-Linear Integral Equations (NLIE).
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operators fixed to value J at the boundary of AdSd+1 to the CFTd partition function
with sources J for local operators

Zstr[φ|∂AdS = J ] = ZCFT[J ].

More colloquially: For every string observable at the boundary of AdSd+1 there is a
corresponding observable in the CFTd (and vice versa) whose values are expected to
match. This is a remarkable statement because it relates two rather different types of
models on spacetimes of different dimensionalities. From it we gain novel insights into
one model through established results from the other model. For example, we can hope to
learn about the long-standing problem of quantum gravity (gravity being a fundamental
part of every string theory) through studying a more conventional QFT. However, this
transfer of results requires a leap of faith as long as the duality lacks a formal proof.

Most attempts at testing the predictions of the AdS/CFT duality have focused on its
most symmetric setting: The CFT partner is the gauge theory featured above, N = 4
SYM. The string partner is IIB superstring theory on the AdS5 × S5 background. This
pair is an ideal testing ground because the large amount of supersymmetry leads to
simplifications and even allows for exact statements about both models. In this context,
we can also understand the miraculous appearance of integrability in planar N = 4
SYM better: By means of the AdS/CFT duality it translates to integrability of the
string worldsheet model. The latter is a two-dimensional non-linear sigma model on a
symmetric coset space for which integrability is a common phenomenon. Consequently,
integrability has become an important tool to perform exact calculations in both models.
Full agreement between both sides of the duality has been observed in all considered
cases. Therefore, integrability has added substantially to the credibility of the AdS/CFT
correspondence.

String/Gauge Duality. Another important aspect of the AdS/CFT duality is that in
many cases it relates a string theory to a gauge theory. In fact, the insight regarding the
similarities between these two types of models is as old as string theory: It is well-known
that the hadron spectrum organises into so-called Regge trajectories. These represent
an approximate linear relationship with universal slope between the mass squared of
hadronic resonances and their spin. This is precisely what a string theory on flat space
predicts, hence string theory was for some time considered a candidate model of the
strong interactions. For various reasons this idea did not work out. Instead, it was found
that a gauge theory, namely QCD, provides an accurate and self-consistent description of
the strong interactions. Altogether it implies that string theory, under some conditions,
can be a useful approximation to gauge theory phenomena. A manifestation of stringy
behaviour in gauge theory is the occurrence of flux tubes of the chromodynamic field.
Flux tubes form between two quarks when they are pulled apart. To some approximation
they can be viewed as one-dimensional objects with constant tension, i.e. strings. The
AdS/CFT correspondence goes even further. It proposes that in some cases a gauge
theory is exactly dual to a string theory. By studying those cases, we hope to gain more
insights into string/gauge duality in general, perhaps even for QCD.

A milestone of string/gauge duality was the discovery of the planar limit [4], see
Fig. 1. This is a limit for models with gauge group SU(Nc), SO(Nc) or Sp(Nc). It
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Figure 1: Planar and non-planar Feynman graph (top), free and interacting
string worldsheet (bottom), Feynman graph corresponding to a patch of world-
sheet (right).
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Figure 2: Map of the parameter space of N = 4 SYM or strings on AdS5×S5.

consists in taking the rank of the group to infinity, Nc →∞, while keeping the rescaled
gauge coupling λ = g2

YMNc finite. In this limit, the Feynman graphs which describe
the perturbative expansion of gauge theory around λ = 0 can be classified according to
their genus: Graphs which can be drawn on the plane without crossing lines are called
planar. The remaining graphs with crossing lines are suppressed. This substantially
reduces the complexity of graphs from factorial to exponential growth, such that the
radius of convergence of the perturbative series grows to a finite size. Moreover, the
surface on which the Feynman graphs are drawn introduces a two-dimensional structure
into gauge theory: It is analogous to the worldsheet of a string whose string coupling gstr

is proportional to 1/Nc. Not surprisingly, integrability is confined to this planar limit
where gauge theory resembles string theory.
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Parameter Space. Let us now discuss the progress due to integrability based on a
map of the parameter space of our gauge and string theory, see Fig. 2. Typically there
are two relevant parameters for a gauge theory, the ’t Hooft coupling λ = g2

YMNc and
the number of colours Nc as a measure of the rank of the gauge group. In a string
theory we have the effective string tension T = R2/2πα′ (composed from the inverse
string tension α′ and the AdS5/S5 radius R) and the string coupling gstr. The AdS/CFT
correspondence relates them as follows

λ = 4π2T 2 ,
1

Nc

=
gstr

4π2T 2
.

The region of parameter space where λ is small is generally called the weak coupling
regime. This is where perturbative gauge theory in terms of Feynman diagrams provides
reliable results. By adding more loop orders to the series expansion one can obtain more
accurate estimates towards the centre of the parameter space (up to non-perturbative
effects). Unfortunately, conventional methods in combination with computer algebra
only allow evaluating the first few coefficients of the series in practice. Thus we cannot
probe the parameter space far away from the weak coupling regime. However, Nc can
be finite in practice, therefore the regime of perturbative gauge theory extends along the
line λ = 0.

The region around the point λ = ∞, gstr = 0 is where perturbative string theory
applies. Here, strings are weakly coupled, but the region is nevertheless called the strong
coupling regime referring to the gauge theory parameter λ. String theory provides a
double expansion around this point. The accuracy towards finite λ is increased by adding
quantum corrections to the worldsheet sigma model (curvature expansion, “worldsheet
loops”). Finite-gstr corrections correspond to adding handles to the string worldsheet
(genus expansion, “string loops”). As before, both expansions are far from trivial, and
typically only the first few coefficients can be computed in practice. Consequently, series
expansions do not give reliable approximations far away from the point λ =∞, gstr = 0.

Here we can see the weak/strong dilemma of the AdS/CFT duality, see also Fig. 3:
The perturbative regimes of the two models do not overlap. On the one hand AdS/CFT
provides novel insights into both models. On the other hand, we cannot really be sure
of them until there is a general proof of the duality. Conventional perturbative expan-
sions are of limited use in verifying, and tests had been possible only for a few special
observables (cf. [5] for example).

This is where integrability comes to help. As explained above, it provides novel
computational means in planar N = 4 SYM at arbitrary coupling λ. The AdS/CFT
correspondence relates this regime to free (gstr = 0) IIB superstrings on AdS5 × S5

at arbitrary tension T . It connects the regime of perturbative gauge theory with the
regime of perturbative string theory. Integrability predicts the spectrum of planar scaling
dimensions for local operators as a function of λ, cf. Fig. 3. In string theory this is dual
to the energy spectrum of free string states (strings which neither break apart nor join
with others). We find that integrability makes coincident predictions for both models. At
weak coupling one can compare to results obtained by conventional perturbative means in
gauge theory, and one finds agreement. Analogous agreement with perturbative strings
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Figure 3: Weak coupling (3, 5, 7 loops) and strong coupling (0, 1, 2 loops)
expansions (left) and numerically exact evaluation (right) of some interpolating
function f(λ).

is found at strong coupling. And for intermediate coupling the spectrum apparently
interpolates smoothly between the two perturbative regimes.

Methods of integrability provide us with reliable data over the complete range of
couplings. We can investigate in practice a gauge theory at strong coupling. There it
behaves like a weakly coupled string theory. Likewise a string theory on a highly curved
background (equivalent to low tension) behaves like a weakly coupled gauge theory. At
intermediate coupling, the results are reminiscent of neither model or of both; this is
merely a matter of taste and depends crucially on whether one’s intuition is based on
classical or quantum physics. In any case, integrability can give us valuable insights into
a truly quantum gauge and/or string theory at intermediate coupling strength.

Solving a Theory. In conclusion, we claim that integrability solves the planar sector
of a particular pair of gauge and string theories. We should be clear about the actual
meaning of this statement: It certainly does not mean that the spectrum is given by a
simple formula as in the case of a harmonic oscillator, the (idealised) hydrogen atom or
strings in flat space (essentially a collection of harmonic oscillators)3

EHO = ω(n+ 1
2
), Ehyd = −meα

2

n2
, m2

flat = m2
0 +

1

α′

∞∑
k=−∞

nk|k|.

It would be too much to hope for such a simplistic behaviour in our models: For instance,
the one-loop corrections to scaling dimensions are typically algebraic numbers. Therefore
the best we can expect is to find a system of algebraic equations whose solutions deter-
mine the spectrum. This is what methods of integrability provide more or less directly.
Integrability vastly reduces the complexity of the spectral problem by bypassing almost
all steps of standard QFT methods: There we first need to compute all the entries of the
matrix of scaling dimensions. Each entry requires a full-fledged computation of higher
loop Feynman graphs involving sophisticated combinatorics and demanding loop inte-
grals. The naively evaluated matrix contains infinities calling for proper regularisation

3In fact, these systems are also integrable, but of an even simpler kind.
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Figure 4: Phase diagram of local operators in planar N = 4 SYM mapped with
respect to coupling λ vs. “size” L. Also indicated are the integrability methods
that describe the spectrum accurately.

and renormalisation. The final step consists in diagonalising this (potentially large) ma-
trix. This is why scaling dimensions are solutions of algebraic equations. In comparison,
the integrable approach directly predicts the algebraic equations determining the scaling
dimension D

f(D,λ) = 0.

This is what we call a solution of the spectral problem.
A crucial benefit of integrability is that the spectral equations include the coupling

constant λ in functional form. Whereas standard methods produce an expansion whose
higher loop coefficients are exponentially or even factorially hard to compute, here we
can directly work at intermediate coupling strength.

What is more, integrability gives us easy access to composite objects with a large
number of constituents. Generally, there is an enormous phase space for such objects
growing exponentially with their size. Standard methods would require computing the
complete matrix of scaling dimensions and then filter out the desired eigenvalue. Clearly
this procedure is prohibitive for large sizes. Conversely, the integrable approach is for-
mulated in terms of physically meaningful quantities. This allows us to assume a certain
coherent behaviour for the constituents of the object we are interested in, and then
approach the thermodynamic limit. Consequently we obtain a set of equations for the
energy of just this object. Moreover, the thermodynamic limit is typically much sim-
pler than the finite-size equations. The size of the object can be viewed as a quantum
parameter, where infinite vs. finite size corresponds to classical vs. quantum physics. In
fact, in many cases it does map to classical vs. quantum strings! In Fig. 4 we present
a phase space for local operators in planar N = 4 SYM. On it we indicate the respec-
tive integrability methods to be described in detail in the overview section and in the
chapters.

As already mentioned, a strength of the integrable system approach is that objects
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are often represented through their physical parameters. This is not just an appealing
feature, but also a reason for the efficiency: The framework of quantum mechanics
and QFT is heavily based on equivalence classes. Explicit calculations usually work
with representatives. Choosing a particular representative in a class introduces further
auxiliary degrees of freedom into the system. These degrees of freedom are carried
along the intermediate steps of the calculation, and it is reasonable to expect them to
be a source of added difficulty because there is no physical principle to constrain their
contributions. In particular, they are the habitat of the notorious infinities of QFT. At
the end of the day, all of their contributions miraculously4 vanish into thin air. Hence
a substantial amount of efforts typically go into calculating contributions which one is
actually not interested in. Conversely, one may view integrable methods as working
directly in terms of the physical equivalence classes instead of their representatives. The
observables are then computed without intermediate steps or complications. The fact
that such a shortcut exists for some models is a true miracle; it is called integrability.

So far we have discussed solving the spectrum of our planar model(s). A large amount
of evidence has now accumulated that this is indeed possible, and, more importantly, we
understand how to do it in practice. Solving the theory, however, requires much more;
we should be able to compute all of its observables. For a gauge theory they include
not only the spectrum of scaling dimensions, but also correlation functions, scattering
amplitudes, expectation values of Wilson loops, surface operators and other extended
objects, as well as combinations of these (loops with insertions, form factors, . . . ), if not
more. For several of these, in particular for scattering amplitudes, it is becoming clear
that integrability provides tools to substantially simplify their computation. Hence it is
plausible to expect that the planar limit can be solved.

Can we also solve the models away from the planar limit? There are many indications
that integrability breaks down for finite number of colours Nc. Nevertheless, this alone
does not imply that we should become dispirited. Integrability may still prove useful,
not in the sense of an exact solution, but as a means to perform an expansion in terms
of genus, i.e. in powers of 1/Nc ∼ gstr. This might give us a new handle to approach the
centre of parameter space in Fig. 2 coming from below. The centre will, with all due
optimism, most likely remain a tough nut to crack.

In conclusion, methods of integrability have already brought and will continue to
bring novel insights into the gauge and string models. Having many concrete results at
hand helps in particular to understand their duality better. In particular we can confirm
and complete the AdS/CFT dictionary which relates objects and observables between
the two models.

Integrability as a Symmetry. Above we have argued that the success of integrability
is based on the strict reduction to the physical degrees of freedom. Another important
point of view is that integrability is a hidden symmetry. Symmetries have always been
a key towards a better understanding in particle physics and QFT. Here the hidden
symmetry is in fact so powerful that it not only relates selected quantities to others, but,

4Of course, the miracle is consistency of the model paired with failing to make mistakes in the
calculation (often used as a convenient cross check of the result).
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in some sense, anything to everything else. The extended symmetry thus predicts the
outcome of every measurement, at least in principle. Conventionally one would expect
the resulting model to be trivial, just like a harmonic oscillator, but there are important
interesting and highly non-trivial cases.

Integrability finds a natural mathematical implementation in the field of quantum
algebra. More concretely, the type of quantum integrable system that we encounter
is usually formulated in terms of deformed universal enveloping algebras of affine Lie
algebras. The theory of such quasi-triangular Hopf algebras is in general highly devel-
oped. It provides the objects and their relations for the solution of the physical system.
Curiously, our gauge/string theory integrable model appears to be based on some un-
conventional or exceptional superalgebra which largely remains to be understood. It is
not even clear whether quasi-triangular Hopf algebras are a sufficient framework for a
complete mathematical implementation of the system.

Relations to Other Subjects. An aspect which makes the topic of this review a
particularly attractive one to work on is its relation to diverse subjects of theoretical
physics and mathematics. Let us collect a few here, including those mentioned above,
together with references to the chapters of this review where the relations are discussed
in more detail:

• Most obviously, the topic of the review itself belongs to four-dimensional QFT,
more specifically, gauge theory and/or CFT, but also to string theory on curved
backgrounds.

• Recalling the discussion from a few lines above, the mathematical framework for the
kind of integrable models that we encounter is quantum algebra, see Chapter VI.2.

• As mentioned earlier, string theory always contains a self-consistent formulation of
quantum gravity. By gaining a deeper understanding of string theory models, we
hope to learn more about quantum gravity as such. Furthermore, by means of the
string-related Kawai–Lewellen–Tye [6] and Bern–Carrasco–Johansson relations [7],
there is a connection between scattering amplitudes in N = 4 SYM and N = 8
supergravity, which stands a chance of being free of perturbative divergencies.5

These aspects are not part of the review. In fact, it would be highly desirable to
explore the use of integrability results in this context.

• Prior to the discoveries related to the AdS/CFT correspondence, integrability in
four-dimensional gauge theories was already observed in the context of high-energy
scattering and the BFKL equations, and for deep inelastic scattering and the
DGLAP equations, see Chapter IV.4 and [8]. Note that the twist states discussed
in Chapters III.4 play a prominent role in deep inelastic scattering.

• There are also rather distinct applications of integrability in supersymmetric gauge
theories: There is the famous Seiberg–Witten solution [9] for the BPS masses in
D = 4, N = 2 gauge theories. Furthermore, supersymmetric vacua in D = 2,

5One should point out that these relations are essentially non-planar.
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N = 4 gauge theories with matter can be described by Bethe ansätze [10]. It
remains to be seen whether there are connections to the subject of the present
review.

• There are further links to general four-dimensional gauge theories : On a qualitative
level we might hope to learn about QCD strings from novel results in the AdS/CFT
correspondence at finite coupling. On a practical level, the leading-order results in
N = 4 SYM can be carried over to general gauge theories essentially becauseN = 4
SYM contains all types of particles and interactions allowed in a renormalisable
QFT. Chapter IV.4 is most closely related to this topic.

• Along the same lines, the BFKL dynamics in leading logarithmic approximation
is universal to all four-dimensional gauge theories. The analytic expressions de-
rived in N = 4 SYM may allow us to clarify the nature of the most interesting
Regge singularity, the pomeron (see [11]), which is the most interesting object for
perturbative QCD and for its applications to particle collider physics.6

• A certain class of composite states, but also loop integrals in QFT, often involve
generalised harmonic sums, generalised polylogarithms and multiple zeta values.
The exploration of such special functions is an active topic of mathematics. See
Chapters I.2, III.4 and V.2.

• Local operators of the gauge theory are equivalent to states of a quantum spin
chain. Spin chain models come to use in connection with magnetic properties in
solid state physics. Also in gauge theory, ferromagnetic and anti-ferromagnetic
states play an important role, see Chapters I.1 and III.4.

• More elaborate spin chains — such as the one-dimensional Hubbard model (cf.
[12]) — are considered in connection to electron transport. Curiously, this rather
exceptional Hubbard chain makes an appearance in the gauge theory context, in
at least two distinct ways, see Chapters I.3 and III.2.

• And there are many more avenues left to be explored.

6We thank L. Lipatov for pointing out this application.
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Outline

The review collection consists of the above introduction and 23 chapters grouped into 6
major subjects. Each chapter reviews a particular topic in a self-contained manner. The
following overview gives a brief summary of each part and each chapter, and is meant to
tie the whole collection together. It can be understood as an extensive table of contents.

Where possible, we have put the chapters into a natural and meaningful order with
regards to content. A chapter builds upon insights and results presented in the earlier
chapters and begins roughly where the previous one ended. In many cases this reflects
the historical developments, but we have tried to pull loops straight. Our aim was to
prepare a pedagogical and generally accessible introduction to the subject of AdS/CFT
integrability rather than a historically accurate account.

While the topics were fixed, the design and presentation of each chapter was largely
the responsibility of its authors. The only guideline was to discuss an instructive example
in detail while presenting the majority of results more briefly. Furthermore, the chapters
give a guide to the literature relevant to the topic where more details can be found.
Open problems are also discussed in the chapters. Note that we did not enforce uniform
conventions for naming, use of alphabets, normalisations, and so on. This merely reflects
a reality of the literature. However, each chapter is meant to be self-consistent.

Before we begin with the overview, we would like to point out existing reviews on
AdS/CFT integrability and related subjects which cover specific aspects in more detail.
We can recommend several reviews dedicated to the subject [13]. Also a number of PhD
theses are available which at least contain a general review as the introduction [14]. It
is also worthwhile to read some of the very brief accounts of the subject in the form
of news items [15]. Last but not least, we would like to refer the reader to prefaces of
special issues dedicated to AdS/CFT integrability [16] and closely related subjects [17].
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Overview

The chapters are grouped into six parts representing the major topics and activities of
this subject, see Fig. 5. In the first two Parts I and II we start by outlining the per-
turbative gauge and string theory setup. Here we focus on down-to-earth quantum field
theory calculations which yield the solid foundation in spectral data of local operators.
In the following Part III we review the construction of the spectrum by integrable meth-
ods. More than merely reproducing the previously obtained data, this goes far beyond
what could possibly be computed by conventional methods: It can apparently predict
the exact spectrum. The next Part IV summarises applications of these methods to sim-
ilar problems, beyond the spectrum, beyond planarity, beyond N = 4 SYM or strings
on AdS5 × S5. Among these avenues is the application of integrability to scattering
amplitudes; as this topic has grown into a larger subject we shall devote Part V to it.
The final Part VI reviews classical and quantum algebraic aspects of the models and of
integrability.
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Figure 5: Suggested order of study.
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I N = 4 Super Yang–Mills Theory

c© 2010 Niklas Beisert~

This part deals with the maximally supersymmetric Yang–Mills (N =
4 SYM) theory in four spacetime dimensions. This model is a straight-
forward quantum field theory. It uses the same types of particles
and interactions that come to play in the Standard Model of parti-
cle physics. However, the particle spectrum and the interactions are
delicately balanced granting the model a host of unusual and unexpected features. The
best-known of these is exact (super)conformal symmetry at the quantum level. A far
less apparent feature is what this review collection is all about: integrability.

In this part we focus on the perturbative field theory, typically expressed through
Feynman diagrams. The calculations are honest and reliable but they become tough as
soon as one goes to higher loop orders. Integrability will only be discussed as far as it
directly concerns the gauge theory setup, i.e. in the sense of conserved operators acting
on a spin chain. The full power of integrability will show up only in Part III.

I.1 Spin Chains in N = 4 SYM

c© 2010 Niklas Beisert~

Chapter I.1 introduces the gauge theory, its local operators, and out-
lines how to compute the spectrum of their planar one-loop anomalous
dimensions. It is explained how to map one-to-one local operators to
states of a certain quantum spin chain. The operator which measures
the planar, one-loop anomalous dimensions corresponds to the spin
chain Hamiltonian in this picture. Importantly, this Hamiltonian is of the integrable
kind, and the planar model can be viewed as a generalisation of the Heisenberg spin
chain. This implies that its spectrum is solved efficiently by the corresponding Bethe
ansatz. E.g. a set of one-loop planar anomalous dimensions δD is encoded in the solutions
of the following set of Bethe equations for the variables uk ∈ C (k = 1, . . . ,M)(

uk + i
2

uk − i
2

)L
=

M∏
j=1

j 6=k

uk − uj + i

uk − uj − i
, 1 =

M∏
j=1

uj + i
2

uj − i
2

, δD =
λ

8π2

M∑
j=1

1

u2
j + 1

4

.

Finally the Chapter presents applications of the Bethe ansatz to sample problems.

20



Chapter 0: An Overview

I.2 The spectrum from perturbative gauge theory

c© 2010 Niklas Beisert~

The following Chapter I.2 reviews the computation of the spectrum
of anomalous dimensions at higher loops in perturbative gauge theory.
The calculation in terms of Feynman diagrams is firmly established,
but just a handful orders takes you to the limit of what is generally
possible. Computer algebra and superspace techniques push the limit
by a few orders.

In our case the results provide a valuable set of irrefutable data which the integrable
model approach must be able to reproduce to show its viability. This comprises not
only explicit energy eigenvalues, but also crucial data for the integrable system, such
as the magnon dispersion relation and scattering matrix. Importantly, also the leading
finite-size terms are accessible in this approach, e.g. the four-loop anomalous dimension
to the simplest non-trivial local operator reads (cf. the above Bethe equation with L =
4,M = 2)

δD =
3λ

4π2
− 3λ2

16π4
+

21λ3

256π6
−
(
78− 18ζ(3) + 45ζ(5)

)
λ4

2048π8
+ . . .

I.3 Long-range spin chains

c© 2010 Niklas Beisert~

The final Chapter I.3 of this part reviews spin chain Hamiltonians
originating in planar gauge theory at higher loops. The one-loop
Hamiltonian describes interactions between two neighbouring spins.
At higher loops the Hamiltonian is deformed by interactions between
several neighbouring spins, e.g.

H =
L∑
j=1

(
λ

8π2

(
1− Pj,j+1

)
+

λ2

128π4

(
−3 + 4Pj,j+1 − Pj,j+2

)
+ . . .

)
.

Moreover, the Hamiltonian can dynamically add or remove spin sites! While integrable
nearest-neighbour Hamiltonians have been studied in detail for a long time, a better gen-
eral understanding of long-range deformations was developed only recently. Curiously,
several well-known integrable spin chain models make an appearance in this context, in
particular, the Haldane–Shastry, Inozemtsev and Hubbard models.
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II IIB Superstrings on AdS5 × S5

c© 2010 Niklas Beisert~

This part concerns IIB string theory on the maximally supersymmet-
ric AdS5 × S5 background. The string worldsheet model is a two-
dimensional UV-finite quantum field theory. It is of the non-linear
sigma model kind with target space AdS5 × S5 and further possesses
worldsheet diffeomorphisms. Also this model has a number of ex-
ceptional features, such as kappa symmetry, which make it a viable string theory on a
stable background. Somewhat less surprising than in gauge theory, this model is also
integrable, a property shared by many two-dimensional sigma models on coset spaces.

We outline how to extract spectral data from classical string solutions with quantum
corrections. There are many complications, such as non-linearity of the classical equa-
tions of motion, lack of manifest supersymmetry and presence of constraints. Again,
integrability will help tremendously; here we focus on string-specific aspects, and leave
the more general applications to Part III.

II.1 Classical AdS5 × S5 string solutions

c© 2010 Niklas Beisert~

The first Chapter II.1 of this part introduces the Green–Schwarz string
on the curved spacetime AdS5 × S5. For the classical spectrum only
the bosonic fields are relevant. To find exact solutions of the non-linear
equations of motions, one typically makes an ansatz for the shape of
the string. Taking inspiration from spinning strings in flat space, one
can for instance assume a geodesic rod spinning around some orthogonal axes. The
equations of motion together with the Virasoro constraints dictate the local evolution,
while boundary conditions quantise the string modes. Next, the target space isometries
give rise to conserved charges, such as angular momenta and energy. These can be
expressed in terms of the parameters of the string solution. E.g., a particular class of
spinning strings on AdS3×S1 ⊂ AdS5×S5 obeys the following relation (K,E are elliptic
integrals)

S2(
K(m)− E(m)

)2 −
J2

K(m)2
= 16n2T 2 (1−m),

J2

K(m)2
− E2

E(m)2
= 16n2T 2m.

Such relations can be used to express the energy E as a function of the angular momenta
J, S, the string modes n and the string tension T .7

7Note that complicated classes of solutions will require further internal parameters in addition to m.
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II.2 Quantum Strings in AdS5 × S5
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Chapter II.2 continues with semiclassical quantisation of strings. Here,
one distinguishes between point-like and extended strings.

Quantisation around point-like strings is the direct analogue of
what is commonly done in flat space. The various modes of the string
can be excited in quantised amounts, and the string spectrum takes
the form

E − J =
M∑
k=1

Nk

√
1 + λn2

k/J
2 + . . . ,

M∑
k=1

Nknk = 0.

The main difference with flat space is that the modes interact, adding non-trivial cor-
rections to the spectrum. These corrections can be computed in terms of a scattering
problem on the worldsheet.

Quantisation around extended string solutions is far less trivial: The spectrum of
fluctuations now crucially depends on the classical solution. Another effect is that the
energy of the classical string receives quantum corrections due to vacuum energies of the
string modes.

II.3 Sigma Model, Gauge Fixing

c© 2010 Niklas Beisert~

Spheres and anti-de-Sitter spacetimes are symmetric cosets. Chap-
ter II.3 presents the formulation of the string worldsheet as a two-
dimensional coset space sigma model of the target space isometry su-
pergroup. In particular, integrability finds a simple formulation in a
family of flat connections A(z) on the worldsheet and its holonomy
M(z) around the closed worldsheet

dA(z) + A(z) ∧ A(z) = 0, M(z) = P exp

∮
A(z).

Series expansion of M(z) in the spectral parameter z leads to an infinite tower of charges
extending the isometries to an infinite-dimensional algebra.

Proper treatment of symmetries and integrability towards a canonical quantisation
requires a Hamiltonian formulation. Here the major complications are the presence of
first and second class constraints due to worldsheet diffeomorphisms and kappa symme-
try. Finally, one encounters notorious ambiguities in deriving the algebra of conserved
charges.
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II.4 The Spectral Curve

c© 2010 Niklas Beisert~

In the final Chapter II.4 on strings, the flat connection is applied to the
construction of the (semi)classical string spectrum. The eigenvalues
eipk(z) of the monodromy M(z) are integrals of motion. As functions
of complex z they define a spectral curve for each classical solution.
Instead of studying explicit classical solutions we can now study ab-
stract spectral curves. Besides containing all the spectral information, they offer a neat
physical picture: String modes correspond to handles of the Riemann surface, and each
handle has two associated moduli: the mode number nk and an amplitude αk. They can
be extracted easily as periods of the curve∮

Ak

dp = 0,
1

2π

∮
Bk

dp = nk,

√
λ

4π2i

∮
Ak

1 + z4

1− z4
dp = Nk.

Note that quantisation replaces the amplitude by an integer excitation number Nk thus
providing access to the semiclassical spectrum of fluctuation modes.

III Solving the AdS/CFT Spectrum
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Armed with some basic knowledge of the relevant structures in gauge
and string theory (as well as an unconditional belief in the applica-
bility of integrable structures to this problem) we aim to solve the
planar spectrum in this part.

The starting point is that in both models there is a one-
dimensional space (spin chain, string) on which some particles (magnons, excitations)
can propagate. By virtue of symmetry and integrability one can derive how they scatter,
at all couplings and in all directions. Taking periodicity into account properly, one arrives
at a complete and exact description of the spectrum. For certain states this program
was carried out, and all results are in complete agreement with explicit calculations in
perturbative gauge or string theory (as far as they are available). Yet, the results from
the integrable system approach go far beyond what is otherwise possible in QFT: They
provide a window to finite coupling λ!

There are several proposals of how to formulate these equations — through an al-
gebraic system or through integral equations. However, it is commonly believed that a
reasonably simple and generally usable form for such equations has not yet been found
(let alone proved).
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III.1 Bethe Ansätze and the R-Matrix Formalism
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As a warm-up exercise and to gather experience, Chapter III.1 solves
one of the oldest quantum mechanical systems — the Heisenberg spin
chain. This is done along the lines of Bethe’s original work, using a
factorised magnon scattering picture, but also in several variants of the
Bethe ansatz. This introduces us to ubiquitous concepts of integrable
systems such as R-matrices, transfer matrices and the famous Yang–Baxter equation

R12R13R23 = R23R13R12.

The chapter ends by sketching a promising novel method for constructing the so-called
Baxter Q-operators, allowing to surpass the Bethe ansatz technique.

III.2 Exact world-sheet S-matrix
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Even though little is known about gauge or string theory at finite
coupling, the magnon scattering pictures and symmetries qualitatively
agree for weak and strong coupling. Under the assumption that they
remain valid at intermediate couplings, Chapter III.2 describes how to
make use of symmetry to determine all the relevant quantities: Both,
the magnon dispersion relation

e(p) =

√
1 +

λ

π2
sin2(1

2
p)

and the 16-flavour scattering matrix are almost completely determined through represen-
tation theory of an extended psu(2|2) superalgebra. Integrability then ensures factorised
scattering, and determines the spectrum on sufficiently long chains or strings through
the asymptotic Bethe equations.

III.3 The dressing factor
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Symmetry alone cannot predict an overall phase factor of the scattering
matrix which is nevertheless crucial for the spectrum. Several other
desirable properties of factorised scattering systems, such as unitarity,
crossing and fusion, constrain its form

S0
12S

0
12̄ = f12.

Chapter III.3 presents this crossing equation and its solution – the so-called dressing
phase. It has a host of interesting analytic properties relating to the physics of the
model under discussion.
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III.4 Twist states and the cusp anomalous di-
mension
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The asymptotic Bethe equations predict the spectrum up to finite-size
corrections. In Chapter III.4 we apply them to the interesting class of
twist states. These are ideally suited for testing purposes because a lot
of solid spectral data are known from perturbative gauge and string
theory. They also have an interesting dependence on their spin j, in terms of generalised
harmonic sums of fixed degree.

Importantly, in the large spin limit, finite-size corrections turn out to be suppressed.
The Bethe equations reduce to an integral equation to predict the exact cusp dimension
(and generalisations). The latter turns out to interpolate smoothly between weak and
strong coupling in full agreement with perturbative data

Dcusp =
λ

2π2
− λ2

96π2
+

11λ3

23040π2
+ . . . =

√
λ

π
− 3 log 2

π
− β(2)

π
√
λ

+ . . . .

III.5 Lüscher corrections
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For generic states, however, finite-size corrections are required to get
agreement with gauge and string theory. Chapter III.5 explains how to
apply Lüscher terms to determine these: On a closed worldsheet there
are virtual particles propagating in the spatial direction in non-trivial
loops around the string. When they interact with physical excitations,
they give rise to non-trivial energy shifts (qj and pk are virtual and real particle momenta,
respectively)

δE = −
∑

j

∫
dqj
2π

e−Lẽj(qj) STrj
∏

k
Sjk(qj, pk).

III.6 Thermodynamic Bethe Ansatz
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Although finite-size corrections appear under control, it is clearly de-
sirable to find equations to determine the exact spectrum in one go.
Chapter III.6 describes the thermodynamic Bethe ansatz approach
based on the following idea: Consider the string worldsheet at finite
temperature with Wick rotated time. It has the topology of a torus of
radius R and time period L. We are primarily interested in the zero temperature limit
where time is decompactified. Now the torus partition function can be evaluated in the
mirror theory where the periods are exchanged

Z(R,L) = Z̃(L,R).

Then, instead of time, we can decompactify the radius. Conveniently, the asymptotic
Bethe equations become exact, and eventually predict the finite-size spectrum.
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III.7 Hirota Dynamics for Quantum Integrability
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Chapter III.7 presents a equivalent proposal for the finite-size spectrum
based on the conserved charges of an integrable model. The latter are
typically packaged into transfer matrix eigenvalues T (u). These exist
in various instances which obey intricate relations, such as the discrete
Hirota equation (also known as the Y-system for equivalent quantities
Ya,s(u))

Ta,s(u+ i
2
)Ta,s(u− i

2
) = Ta+1,s(u)Ta−1,s(u) + Ta,s+1(u)Ta,s−1(u).

Similarly to Chapter II.4, one can start from these equations, subject to suitable bound-
ary conditions, and predict the spectrum at finite coupling.

IV Further Applications of Integrability
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For the sake of a clear presentation the previous parts focused on
one particular application of integrability in AdS/CFT: Solving the
exact planar spectrum of N = 4 supersymmetric Yang–Mills theory
or equivalently of IIB string theory on AdS5 × S5. While this topic
has been at the centre of attention, many investigations have dealt
with extending the applications of integrability to other observables beyond the planar
spectrum and to more general models. This part and the following try to give an overview
of these developments.

IV.1 Aspects of Non-planarity
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Integrability predicts the planar spectrum accurately and with mini-
mum effort. It would be desirable to extend the applications of inte-
grability to non-planar corrections because, e.g., in QCD Nc = 3 rather
than Nc =∞. For the spectrum, these are interactions where the spin
chain or the string splits up and recombines

H = H0 +
1

Nc

(H+ +H−) + . . . .

They result in a string worldsheet of higher genus or with more than two punctures.
Chapter IV.1 reviews the available results on higher-genus corrections, higher-point

functions as well as supersymmetric Wilson loops in the AdS/CFT context. It is shown
that most of the basic constructions of integrability do not work in the non-planar setup.

27



Chapter 0: An Overview

IV.2 Deformations, Orbifolds and Open Bound-
aries
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There exist many deformations of N = 4 SYM which preserve some
or the other property, e.g. by deforming the (N = 1) superpotential∫

d4x d4θTr
(
eiβXY Z − e−iβZY X

)
.

It is natural to find out under which conditions integrability can survive. Chapter IV.2
reviews such superconformal deformations of N = 4 SYM and shows how the methods
of integrability can be adjusted to these cases. It turns out that these merely deform
the boundary conditions of the integrable model by introducing additional phases into
the Bethe equations (in the spin chain context this has a similar effect as turning on
a magnetic field). Different boundary conditions can also arise from looking at other
corners of the spectrum or at different observables; this is another topic of the present
chapter.

IV.3 N = 6 Chern-Simons and Strings on
AdS4 × CP 3
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Recently a quantum field theory in three dimensions was discovered
which behaves in many respects like N = 4 SYM — N = 6 supersym-
metric Chern–Simons-matter theory

S =
k

4π

∫
Tr
(
A ∧ dA+ 2

3
A ∧ A ∧ A+ . . .

)
.

It is exactly superconformal at the quantum level, and there is an AdS/CFT dual string
theory — IIA superstrings on the AdS4 × CP 3 background. Importantly, there exists a
large-Nc limit, in which the model becomes integrable. Chapter IV.3 reviews integrability
in this AdS4/CFT3 correspondence. While being largely analogous to the constructions
in the previous parts, there are several noteworthy differences in the application of inte-
grable methods: For instance, here the spin representation alternates between the sites.

IV.4 Integrability in QCD and N < 4 SYM
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Similar integrable structures were known to exist in more general gauge
theories long before the exploitation of integrability in N = 4 SYM.
Chapter IV.4 introduces evolution equations for high-energy scattering
(BFKL) and scaling of quasi-partonic operators in connection to deep
inelastic scattering (DGLAP). To some extent these take the form of
integrable Hamiltonians with sl(2|N ) symmetry (J12 is the two-particle spin operator
and Ψ is the digamma function)

H12 ' Ψ(J12)−Ψ(1).

Its eigenvalues determine the scaling of certain hadronic structure functions and control
the energy dependence of scattering amplitudes in the high-energy (Regge) limit.
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V Integrability for Scattering Amplitudes
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The most conservative application of quantum field theories is to com-
pute scattering cross sections (to be compared to particle scattering
experiments). With old blades sharpened and new ones developed,
the charted territory of tree and loop scattering amplitudes in N = 4
SYM has increased dramatically, see e.g. the recent reviews [18] and
the special issue [19]. It was soon noticed that something special was going on in the
planar limit which makes amplitudes much simpler than originally thought. It does not
take much imagination to conjecture a connection to integrability. This part reviews
scattering amplitudes and what integrability implies in this context. This topic is under
active investigation, many advances have been and are being made, but a lot remains
to be understood. Here, one can expect that integrability will enable a similarly simple
solution as in the case of the planar spectrum.

V.1 Scattering Amplitudes – a Brief Introduction
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Chapter V.1 gives an introduction into the topic of scattering ampli-
tudes in N = 4 SYM. First of all, the spinor-helicity formalism and
colour-ordering scheme strips the combinatorial structure and leaves
plain functions. For instance, an essential part of an n-particle am-
plitude simply reads (〈kj〉 is a Lorentz-invariant constructed from the
momenta of particles k and j)

AMHV
n =

δ4(P ) δ8(Q)

〈12〉〈23〉 · · · 〈n1〉
.

The S-matrix displays a host of useful analyticity properties related to unitarity. These
can be used to reconstruct tree and loop amplitudes from scratch, which is typically far
more efficient than using Feynman diagrams following from the Lagrangian description.

V.2 Dual Superconformal Symmetry
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Chapter V.2 reviews simplifications found in planar scattering. It turns
out that the underlying scalar integrals are of a special form which hints
at conformal symmetry in a dual space. Indeed, the amplitudes obey
a dual superconformal symmetry in addition to the conventional one.
The two sets of conformal symmetries close onto an infinite-dimensional
algebra which is at the heart of integrability — the Yangian.

This symmetry helps to determine all (tree) amplitudes, by means of recursion or
through a Grassmannian integral (C is a k × n matrix, Mj are its k × k minors of
consecutive columns, and Z are 4|4 twistors encoding the momenta of the n legs)

Atree
n,k (Z) =

∫
dk(n−k)C δk(4|4)(CZ)

M1 · · ·Mn

.

29



Chapter 0: An Overview

V.3 Scattering Amplitudes at Strong Coupling
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Chapter V.3 discusses the string dual of scattering amplitudes. Here it
makes sense to transform particle momenta to distances by means of a
T-duality. At strong coupling an amplitude is then dominated by the
minimal area of a string worldsheet ending on a light-like polygonal
contour on the AdS5 boundary (the previous Chapter V.2 provides ev-
idence in favour of a general relation between amplitudes and light-like polygonal Wilson
loops). Such minimal areas can be computed efficiently by integrable means bypassing
the determination of the complicated shape of the worldsheet (cf. Chapter III.5)

Areg =
∑
k

∫
dθmk cosh θ

2π
log
(
1 + Yk(θ)

)
.

VI Algebraic Aspects of Integrability
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Integrability can be viewed as a symmetry. In most cases it enhances
an obvious, finite-dimensional symmetry of a physical system to a
hidden, infinite-dimensional algebra. The extended symmetry then
imposes a large number of constraints onto the system which deter-
mine the dynamics (almost) completely, but without making it trivial.
Many of the properties and methods that come to use in integrable systems find a math-
ematical formulation in terms of quantum algebra. Often this does not help immediately
in computing particular physical observables, one of the main objectives of the previous
parts. Rather, it can give a deeper understanding of how the model’s integrability works,
with a view to finding rigorous proofs for the applicability of the (well-tested) proposals.

This final part of the review presents the symmetries relevant to our gauge and string
theory problem. These are the Lie supergroup PSU(2, 2|4) as the obvious symmetry and
its Yangian algebra to encode integrability.

VI.1 Superconformal Algebra

T
o

L u
i

s
e

c© 2010 Niklas Beisert~

The Lie superalgebra psu(2, 2|4) is generated by 8 × 8 supermatrices
(in 2|4|2 grading)

J =

 L −iQ P

S R Q̄

K −iS̄ L̄

 ,

subject to suitable constraints, projections and hermiticity conditions. It serves as the
spacetime superconformal symmetry in gauge theory as well as the target space isometries
of the dual string theory.

Chapter VI.1 summarises some well-known facts and results for this algebra. It also
explains how the algebra applies to the gauge and string theory setup. The chapter is
not so much related to integrability itself, it can rather be understood as an appendix
to many of the other chapters when it comes to the basics of symmetry.
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VI.2 Yangian Algebra
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In physics one is used to the concept of locally and homogeneously
acting symmetries. Chapter VI.2 introduces the Yangian algebra whose
non-local action is encoded by the coproduct

∆(Y A) = Y A ⊗ 1 + 1⊗ Y A + fABCJ
B ⊗ JC .

For instance, such a non-local action permits a scattering matrix which is fully deter-
mined by the algebra while still being non-trivial. The scattering matrix becomes a
natural intertwining object of the Yangian, its R-matrix. It enjoys a host of useful
properties which eventually make the physical system tractable.
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Chapter I.1: Spin Chains in N = 4 Super Yang-Mills

1 Introduction and summary

In this chapter of Review of AdS/CFT Integrability [1], we introduce N = 4 super Yang-
Mills (SYM), a gauge theory with the maximal amount of supersymmetry 1. N = 4
SYM was first considered by Brink, Scherk and Schwarz [3], who explicity constructed
its Lagrangian by dimensionally reducing SYM from 10 to 4 dimensions. One of the
remarkable properties of N = 4 SYM is that it is conformal [4], meaning that it has no
inherent mass scale in the theory. Many theories are classically conformal, namely any
theory with only massless fields and marginal couplings. ButN = 4 stays conformal even
at the quantum level. In particular its β-function is zero to all orders in perturbation
theory, as was first conjectured in [5] when studying open string loop amplitudes which
reduce to ten dimensional SYM in the infinite string tension limit.

In a theory such as QCD which has a running coupling constant, there is a natural
mass scale at the crossover point from weak to strong coupling. In QCD this is roughly
where confinement sets in and is responsible for the proton mass. Since N = 4 SYM is
conformal it cannot be confining, meaning that there are no mesons and hadrons, the
physical particles in QCD. Why then should we study it?

There are several reasons. First, its large amount of symmetry leads to an underlying
integrability, making many physical quantities analytically calculable, as many of the
chapters in this review will explain. Second, the AdS/CFT correspondence [6] conjectures
that N = 4 Super Yang-Mills is equivalent to type IIB string theory on AdS5 × S5.
This correspondence is a strong/weak duality which is normally very difficult to confirm
because when one theory is computationally under control the other is not. However, the
integrability allows us to plow forward and calculate at strong coupling, thus testing many
consequences of the conjecture. Third, while QCD is not conformal, it is asymptotically
free. Hence at high energies it is close to being conformal. Many essential features of
high energy gluon scattering, which is relevant for the LHC, can be learned by studying
gauge boson amplitudes in N = 4 SYM.

There are other reasons for studyingN = 4 SYM, including its conjectured invariance
under SL(2, Z) duality transformations [7], but they are less relevant for integrability.
Nevertheless, the three reasons stated here are hopefully enough motivation to press on.

In the following sections we will first describe the fields that make up N = 4 SYM,
showing that they lead to a vanishing one-loop β-function. We then discuss the symmetry
algebra of N = 4. Here we define a class of operators called chiral primaries whose
dimensions are protected from quantum corrections. We next describe a particular set
of gauge invariant operators, single trace operators, which are of significant importance
in the large N limit. We find how the fields transform under the symmetry algebra and
from there find the chiral primaries in the single trace operators. Using supersymmetry
arguments we then show that the gauge coupling gYM is fixed under rescalings and so
the theory is conformal, even at the quantum level.

We then compute the one-loop anomalous dimensions for a general set of single trace
operators composed of scalar fields. We show that in the large N limit where the con-
tributions to the anomalous dimensions are dominated by planar graphs, the problem

1This chapter is a substantial extension of an earlier review [2].
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is identical to computing the energies of a certain spin-chain with nearest neighbor in-
teractions. We then describe how the spin-chain can be generalized to all single trace
operators. Finally, we discuss the solutions for this spin-chain in a particular sector
called the SU(2) sector, where one finds the famous Bethe equations.

The full description of these spin chains, including their higher loop generalizations
and their solutions are deferred to later chapters of the review.

2 The field content and the vanishing β-function

The fields contained in N = 4 SYM are the gauge bosons Aµ, six massless real scalar
fields φI , I = 1 . . . 6, four chiral fermions ψaα and four anti-chiral fermions ψα̇ a, with
a = 1 . . . 4. The indices α, α̇ = 1, 2 are the spinor indices of the two independent SU(2)
algebras that make up the 4 dimensional Lorentz algebra. All fields transform in the
adjoint representation of the SU(N) gauge group. There is a global SU(4) ' SO(6)
symmetry, called an R-symmetry, with the scalars transforming in the 6, ψaα in the 4
(raised a index) and ψα̇ a in the 4 (lowered a index) representations of the R-symmetry
algebra.

Let us use the information about the field content to rapidly show that the one-loop
β-function is zero. For any SU(N) gauge theory, the one-loop β-function for the gauge
coupling gYM is given by [8]

β1(gYM) ≡ µ
∂gYM

∂µ
= − g

3
YM

16π2

(
11

3
N − 1

6

∑
i

Ci −
1

3

∑
j

C̃j

)
, (2.1)

where the first sum is over all real scalars with quadratic casimir Ci and the second sum
is over all Weyl fermions with quadratic casimir C̃j. All fields in N = 4 SYM are in the
adjoint, hence all casimirs are N . One can then quickly see that with six real scalars
and eight Weyl fermions that β1(gYM) = 0.

Going beyond one-loop, the β-function for N = 4 SYM was shown to be zero up to
three loops using superspace arguments [9]. Subsequently it was argued using light cone
gauge that the β-function is zero to all loops [10]. In a later section we will present a
different argument for why the β-function is zero to all orders.

3 The superconformal algebra

The conformal symmetry, the supersymmetery and the R-symmetry of N = 4 SYM are
part of a larger symmetry group. This group is known as the N = 4 superconformal
group, or more formally as PSU(2, 2|4). This symmetry group is unbroken by quantum
corrections and thus serves as a powerful tool by putting significant constraints on the
theory. In this section we will review the PSU(2, 2|4) algebra and its consequences. A
more detailed description is given in [11].

PSU(2, 2|4) has the bosonic subalgebra SU(2, 2)× SU(4). The SU(2, 2) ' SO(2, 4)
is the four dimensional conformal algebra while the SU(4) ' SO(6) is the R-symmetry.
The conformal algebra has 15 generators: ten generators belong to the Poincaré algebra
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which itself contains four generators of space-time translations, Pµ and six generators
of the SO(1, 3) ≡ SU(2) × SU(2) Lorentz transformations, Mµν . The other generators
of the conformal algebra are the four generators of special conformal transformations,
Kµ and one generator of dilatations, D. These generators then satisfy the commutation
relations

[D,Pµ] = −iPµ [D,Mµν ] = 0 [D,Kµ] = +iKµ

[Mµν , Pλ] = −i(ηµλPν − ηλνPµ) [Mµν , Kλ] = −i(ηµλKν − ηλνKµ)

[Pµ, Kν ] = 2i(Mµν − ηµνD) . (3.1)

Let O(x) be a local operator in the field theory with dimension ∆. This signifies that
under the rescaling x → λx, O(x) scales as O(x) → λ−∆O(λx). D is the generator of
these scalings, by which we mean that O(x)→ λ−iDO(x)λiD. Thus, its action on O(x)
is

[D,O(x)] = i

(
−∆ + x

∂

∂x

)
O(x) . (3.2)

Next, we let D act on [Kµ,O(0)], where we find using the Jacobi identity

[D, [Kµ,O(0)]] = [[D,Kµ],O(0)] + [Kµ, [D,O(0)]

= i[Kµ,O(0)]− i∆[Kµ,O(0)] . (3.3)

Thus, Kµ creates a new local operator from O with its dimension lowered by 1. Aside
from the identity operator, the local operators in a unitary quantum field theory must
have positive dimension. Therefore, if we keep creating new lower dimensional operators
by commuting with the special conformal generators, we must eventually reach a barrier
where we can go no further. Hence the last operator in this chain, Õ(x) must satisfy

[Kµ, Õ(0)] = 0 . (3.4)

for all Kµ. The operator Õ(x) is called primary2. Starting with Õ, we can build new
operators with the same dimension or higher by commuting it with the other generators
of the conformal algebra. The higher dimensional operators are called descendants3 of
Õ.

The conformal algebra can be combined with supersymmetry to make a supercon-
formal algebra. In four dimensions one can have gauge theories with N = 1, N = 2
or N = 4 supersymmetry, and all of these cases can be combined with the conformal
symmetries to make an N = 1, N = 2 or N = 4 superconformal algebra. Here, we only
consider the N = 4 case.

The generators of supersymmetry transformations are fermionic and are called su-
percharges. For N = 4 supersymmetry there are 16 separate supercharges, Qαa and

2The primary condition (3.4) is defined at x = 0 where the space-time position is a fixed point of
the dilatation. If the local operator were at a different space-time point then it would commute with a
different combination of the conformal generators.

3Peradventure they should have been called ascendants.
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Q̃a
α̇, where α, α̇ = 1, 2 and a = 1..4 are the same spinor and R-symmmetry indices that

label the Weyl fields, except here the α indices are paired with the 4 and the α̇ in-
dices are paired with the 4. The supersymmetry algebra is a graded Lie algebra which
combines the generators of the Poincaré algebra with the supercharges and contains the
commutation and anti-commutation relations

{Qαa, Q̃
b
α̇} = γµαα̇δa

bPµ , {Qαa, Qα b} = {Q̃a
α̇, Q̃

b
α̇} = 0

[Pµ, Qαa] = [Pµ, Q̃
b
α̇] = 0

[Mµν , Qαa] = iγµναβε
βγQγ a , [Mµν , Q̃a

α̇] = iγµν
α̇β̇
εβ̇γ̇Q̃a

γ̇ , (3.5)

where γµναβ = γ
[µ
αα̇γ

ν]

ββ̇
εα̇β̇. Simple dimension counting within the algebra shows that Qαa

and Q̃a
α̇ have dimension 1/2 and so their commutators with D is

[D,Qαa] = − i
2
Qαa [D, Q̃a

α̇] = − i
2
Q̃a
α̇ . (3.6)

By including the special conformal generators we generate a new set of supercharges
by commuting Kµ with Qαa and Q̃a

α̇,

[Kµ, Qαa] = γµαα̇ε
α̇β̇S̃β̇ a [Kµ, Q̃a

α̇] = γµαα̇ε
αβSaβ . (3.7)

The operators Saα and S̃α̇ a have dimension −1/2 and are known as the special conformal
supercharges, or the superconformal charges. TheirR-charge representations are reversed
from the supercharges and combine with the regular supercharges to give 32 supercharges
in total. The superconformal generators have anticommutation relations that mirror the
anticommutation relations of the supercharges,

{Saα, S̃α̇ b} = γµαα̇δ
a
bKµ {Saα, Sbα} = {S̃α̇ a, S̃α̇ b} = 0

[Kµ, S
a
α] = [Kµ, S̃α̇ a] = 0 . (3.8)

Nonzero anticommutation relations between the supercharges and the superconformal
charges complete the algebra,

{Qαa, S
b
β} = −iεαβσIJa

b
RIJ + γµναβδa

bMµν −
1

2
εαβδa

bD

{Q̃a
α̇, S̃β̇ b} = +iεα̇β̇σ

IJ a
bRIJ + γµν

α̇β̇
δabMµν −

1

2
εα̇β̇δ

a
bD

{Qαa, S̃β̇ b} = {Q̃a
α̇, S

b
β} = 0 . (3.9)

On the righthand side of (3.9) one has in addition to the Lorentz and dilatation generators
the SU(4) ' SO(6) R-symmetry generators RIJ , where I, J = 1 . . . 6. The supercharges
transform under the two spinor representations of SO(6), while all generators of the
conformal algebra commute with RIJ .

Let us now return to the primary operator Õ(x). Commuting the superconformal
charges with a local operator O(0) lowers the dimension by 1/2. A lower bound on the

dimension must still exist, so we assume that Õ(0) satisfies

[Saα, Õ(0)] = [S̃α̇ a, Õ(0)] = 0 for all α, α̇, a . (3.10)
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Õ(x) is clearly primary since the anticommutation relations in (3.8) directly lead to (3.4).

The descendants of Õ(0) are constructed from the rest of the algebra.
The primary operator and its descendants make up an irreducible representation of

PSU(2, 2|4), with the primary as the highest weight of the representation. PSU(2, 2|4)
is noncompact, so the representation is infinite dimensional4. For example, one can act
with Pµ on Õ(x) an arbitrary number of times, where [Pµ,O(x)] = −i∂µO(x), making a
new local operator with one higher dimension. Using the supercharges we can also make
new operators with 1/2 higher dimension.

We will be particularly interested in a class of highest weight representations which,
while still infinite dimensional, are smaller because there are fewer independent operators
at each half-step in dimension. In order for this to occur, Õ(0) must commute with some

of the supercharges. Let us then place the further restriction on Õ(x) that

[Qa
α, Õ(0)] = 0 for some α, a . (3.11)

It then follows from the anticommutation relations in (3.9) that

[{Qαa, S
b
β}, Õ(0)] = [−iεαβσIJa

b
RIJ − εαβδabD + σµναβδa

bMµν , Õ(0)] = 0 .

(3.12)

We assume that Õ(x) is a scalar, therefore Õ(0) commutes with the Lorentz generators
Mµν . What remains is a simple relation between the action of the R-symmetry and the

dimension ∆ of Õ(x),

σIJa
b
[RIJ , Õ(0)] = ∆ δa

b Õ(0) . (3.13)

To help us find operators that can satisfy the relation in (3.13) we consider the Cartan
subalgebra of SO(6). SO(6) is a rank 3 group and thus has three commuting generators
in its Cartan subalgebra. We choose these generators to be R12, R34 and R56 and write
the corresponding charges as (J1, J2, J3). The σIJ ab are the generators in the SU(4)
fundamental representation, with

σ12 =

(
1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

)
σ34 =

(
1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1

)
σ56 =

(
1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1

)
, (3.14)

as a consistent choice of Cartan generators. Hence, a primary operator with R-charges
(J1, 0, 0) is annihilated by Qα1 and Qα2 if ∆ = J1. The anticommutation relations in

(3.9) indicate that such operators are also annihilated by Q̃ 3
α̇ and Q̃ 4

α̇. Hence, an operator
of this type commutes with half of the supercharges. Such operators are called chiral
primary or BPS operators. By the same logic an operator with (0, J2, 0) and dimension
∆ = J2 is also a chiral primary. But such a state is in the same SO(6) representation as
the (J2, 0, 0) operator, and hence is in the same PSU(2, 2|4) representation. Therefore,
it is only necessary to consider the scalar operators with charges (J, 0, 0) and ∆ = J .

In general the dimension of an operator will depend on the Yang-Mills coupling gYM.
The dimension at zero coupling is known as the bare dimension. The correction to

4Except for the trivial representation which only contains the identity operator.
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the bare dimension is the anomalous dimension. From our discussion so far we learn
two important facts. First, the anomalous dimensions within the same PSU(2, 2|4)
representation are equal. This is because the generators can only change the dimension in
1/2 integer steps. Second, and more strikingly, the chiral primaries and their descendants
cannot have an anomalous dimension. This is because the chiral primaries commute with
half the supercharges no matter what the coupling. If they did not commute then there
would have to be extra operators at each level. But the number of independent operators
with a given dimension is a finite integer which cannot change by varying a continuous
parameter such as the coupling. Hence, the relation in (3.13) continues to hold. Since
the R-charges are integers that stay fixed, then the dimensions must also stay fixed.

4 Gauge invariant operators in N = 4 SYM

We now apply our discussion in the previous section to the actual operators that one
encounters in N = 4 SYM. The physical observables in a gauge theory must be gauge
invariant. In N = 4 SYM, the local gauge invariant operators are made up of products
of traces of the fields that transform covariantly under the gauge group. This includes
the scalars φI , the fermions ψaα, ψα̇ a and the field strengths Fµν . Since these fields all lie
in the adjoint representation, their transformation under a gauge transformation is

χ(x)→ χ(x) + [ε(x), χ(x)] (4.1)

where χ(x) is one of the covariant fields and ε(x) is a generator of gauge transformations.
We have explicitly included the space-time dependence of the fields to emphasize that
this is a local transformation. From a covariant field χ(x) we can make other covariant
fields Dµχ(x), where Dµ is the covariant derivative

Dµχ(x) ≡ ∂µχ(x)− [Aµ(x), χ(x)] . (4.2)

The gauge connection Aµ(x) does not transform covariantly, but instead transforms as

Aµ(x)→ Aµ(x) + ∂µε(x) + [ε(x),Aµ(x)]. (4.3)

It is then clear that the single trace local operator

O(x) = Tr[χ1(x)χ2(x)...χL(x)] , (4.4)

where χi(x) refers to one of the above covariant fields with or without covariant deriva-
tives, is gauge invariant. We can also build other local gauge invariant operators by
taking products of traces. Later on we will take the limit where the number of colors
N is large. In this limit the dimension of the product of single trace operators is equal
to the sum of their dimensions, so all information about the spectrum of local operators
comes from the single trace operators.

Because [Dµ,Dν ] = −Fµν(x), any antisymmetric combination of covariant derivatives
can always be replaced with a field strength. Hence, it is only necessary to consider
symmetric products of Dµ acting on any field χ. Furthermore, we can use the equations
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of motion and the Bianchi identities to get rid of certain combinations of covariant
derivatives. As an example, the equations of motion for the scalar fields are schematically

DµDµφI = ... . (4.5)

The right hand side of (4.5) contains cubic scalar terms as well as fermion bilinears,
but otherwise has no derivatives. Therefore, inside a trace we can always replace two
contracted derivatives on a scalar with nonderivative terms.

With these rules we can build all single trace operators. We first construct the single
trace chiral primaries, from which we can systematically assemble the other operators.
The SU(2, 2) × SU(4) bosonic subgroup of PSU(2, 2|4) is rank six and so an operator
will have a sextuplet of charges, (∆, S1, S2; J1, J2, J3). The Ji are the R-charges discussed
in the last section, ∆ is the dimension, and S1 and S2 are the two charges of the SO(1, 3)
Lorentz group (i.e. the spins). In this subsection we will only consider the gauge theory
at zero coupling, in which case the dimension can be replaced with the bare dimension
∆0 and all dimensions are additive.

The six adjoint scalars φI can be expressed as three complex fields, Z = 1√
2
(φ1 + iφ2),

W = 1√
2
(φ3 +iφ4) X = 1√

2
(φ5 +iφ6), along with their conjugates. Scalars in 4 dimensions

have bare dimension 1 and are of course spinless, thus the charges for Z, W and X are
given by (1, 0, 0; 1, 0, 0), (1, 0, 0; 0, 1, 0), and (1, 0, 0; 0, 0, 1) respectively. Their conjugates,
Z̄, W̄ and X̄ have reversed R-charges. The sixteen fermions ψaα and ψα̇ a have charges
(3

2
,±1

2
, 0;±1

2
,±1

2
,±1

2
) and (3

2
, 0,±1

2
;±1

2
,±1

2
,±1

2
) where the number of negative signs for

the SU(4) charges is even for the first set and odd for the second. The field strengths
have six independent components and naturally split into their even and odd self-duals,
where Fµν± = ±1

2
εµνσρF±µν . In terms of the SO(1, 3) ' SU(2) × SU(2) Lorentz group,

the even and odd self-duals fall into the (3, 1)⊕(1, 3) representation. It is thus convenient
to write the components using the SU(2)× SU(2) spinor indices, where we define

F+αβ ≡
1

2
(γµν)αβF+µν = F+βα , F−α̇β̇ ≡

1

2
(γµν)α̇β̇F−µν = F−β̇α̇ . (4.6)

From this we readily see that the F+ have charges (2,m, 0; 0, 0, 0) and the F− have
charges (2, 0,m; 0, 0, 0) where m = +1, 0,−1. It is also useful to write the covariant
derivatives as a bispinor Dαβ̇ ≡ (γµ)αβ̇Dµ. Then Dαβ̇ acting on a field adds the charges

(1,±1
2
,±1

2
; 0, 0, 0) to the charges of the operator.

Let us now consider the gauge invariant operator ΨL ≡ Tr[ZL], with L ≥ 2 (TrZ = 0).
The charges of ΨL are (L, 0, 0;L, 0, 0), which satisfies ∆0 = J1. Therefore, ΨL is a chiral
primary and ∆ = ∆0, even after the coupling is turned on. ΨL is the highest weight
element of the L-fold symmetric traceless representation of SO(6). Hence, any operator
of the form

χI1I2...ILTr(φI1φI2 . . . φIL) ,

where χI1I2...IL is completely symmetric in its indices and the trace of any two indices is
zero, is a chiral primary with its dimension protected from quantum corrections. Notice
further that if we change one of the Z fields in ΨL to any other scalar field, aside from
Z, then the resulting operator it is automatically symmetric and traceless because of the

42



Chapter I.1: Spin Chains in N = 4 Super Yang-Mills

cyclicity of the trace. To make a non-BPS operator strictly out of scalars will require at
least one Z or two other scalar fields that are not Z or Z.

A very convenient way to classify the single trace operators is to use bosonic and
fermionic creation operators [12–14] (see also [11]). To this end we note that the vector
representation of the SO(6) R-symmetry group is equivalent to the antisymmetric repre-
sentation of SU(4). Hence, the scalar fields can be written in SU(4) notation as φab with
the indices antisymmetrized. Likewise, the fermions in the antifundamental representa-

tion can have its SU(4) index raised to three antisymmetric indices, ψ
abc

α̇ ≡ εabcdψα̇ d.
Thus all fields have their fundamental SU(4) indices antisymmetrized. Furthermore, the
field strengths come with symmetrized spinor indices, the combination εαβDαα̇ψaβ can
always be replaced by a nonderivative term by the equations of motion, and all covariant
derivatives are symmetrized. Hence, all indices in either of the SU(2)’s of the Lorentz
group are symmetrized for any field, including those with covariant derivatives.

Therefore, we will build the fields at each site within the trace with two sets of
bosonic creation operators A†α, B†α̇, and a set of fermionic creation operators Ca†. The
adjoints of these fields are Aα, Bα̇ and Ca and we have the usual set of commutation or
anticommutation relations

[Aα, A†β] = δαβ , [Bα̇, B†
β̇
] = δα̇β̇ , {Ca, Cb†} = δa

b . (4.7)

One starts with a ground state |0〉 for each site and defines the operator

C = A†αA
α −B†α̇Bα̇ + Ca†Ca − 2 . (4.8)

Then the states that correspond to the actual fields are those states |χ〉 in the oscillator
Fock space where C|χ〉 = 0. We denote this projected Fock space by V . The states
satisfying the C = 0 condition and the fields they correspond to are

(A†)k+2(B†)k|0〉 ⇒ DkF+

(A†)k+1(B†)kCa†|0〉 ⇒ Dkψa

(A†)k(B†)kCa†Cb†|0〉 ⇒ Dkφab

(A†)k(B†)k+1Ca†Cb†Cc†|0〉 ⇒ Dkψabc

(A†)k(B†)k+2Ca†Cb†Cc†Cd†|0〉 ⇒ DkF− , (4.9)

where we have suppressed all Lorentz indices.
The elements of PSU(2, 2|4) can also be nicely represented by the oscillators. In

particular we have that

Pαβ̇ = A†αB
†
β̇

Kαβ̇ = −εαγεβ̇δ̇A
γB δ̇

Qαa = A†αCa Q̃a
α̇ = B†α̇C

a† Saα = −iεαβAαCa† S̃α̇ a = −iεα̇β̇B
β̇Ca

Ra
b = Ca†Cb −

1

4
δabC

c†Cc D = − i
2

(
A†αA

α +B†α̇B
α̇ + 2

)
Mα

β = A†αA
β − 1

2
δα

βA†γA
γ M̃ β̇

α̇ = B†α̇B
β̇ − 1

2
δα̇

β̇B†γ̇B
γ̇ , (4.10)
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where we have expressed the R-symmetry generators in SU(4) notation and the Lorentz
generators in SU(2) × SU(2) notation 5. The oscillator representation of the algebra
is also useful when applied to N = SYM scattering amplitudes [15]. Notice that all
generators commute with C, hence C is a centralizer of the algebra. Thus, the elements
of the algebra acting on the above states preserve the C = 0 condition. In fact the “P” in
front of PSU(2, 2|4) stands for “projective” and corresponds to the projection we have
made onto the C = 0 states. This projection is necessary in order for (4.10) to give the
relations in (3.9).

The set of projected states in this Fock space (4.9) form an irreducible representation
of PSU(2, 2|4) called the “singleton” representation [16]6. However, it cannot correspond
to a representation of gauge invariant operators since all of the fields are traceless. Hence
we will need L ≥ 2 fields inside the trace, leading to tensor products of the singleton
representations.

V1 ⊗ V2 ⊗ · · · ⊗ VL . (4.11)

The various generators of PSU(2, 2|4) on the tensor product have the general form

T =
L∑
`=1

⊕T` , (4.12)

where T` is the generator at site `. We can also define C in this way, however the
projection is still carried out at each site, i.e. C` = 0. A gauge invariant operator is then
mapped to a state in the tensor product, but because of the cyclicity of the trace must
be projected onto only those states that are invariant under the shift,

V1 ⊗ V2 ⊗ · · · ⊗ VL → VL ⊗ V1 ⊗ · · · ⊗ VL−1 . (4.13)

Let us now concentrate on the operator

Oabcd = Trφabφcd − 1

4!
εabcdεa′b′c′d′Trφa

′bφc
′d′ , (4.14)

which is part of the same SU(4) representation as TrZ2 and so is a chiral primary. We
then act with four supercharges in the following manner:

1

4!
εαγεβδ{Qαa, [Qβ b, {Qγ c, [Qδ d,Oabcd]}]} = εαγεβδTrF+αβF+γδ . (4.15)

Likewise, letting Oabcd = Trφabφcd − 1
4!
εabcdε

a′b′c′d′Trφa′bφc′d′ and acting with the other
four supercharges we find

1

4!
εα̇γ̇εβδ{Q̃a

α̇, [Q̃
b
β̇
, {Q̃c

γ̇, [Q̃
d
δ̇
,Oabcd]}]} = εαγεβδTrF−αβF−γδ . (4.16)

5Strictly speaking, one should use the conformal Hamiltonian, H = iD, instead of D as an SU(2, 2)
generator. See [11] for a further discussion on this point.

6Some authors call this representation a “doubleton” (cf. [13]). Another name is the fundamental
representation.
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Therefore, TrF+F+ and TrF−F− are in the same supermultiplet as the chiral primary
and thus their dimensions are protected from quantum corrections, meaning that they
have dimension 4 no matter what the coupling. These terms appear in the Lagrangian
under the combination

− i(τ TrF+F+ − τ TrF−F−) , (4.17)

where τ = 4πi
g2
YM

+ θ
2π

with the θ-angle included. Since TrF+F+ and TrF−F− are dimension

4 and the Lagrangian must also be dimension 4, we see that τ , and hence gYM is invariant
under rescaling. From this argument we learn that the β-function is zero.

5 One loop anomalous dimensions and the relation

to spin chains

In this section we compute the one-loop anomalous dimensions for operators composed
of scalar fields with no covariant derivatives [17]. This computation is complicated by the
problem of operator mixing. However, the mixing can often be restricted to operators
within certain “closed” sectors.

To find the anomalous dimension of an operator, one considers the two-point corre-
lator of the operator with itself. In particular, one finds that

〈O(x)O(y)〉 ≈ 1

|x− y|2∆
, (5.1)

where the dimension ∆ = ∆0 + γ, with ∆0 being the bare dimension and γ being the
anomalous dimension arising from quantum corrections. For operators made up only of
scalar fields with no covariant derivatives, all fields have bare dimension 1 and the bare
dimension of the operator is L, the number of scalar fields inside the trace.

If gYM is small, then γ << ∆0, in which case we can approximate the correlator in
(5.1) as

〈O(x)O(y)〉 ≈ 1

|x− y|2∆0
(1− γ ln Λ2|x− y|2) , (5.2)

where Λ is cutoff scale. The leading contribution to this correlator is called the tree-level
contribution.

Let us now investigate what happens as we let N →∞. For example, let us consider
the chiral primary operator ΨL, rescaled to

ΨL =
(4π2)L/2√
LNL/2

TrZL =
(4π2)L/2√
LNL/2

ZA
BZ

B
C . . . Z

...
A A,B,C = 1..N , (5.3)

where we have explicitly put in the color indices. The prefactors are for normalization
purposes. At tree level, the correlator of a Z field and its conjugate Z is7

〈ZA
B(x)Z

C
D(y)〉tree =

δADδB
C

4π2|x− y|2
, (5.4)

7We have ignored the fact that ZAA = 0, which is justifiable when we take the large N limit.
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(c)(a) (b)

Figure 1: Contractions of fields. The horizontal lines represent the operators
and the ordered vertical lines the contractions between the two operators of the
individual fields inside the trace. (a) and (b) are planar while (c) is nonplanar.

where we have ignored the fact that ZA
A = 0 which is justified in the large N limit. If we

now contract ΨL with its conjugate ΨL, then the leading contribution to the correlator
comes from contracting the individual fields in order, as shown in figure 1 (a) and (b).
The contribution of all such ordered contractions is

〈ΨL(x)ΨL(y)〉ordered =
LNL

(
√
LNL/2)2|x− y|2L

=
1

|x− y|2L
. (5.5)

The factor of NL comes from L factors of δA
′
Aδ

A
A′ = N , where each double set of delta

functions are from contractions of neighboring fields. The factor of L comes from the L
ways of contracting the fields in the plane, of which (a) and (b) are two examples of this.

Figure 1 (c) is an example of a nonplanar graph, a graph where the lines connecting
the fields cannot be drawn in the plane without cutting other lines. To avoid such
cuttings one must lift at least one connecting line out of the plane. The figure in (c)
differs from (a) by two field contractions. Whereas in (a) we would have had a factor of

. . . δA
′
Aδ

A
A′δ

B′
Bδ

B
B′δ

C′
Cδ

C
C′ · · · = . . . N3 . . . , (5.6)

in (c) we have the factor

. . . δA
′
Aδ

A
B′δ

C′
Bδ

B
A′δ

B′
Cδ

C
C′ · · · = . . . N . . . , (5.7)

where the dots represent contractions that are the same in both cases. Hence, the
nonplanar graph in (c) is suppressed by a factor of 1/N2 from that in (a). In the limit
where N →∞ we can thus ignore this contribution compared to the one in (a) or (b).

All nonplanar graphs will be suppressed by powers of 1/N2, where the power depends
on the topology of the graph. Actually, this analysis is valid only if L << N . If L were
on the order of N then the suppression coming from the 1/N factors is swamped by
the huge number of nonplanar diagrams compared to the number of planar diagrams.
(There are L! total tree level diagrams of which only L are planar.)

Generalizing the tree-level correlator in (5.5) to any scalar operator of the form

OI1,I2...IL(x) =
(4π2)L/2√

CI1,I2...IL N
L/2

Tr(φI1(x)φI2(x) . . . φIL(x)) , (5.8)
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where CI1,I2...IL is a symmetry factor (which is n if the indices are invariant when shifting
by L/n), one finds

〈OI1,I2...IL(x)OJ1,J2...JL
(y)〉tree =

1

CI1,I2...IL

(
δJ1
I1
δJ2
I2
. . . δJLIL + cycles

) 1

|x− y|2L
, (5.9)

where “cycles” refers to the L− 1 cyclic shifts of the Ji indices.
We next consider the one-loop contribution to the two-point correlator. Since we are

only considering scalar operators, we only need to consider the the bosonic part of the
N = 4 action8 which is given by

S =
1

2g2
YM

∫
d4x

{
−1

2
TrF2 + TrDµφIDµφI −

∑
I<J

Tr[φI , φJ ]2

}
. (5.10)

This action contains a quartic interaction term for the scalars as well as interaction terms
between the scalars and the gauge bosons coming from the covariant derivatives. Hence
there will be several types of Feynman graphs that can contribute to the anomalous
dimension. But because of the robustness of the superconformal algebra, it is sufficient
to only consider Feynman graphs containing the scalar vertex. Graphs containing gauge
bosons do affect the anomalous dimension, but their contribution can be determined by
insisting that chiral primaries have zero anomalous dimension.

If we absorb a factor of gYM into the fields so that their kinetic terms are canonical,
then the quartic term can be written as

g2
YM

4

∑
I,J

(
TrφIφIφJφJ − TrφIφJφIφJ

)
. (5.11)

This vertex should then be inserted in the correlator and be Wick contracted with two
neighboring fields in the incoming operator and two neighboring fields in the outgoing
operator so that the resulting Feynman graph is planar. This is shown in figure 2. In
particular, we should consider the subcorrelator from (5.9),

〈
(φIkφIk+1

)A
C

(x)

(
i g2

YM

4

∫
d4z
∑
I,J

(TrφIφIφJφJ(z)− TrφIφJφIφJ(z))

)
×(φJk+1φJk)C

′

A′(y)
〉

= i
N

(4π2)2
δAA′δC

C′ g
2
YMN

64 π4

(
2δIk

JkδIk+1

Jk+1 + 2δIkIk+1
δJkJk+1 − 4δIk

Jk+1δIk+1

Jk
)

×
∫

d4z

|z − x|4|z − y|4
. (5.12)

The set of delta functions for the flavor indices arise from the two terms in (5.11). There
are four planar ways to contract the indices in (5.11) with the incoming and outgoing

8Other parts of the action will contribute at one-loop, but we will show that we can compute their
contribution by using an indirect method.
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k+2

k

kJ Jk+1

Ik+1 Ik

kJ

.

.

I
(a) (b)

k+2

J

I

Figure 2: Quartic interaction inserted into the correlator, connecting (a) two
neighboring fields (b) nonneighboring fields. Case (b) is nonplanar. Notice that
the interaction has added a loop to the diagrams.

fields. The first term either contracts the incoming indices with the outgoing indices
in order, or it contracts incoming to incoming and outgoing to outgoing. The second
term in (5.11) always contracts the indices between the incoming and outgoing fields in
reverse order. Note that there are two factors of N in (5.12), coming from sums over color
factors, while the correlator 〈(φIkφIk+1

)A
C

(x)(φJk+1φJk)C
′

A′(y)〉 has only one such factor.
In fact, it is not difficult to see that for all planar graphs, every factor of g2

YM comes with
a factor of N . Hence, it is convenient to define the ’t Hooft coupling, λ ≡ g2

YMN , as a
new expansion parameter.

The integral in (5.12) has a logarithmic divergence as z → x and z → y, hence it
is necessary to add a UV cutoff Λ. There is no IR divergence since the integral is well
behaved as z → ∞. The integral over z is in Minkowski space, but it can be Wick
rotated to Euclidean space such that d4z → id4zE. With the UV cutoff the integral is
restricted to the region where |zE − x| ≥ Λ−1 and |zE − y| ≥ Λ−1. The integral is then
dominated by the regions near the cutoff and can be approximated to

i

∫
d4zE

|z − x|4|z − y|4
≈ 2 i

|x− y|4

∫ |x−y|
Λ−1

dξ dΩ3

ξ
=

2 π2 i

|x− y|4
ln(Λ2|x− y|2) . (5.13)

Therefore the subcorrelator in (5.12) becomes

NδAA′δC
C′

(4π2)2|x− y|4
λ

16π2

(
2δIkIk+1

δJkJk+1 − δIk
Jk+1δIk+1

Jk − δIk
JkδIk+1

Jk+1
)

ln(Λ2|x− y|2) .

(5.14)

Normally one does loop integrals in momentum space. We could have done that
here as well, but for these particular one-loop calculations it is easier to do things in
coordinate space. This is mainly because the operators are local so all fields within the
operator are at the same coordinate position, simplifying the calculation.

There will also be other one-loop contributions to the correlators. Figure 3 shows
some examples of these. These can come from gluon exchange between scalar fields or
self energy diagrams. We could compute these contributions explicitly, but we will soon
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(c)
k

kJ Jk+1

(a)
Ik+1

kJ

Ik

kJ

Ik.

.

(b)
I

Figure 3: One-loop planar graphs that do not affect the flavor structures. (a)
A gluon exchange between neighboring scalars. The gluon carries no R-charge,
so the flavor indices are unchanged. (b) Scalar self-energy from a gluon. (c)
Scalar self-energy from a fermion loop. R-charge conservation and the fact that
only one scalar line is involved means that (b) and (c) leave the flavor indices
unchanged.

show that we do not actually need to do this. At this point we note that since the
R-charge is conserved and since gluons have no R-charge, then these types of diagrams
will only lead to terms where all incoming indices are contracted sequentially with the
outgoing indices, giving the same flavor structure as the planar tree-level graphs.

Applying these arguments to the correlator in (5.9), we find the one-loop result

〈OI1,I2...IL(x)OJ1,J2...JL
(y)〉one-loop

=
λ

16π2

ln(Λ2|x− y|2)

|x− y|2L
L∑
`=1

(2P`,`+1 −K`,`+1 − 1 + C)
1√

CI1,...ILCJ1,...JL

δJ1
I1
δJ2
I2
. . . δJLIL

+ cycles . (5.15)

There is a sum over ` because the diagram in figure 2(a) can have the interaction between
any of the L pairs of neighboring fields. The constant C comes from the diagrams in
figure 3. “Cycles” again refers to the L− 1 uniform shifts of the Jk indices.

P`,`+1 is the exchange operator, and as its name implies it exchanges the flavor indices
of the ` and the `+ 1 sites inside the trace. Its action on the δ-functions in (5.15) is

P`,`+1 δ
J1
I1
. . . δJ`I` δ

J`+1

I`+1
. . . δJLIL = δJ1

I1
. . . δ

J`+1

I`
δJ`I`+1

. . . δJLIL . (5.16)

K`,`+1 is the trace operator which contracts the flavor indices of neighboring fields. Its
action on the δ-functions is

K`,`+1 δ
J1
I1
. . . δJ`I` δ

J`+1

I`+1
. . . δJLIL = δJ1

I1
. . . δI`I`+1

δJ`J`+1 . . . δJLIL . (5.17)

Because of the P`,`+1 and K`,`+1 there is operator mixing at the one-loop level.
Adding the one-loop correlator to the tree level correlator in (5.9) we get the expres-

sion

〈OI1,I2...IL(x)OJ1,J2...JL
(y)〉 =

1

|x− y|2L

(
1− λ

16π2
ln(Λ2|x− y|2)

L∑
`=1

(C − 1− 2P`,`+1 +K`,`+1)

)
δj1 i1 . . . δ

jL
iL

+ cycles . (5.18)
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Figure 4: A spin-chain with SO(6) vector sites.

If we compare this result to (5.2), we see that because of the operator mixing the anoma-
lous dimension γ should be replaced with an operator, Γ, where

Γ =
λ

16π2

L∑
`=1

(1− C − 2P`,`+1 +K`,`+1) . (5.19)

The possible one-loop anomalous dimensions are then found by diagonalizing Γ.
The entire class of scalar single trace operators of length L can be mapped to a

Hilbert space which itself is a tensor product of finite dimensional Hilbert spaces

V1 ⊗ V2 · · · ⊗ V` ⊗ · · · ⊗ VL . (5.20)

Each V` is the Hilbert space for an SO(6) vector representation, i.e. CP 5. The tensor
product is the same Hilbert space as that of a one-dimensional spin-chain with L sites,
where at each site there is an SO(6) vector “spin” (see figure 4). Because of the cyclicity
property of the trace, we should include the further restriction that the Hilbert space be
invariant under the shift

V1 ⊗ V2 · · · ⊗ V` ⊗ · · · ⊗ VL → VL ⊗ V1 · · · ⊗ V`−1 ⊗ · · · ⊗ VL−1 . (5.21)

The operator Γ in (5.19) acts linearly on this space:

Γ : V1 ⊗ V2 · · · ⊗ V` ⊗ · · · ⊗ VL → V1 ⊗ V2 · · · ⊗ V` ⊗ · · · ⊗ VL . (5.22)

Furthermore, it is Hermitian and commutes with the shift in (5.21). Thus, we can treat
Γ as a Hamiltonian on the spin-chain. The energy eigenstates then correspond to the
possible anomalous dimensions for the scalar operators. Since the Hamiltonian commutes
with the shift, it is also consistent to project onto eigenstates that are invariant under
the shift. Because P`,`+1 and K`,`+1 act on neighboring fields, the spin-chain Hamiltonian
only has nearest neighbor interactions between the spins.

One particular eigenstate of Γ corresponds to the chiral primary ΨL in (5.3). ΨL is
symmetric under the exchange of any field, hence P`,`+1ΨL = ΨL for any `. Furthermore,
ΨL has only Z fields and not Z fields, thus K`,`+1ΨL = 0. This generalizes to any chiral
primary, which is in the Lth symmetric traceless representation of SO(6). Therefore,

Γ ΨL =
λ

16π2

L∑
`=1

(1− C − 2)ΨL (5.23)
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However, the dimension of ΨL is protected, meaning that its anomalous dimension is
zero. Hence, we find that C = −1 and Γ becomes [17]

Γ =
λ

8 π2

L∑
`=1

(
1− P`,`+1 +

1

2
K`,`+1

)
. (5.24)

Another useful way to write Γ is in terms of projectors. The tensor product of two
SO(6) vector representations is reducible into the traceless symmetric, the antisymmet-
ric, and the singlet representations. The operators that project V` ⊗ V`+1 onto these
three representations are

Πsym
`,`+1 =

1

2
(1 + P`,`+1)− 1

6
K`,`+1 , Πas

`,`+1 =
1

2
(1− P`,`+1) , Πsing

`,`+1 =
1

6
K`,`+1 . (5.25)

We can then write Γ as

Γ =
λ

8π2

L∑
`=1

(
0 Πsym

`,`+1 + 2 Πas
`,`+1 + 3 Πsing

`,`+1

)
, (5.26)

with only two of the three projectors contributing to Γ.
Although we will not show it here, the Hamiltonian that corresponds to Γ for the

spin-chain is integrable [17]. There is a precise meaning for what this means which will
be explained in later chapters of the review (see [18,19]). For us it means that the system
is solvable, at least in principle. We will give a taste of this in the next section where we
consider a certain subset of scalar operators.

Going beyond one-loop, one finds that the n-loop contribution to the anomalous
dimension can involve up to n neighboring fields in an effective Hamiltonian [20] (see [21]).
Therefore, as λ becomes larger these longer range interactions become more and more
important, such that at strong coupling the spin-chain is effectively long range. In this
case the Hamiltonian is not known above the first few loop orders [20, 22].

6 One-loop generalization to all single trace opera-

tors

In this subsection we describe the generalization of Γ to all single trace operators. We
do not give a derivation here, but instead refer the reader to the references.

In the general case the “spins” at each site of the chain are made up of the elements
of the singleton representation enumerated in (4.9). The Hilbert space is then the tensor
product in (4.11) projected onto states invariant under the shift in (4.13). The one-loop
anomalous dimension is then described by a Hamiltonian with nearest neighbor interac-
tions. Unlike the scalar case where the spins are in a finite dimensional representation,
the singleton representation is infinite dimensional. However, there is still a beautiful
way to write the Hamiltonian in terms of projectors [23,24].

The various PSU(2, 2|4) representations can be expressed in terms of their highest
weights which are given by the six charges of the PSU(2, 2|4) Cartan subalgebra. The
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singleton is then labeled by (1, 0, 0; 1, 0, 0), where the highest weight in the representation
belongs to the Z field. The Hamiltonian will involve the tensor product of two singleton
representations which decomposes as

V ⊗ V =
∞∑
j=0

Vj . (6.1)

The first two representations in this decomposition are different from the others and have
the highest weights

V0 : (2, 0, 0; 2, 0, 0) V1 : (2, 0, 0; 1, 1, 0) . (6.2)

The other representations have highest weights

Vj : (j, j − 2, j − 2; 0, 0, 0) j ≥ 2 . (6.3)

Notice that if we limit ourselves to scalar fields with no Lorentz charges then the only
representations in play are V0, V1 and V2, whose decompositions under the SO(6) sub-
group contain the symmetric traceless, the antisymmetric, and singlet representations
respectively.

The Hamiltonian for the complete spin-chain has the compact form [23,24]

Γ =
λ

8π2

L∑
`=1

∞∑
j=0

2h(j) Π
(j)
`,`+1 , (6.4)

where Π
(j)
`,`+1 projects V` ⊗ V`+1 onto Vj and h(j) is the harmonic sum defined by9

h(j) ≡
j∑

k=1

1

k
. (6.5)

Examining the expression for Γ in (5.26) we see that it has the form in (6.4) when only
j = 0, 1, 2 contribute.

7 Closed sectors

Since we have operator mixing, the alert reader could very well be concerned that scalar
field operators will mix with operators that contain non-scalar fields. In turns out that
generally this can happen, but not at the one-loop level.

Operator mixing preserves the total charges of the PSU(2, 2|4) symmetry group.
This is because the anomalous dimension matrix is the the dilatation operator D minus
the bare dimension. To see why this matters consider the complete dilatation operator,
which can be expressed as an expansion in λ of the form

D =
∞∑
n=0

λnD(2n) . (7.1)

9In [25] Lipatov remarked that harmonic sums would appear in the anomalous dimension matrix for
N = 4 SYM, leading him to predict that the theory would be solvable.
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D(0) gives the bare dimension of the operator while D(2) is the one-loop anomalous di-
mension operator Γ in (5.24) for scalar single trace operators or (6.4) for the most general
single trace operators. The dilation operator commutes with the Lorentz generators and
the R-symmetry generators. Since this is true for any value of λ, it must be true that
all D(2n) commute with these generators. Hence, the Lorentz and R-charges are pre-
served by the mixing. Furthermore, each of the D(2n) commutes with D(0), which can
be established by power counting in the graphs. Therefore, mixing only occurs between
operators with the same R-charges, Lorentz charges, and bare dimensions.

We can use this information to show the existence of closed sectors. One such sector
are operators made up of two types of scalar fields, say, Z and W , which have the charges
(1, 0, 0; 1, 0, 0) and (1, 0, 0; 0, 1, 0) respectively. Hence, the total charges of a single trace
operator made up of L − M Z fields and M W fields is (L, 0, 0;L − M,M, 0). The
mixing must preserve these charges and the only way to do this is to mix with operators
having the same number of Z and W fields with possible rearrangements to their order,
as one can verify by checking the charges for the other fields. This closed sector is
called the SU(2) sector, since Z and W make up a doublet of an SU(2) subgroup of the
R-symmetry group.

If we now include a third type of scalar field X, then the combination ZWX which has
charges (3, 0, 0; 1, 1, 1) can mix with two fermions with individual charges (3

2
, 1

2
, 0; 1

2
, 1

2
, 1

2
)

and (3
2
,−1

2
, 0; 1

2
, 1

2
, 1

2
) but is otherwise closed [26]. This closed sector is the SU(2|3) sector

containing an SU(3) subgroup of the R-symmetry and an SU(2) subgroup of the Lorentz
group. The scalars make up a triplet of the SU(3) and are singlets under the SU(2) while
the fermions are singlets under the SU(3) and make up a doublet of the SU(2). Notice
that this sort of mixing changes the number of fields in the trace. Such mixing is called
dynamical [26].

We call the full set of scalar operators the SO(6) sector since the fields form a rep-
resentation of the full R-symmetry group but are singlets under the Lorentz group.
However, this cannot be a closed sector, since not even an SU(3) subsector is closed to
mixing with fields with non-zero Lorentz charges. In fact, the SO(6) sector can mix into
operators containing any one of the fields so the smallest closed sector containing SO(6)
is the full PSU(2, 2|4). However, the mixing outside of the SO(6) sector is dynamical,
but dynamical mixing cannot occur until the two-loop level [26]. Hence the SO(6) sector
is closed at one-loop.

Both SU(2) and SU(2|3) are compact groups and so the fields in these closed sectors
are part of a finite dimensional representation of the group. There is another important
closed sector where this is not the case. This is the SU(1, 1) sector (also called the SL(2)
sector) [24]. In this sector we only have one type of scalar field, say Z, and covariant
derivatives with one type of polarization, say D++ which has charges (1, 1

2
, 1

2
; 0, 0, 0). A

typical single trace operator in this sector could have L scalar fields and M covariant
derivatives. The mixing occurs by redistributing the M covariant derivatives among the
L fields. Notice that this sector is nondynamical. Notice further that the fields fall
into an infinite dimensional representation of SU(1, 1) since we can have an arbitrary
number of covariant derivatives on any Z field. In fact the SU(1, 1) sector even appears
in QCD [27] (see [28]).
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8 The SU(2) sector and the Heisenberg spin-chain

Let us now restrict our single trace operators to the SU(2) closed sector. The two
independent fields transform under a doublet of SU(2), hence we can label the Z field
as spin up (↑) and the W field as spin down (↓). There is no contribution from K`,`+1

in (5.24) since the operators only have Z and W fields and not their conjugates. Thus,
the SU(2) sector has the Hamiltonian

ΓSU(2) =
λ

8π2

L∑
`=1

(1− P`,`+1) . (8.1)

In terms of spin operators the Hamiltonian can be rewritten as

ΓSU(2) =
λ

8π2

L∑
`=1

(
1

2
− 2 ~S` · ~S`+1

)
. (8.2)

Remarkably, ΓSU(2) is the Hamiltonian of the Heisenberg spin-chain with L lattice sites.

The total spin ~S =
∑

`
~S` commutes with Γ so the energy eigenstates are simultaneously

total spin eigenstates. This should not be surprising since we have already established
that the dilatation operator commutes with the R-symmetry and the spin here is one of
its subgroups.

Because of the sign of the ~S` ·~S`+1 term the spin-chain is ferromagnetic and the ground
state has all spins aligned, with total spin L/2. This is the symmetric representation,
which corresponds to the chiral primary operator. A quick check of the Hamiltonian
in (8.2) shows that its energy is zero. The operators which are not chiral primaries
correspond to excitations about the ground state. They have total spin that is less than
L/2. A full description on how to find these other states is given in [17]. Here we give a
partial description based on an S-matrix approach (see [18]).

Let us start with a ground state which we write as | ↑↑↑ . . . ↑↑〉. This corresponds
to the chiral primary ΨL described in an earlier section. Let us now consider the states
where one spin is down. In this case the Hamiltonian in (8.1) acts like a constant plus a
hopping term, moving the down spin either one site to the left or the right. In particular,
the action on a state with a down spin at a particular position ` is

ΓSU(2)| ↑ . . . ↑
`

↓↑ . . . ↑〉

=
λ

8π2

(
2 | ↑ . . . ↑

`

↓↑ . . . ↑〉 − | ↑ · · ·
`−1

↓ ↑↑ . . . ↑〉 − | ↑ . . . ↑↑
`+1

↓ . . . ↑〉
)
.

(8.3)

From this it is easy to see that the eigenstates are

|p〉 ≡ 1√
L

L∑
`=1

eip`| ↑↑ · · ·
`

↓ . . . ↑↑〉 (8.4)

where

ΓSU2|p〉 = ε(p) |p〉 , ε(p) =
λ

2 π2
sin2 p

2
. (8.5)
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The state |p〉 is called a single magnon state with momentum p. The dispersion is ε(p)
and the magnon momentum p must be quantized so that the state is invariant under
the shift `→ `+ L, therefore p = 2πn/L. If n = 0 then this is the symmetric state and
so this has total spin L/2. All other cases have total spin L/2 − 1. This is fine for an
ordinary spin chain, but we must remember that our states need to be invariant under
the shift ` → ` + 1 since the single trace operators are invariant if we shift all fields
over by one position. Hence, the only allowed state is the p = 0 state and we find no
operators that are not chiral primaries with only a single W field.

The first nontrivial case occurs with two down spins, since here it will be possible
to satisfy the trace condition but not be in the symmetric representation. We will
construct these states using an argument that goes back to Yang and Yang [29]. Instead
of a closed chain of length L let us suppose we have a chain of infinite length. Consider
the unnormalized two magnon state

|p1, p2〉 =
∑
`1<`2

eip1`1+ip2`2| · · ·
`1
↓ · · ·

`2
↓ . . . 〉+ eiφ

∑
`1>`2

eip1`1+ip2`2| · · ·
`2
↓ · · ·

`1
↓ . . . 〉 , (8.6)

where we assume that p1 > p2. We can think of |p1, p2〉 as the scattering state for two
magnons. The first term is the incoming part while the second term is the outgoing part.
The phase eiφ is then the S-matrix S12 for the scattering. It is clear that if |p1, p2〉 is to be
an eigenstate of ΓSU(2) then the eigenvalue will be the sum of the eigenvalues of two single
magnon states with magnon momenta p1 and p2 respectively, since for |`1 − `2| >> 1
the two magnons cannot be interacting with each other. The subtlety occurs when the
two down spins are next to each other, because the Hamiltonian cannot hop a down
spin on top of another down spin. However, by adjusting the phase eiφ we can ensure
that |p1, p2〉 is an eigenstate. If we concentrate on all the ways the Hamiltonian puts the
two down spins next to each other at sites ` and ` + 1 we find that in order to have an
eigenstate we must satisfy the equation

eip2
(
2− e−ip1 − eip2

)
+ eip1

(
2− eip1 − e−ip2

)
eiφ

=
(
4− e−ip1 − eip1 − e−ip2 − eip2

) (
eip2 + eip1eiφ

)
, (8.7)

which has the solution

eiφ = S12 = − e
ip1+ip2 − 2eip2 + 1

eip1+ip2 − 2eip1 + 1
(8.8)

Now let us put the two magnons back on a cyclic spin chain of length L. The trace
condition enforces the total momentum to be p1 + p2 = 0. The quantization condition
for p1 works as follows. If we transport the magnon once around the circle the state is
invariant. However, the transport brings the first magnon past the second one, so it also
picks up a phase eiφ. Hence we have that eip1Leiφ = 1. With p2 = −p1 we readily see
that eiφ = e−ip1 . Thus the allowed values for p1 are p1 = 2πn/(L − 1) and the possible
eigenvalues for the two magnon state are

γ =
λ

π2
sin2 πn

L− 1
.
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The case where n = 0 is the symmetric state with spin L/2. All other choices have spin
L/2− 2.

To go even further, it is convenient to define the rapidity variable u, where eip = u+i/2
u−i/2 .

The dispersion relation is then

ε(u) =
λ

8 π2

1

u2 + 1/4
, (8.9)

while the S-matrix in (8.8) for magnons with rapidity variables uj and uk is

Sjk =
uj − uk − i
uj − uk + i

. (8.10)

For M magnons one then sets up a state

|p1, p2, . . . pM〉 =
∑

`1<`2...`M

eip1`1+ip2`2+···+ipM `M | · · ·
`1
↓ · · ·

`2
↓ . . . · · ·

`M
↓ . . . 〉+ . . . (8.11)

with p1 > p2 · · · > pM and where the last set of dots refers to the other possible orderings
for the magnons, with appropriate phase factors. One can show that the phase factors
are products of the two-particle S-matrices, which makes the system integrable. Putting
the magnons on a circle with L sites we then find the quantization condition for the jth

magnon (
uj + i/2

uj − i/2

)L
=

M∏
k 6=j

uj − uk + i

uj − uk − i
. (8.12)

The energy of the state is

γ =
M∑
j=1

ε(uj), (8.13)

where ε(uj) is given by (8.9). The trace condition for the total momentum is

M∏
j=1

uj + i/2

uj − i/2
= 1 (8.14)

The equations in (8.12) were first derived by Bethe many years ago [30] and are
called the Bethe equations for the Heisenberg spin chain. Further solutions to these
equations can be found in [17, 31]. Their generalization to other sectors including the
full PSU(2, 2|4) long-range spin chain [32] are discussed in [33]
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Chapter I.2: The spectrum from perturbative gauge theory

1 Introduction

In the context of the AdS/CFT correspondence [1], the discovery of integrability is a key
ingredient towards finding the exact spectrum of strings in AdS5 × S5 and of composite
operators in N = 4 SYM theory with gauge group SU(N) in the planar limit, i.e. for
N → ∞. As reviewed in chapters [II.1] and [II.2], on the string side of the duality the
spectrum is accessible order by order as a strong coupling expansion in terms of the ’t
Hooft coupling by a (semi)classical analysis of string states with large quantized charges.
It is also described in terms of respective string Bethe ansätze which are reviewed in
chapter [III.1].

In the N = 4 SYM theory, the weak coupling expansion of the planar spectrum, i.e.
the conformal dimensions of composite operators, can be obtained by direct perturbative
calculations of various correlation functions. The appearance of UV divergences requires
renormalization, which then leads to a mixing among operators with the same bare con-
formal dimension. The eigenvalues of the new eigenstates under conformal rescalings are
given as the sum of the bare scaling dimension and an individual anomalous dimension.
The operator mixing can be extracted, e.g. from the correlation functions involving two
composite operators. Alternatively, one can directly calculate the diagrams which con-
tribute to the renormalization of these operators. This directly allows one to obtain an
expression for the dilatation operator, whose eigenvalues are the anomalous dimensions.

Perturbative calculations become very cumbersome at high loop orders and can be
avoided, if the observed integrability at one loop, which is reviewed in chapter [I.1], also
persists to higher loop orders. The dilatation operator can then be determined, using
some very general structural information from the underlying Feynman graphs only and
some data from the gauge Bethe ansätze. The details of this approach are reviewed in
chapter [I.3]. Direct Feynman graph calculations of the dilatation operator in the flavour
SU(2) subsector to three loops and of some of its eigenvalues and of parts of the Bethe
ansätze also to higher loops provide important checks for the assumed integrability.

Even if integrability holds to all loop orders, the respective Bethe ansätze and planar
dilatation operator allow us to compute the anomalous dimensions only in the asymptotic
regime. In this regime, the loop order of the result is constrained to be strictly smaller
than the length (the number of elementary fields) of the shortest composite operator
involved. At loop orders which are equal to or exceed this number, the so-called wrapping
interactions [2,3] have to be considered. They are corrections due to the finite size of the
composite operators and have their origin in the neglected higher genus contributions to
the dilatation operator [4]. In the dual string theory the counterparts of the wrapping
interactions are corrections due to the finite circumference of the closed string worldsheet
cylinder [5]. Their analyses are reviewed in chapters [III.5] and [III.6].

In this chapter we review the explicit Feynman graph calculations in N = 4 SYM
theory in the planar limit beyond one loop. It is organized as follows:

In Section 2 we give a short summary of how composite operators are renormalized,
and how the dilatation operator is defined in terms of the renormalization constants.

In Section 3 we then review the explicit calculations and tests of the dilatation oper-
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ator with particular focus on calculations beyond the first order in perturbation theory.1

Only the flavour SU(2) subsector will be considered, since most higher loop calculations
are performed within this subsector. As examples we recalculate in detail the respective
one- and two-loop dilatation operator in N = 1 superfield formalism. This approach
is much more efficient than the originally used formalism without manifest supersym-
metries, and it yields more direct relations between the dilatation operator and the
underlying Feynman graphs. We then display the result of a three-loop calculatoin and
also summarize the existing checks of the magnon dispersion relation, of the structure of
the dilatation operator and of some of its eigenvalues in the asymptotic regime at three
and higher loops.

In Section 4, we review the perturbative calculations which consider the first wrapping
corrections and hence yield results beyond the asymptotic regime. The general strategy
of these calculations will be explained. In this way, the four-loop anomalous dimension for
the length four Konishi descendant in the flavour SU(2) subsector could be determined.
Further results for different operators and for the terms of highest transcendentality are
then summarized briefly.

In Section 5 we give a concluding summary, and in two appendices we present the ex-
plicit D-algebra manipulations for the one- and two-loop calculation and the expressions
for the relevant integrals.

2 Renormalization of composite operators

The dilatation operator and anomalous dimensions can be obtained from a perturbative
calculation of the correlation functions which involve the composite operatorsOa, where a
labels the different operators. The encountered UV divergences require a renormalization
of the composite operators as

Oa,ren(φi,ren) = Zab(λ, ε)Ob,bare(φi,bare) , φi,ren = Z1/2
i φi,bare , (2.1)

where in an appropriate basis Z = 1 + δZ, and the matrix δZ is of order O(λ) in the
renormalized coupling constant λ. It also depends on the regulator ε and is in general
non-diagonal and thus leads to mixing between the different composite operators. The
matrix element δZab is given by the negative of the sum of the overall UV divergences of
the Feynman diagrams in which the vertices of the theory lead to interactions between
the elementary fields of operator Ob, such that the resulting external field flavour and
ordering coincide with the ones of the operator Oa. One also has to consider contribu-
tions from wave function renormalization of the elementary fields φi the operators are
composed of. Respective factors Z1/2

i are included within Z.
N = 4 SYM theory can be regularized by supersymmetric dimensional reduction [6]

in D = 4 − 2ε dimensions. The coupling constant gYM is then accompanied by the
’t Hooft mass µ in the combination gYMµ

ε to restore the mass dimension of the loop
integrals. Thereby, gYM is not renormalized and hence itself does not depend on µ, such
that superconformal invariance is preserved. This was explicitly found to three loops by

1The one-loop results are reviewed in chapter [I.1].
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computing the vanishing of the β-function in an N = 1 superfield formulation [7]. The
finiteness of N = 4 SYM theory was then later shown to all orders [8]. A first argument

was given in [9]. In particular, the self-energy of the superfields is finite, i.e. Z1/2
i is

trivial.2 In the planar limit, where the coupling constant is λ = g2
YMN , the dilatation

operator is then extracted from the renormalization constant of the composite operators
in (2.1) as

D = µ
d

dµ
lnZ(λµ2ε, ε) = lim

ε→0

[
2ελ

d

dλ
lnZ(λ, ε)

]
. (2.2)

The logarithm of Z = 1 + δZ has to be understood as a formal series in powers of δZ.
All poles of higher order in ε must cancel in lnZ, such that it only contains simple 1

ε

poles. In effect, the above description extracts the coefficient of the 1
ε

pole of Z, and at a
given loop order K multiplies it by a factor 2K. This then yields the dilatation operator
as a power series

D =
∑
k≥1

g2kDk , g =

√
λ

4π
, (2.3)

where for later convenience we have absorbed powers of 4π into the definition of a new
coupling constant g.

3 Dilatation operator in the SU(2) subsector

N = 4 SYM theory contains six real scalar fields, four complex Weyl fermions and a gauge
field that all transform in the adjoint representation of the gauge group SU(N). In the
following we denote these fields as components fields, since in a superspace formalism
they appear as components of superfields. In order to build the N = 1 superfields,
the real scalar component fields are complexified and combined together each with one
fermion or with its complex conjugate into three chiral superfields φi, i = 1, 2, 3 or
respectively anti-chiral ones φ̄i. The three field flavours are transformed into each other
by an SU(3) subgroup of the SU(4) R-symmetry group. The remaining gauge field
and fermions are combined together into an N = 1 vector superfield V . An explicit
expression of the N = 4 SYM action in terms of N = 1 superfields and the respective
Feynman rules in which the Wick rotation is included can be found, e.g. in [10]. The
superspace conventions are as in [11], where also an introduction to the D-algebra is
given. The latter is required to reduce the supergraphs, i.e. the Feynman diagrams
in superspace, to ordinary spacetime objects that are located at a single point in the
fermionic coordinates of superspace.

3.1 Operator mixing in the SU(2) subsector

In the following, we denote the three chiral field flavours of N = 4 SYM theory by
φi = (φ, ψ, Z). The flavour SU(2) subsector contains operators which are composed of
only two different types of these fields, e.g. φ and Z. Their color indices are all contracted

2This holds apart from gauge artefacts that are not relevant here.
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with each other to yield a gauge invariant object. In general, the gauge contractions form
several cycles, and one obtains a multi-trace operator. Such an operator is a normal-
ordered product of single-trace operators, i.e. of operators each of which only contains a
single cycle of gauge contractions.

Mixing only occurs between those operators that have the same numbers of both
types of fields φ and Z. Then, it suffices to consider operators which contain a number
of fields φ that does not exceed the number of fields Z, since the results for the remaining
operators follow immediately by an exchange of the role of the two fields. Usually, the
fields φ are denoted as impurities which appear between fields of type Z within the traces
over the gauge group. Furthermore, in the planar limit that we exclusively consider from
now on,3 the Feynman diagrams that alter the gauge trace structure of the composite
operators are suppressed. The renormalization of multi-trace operators then follows
immediately from the one of their single-trace constituents. We can therefore restrict
the analysis to single-trace operators. In this case, the planar Feynman diagrams can
only affect the ordering of the two different types of fields inside the single trace, but
they cannot alter their multiplicities and in particular the length L of the composite
operators that is defined as the total number of constituent fields. Flavour contractions
cannot appear, since the composite operators of the SU(2) subsector do not contain the
complex conjugate fields (φ̄, ψ̄, Z̄). The SU(2) subsector is closed under renormalization,
at least perturbatively [12]. The operators

tr
(
ZL
)
, tr

(
φZL−1

)
(3.1)

which are the ground state and a state with a single impurity are protected and do not
acquire anomalous dimensions. Operators which contain more than a single impurity φ
undergo non-trivial mixing.

Since the aforementioned operator mixing only occurs within subsets of single-trace
operators that only differ by permutations of their field content, the renormalization
constant Z and hence also the dilatation operator D can be expressed in terms of flavour
permutations that act on the constituent fields of these composite operators. The flavour
permutations themselves can be written as products of permutations acting on nearest
neighbour sites. For composite operators of fixed length L they are given by [13]

{a1, . . . , an} =
L−1∑
r=0

Pa1+r a1+r+1 · · ·Pan+r an+r+1 (3.2)

and by the identity {} in flavour space that measures the length L of the composite oper-
ator it is applied to. The structures consider the insertion of the Feynman subdiagrams
in which elementary fields interact at all possible positions within the single trace of the
composite operator by the summation. Periodicity with period L is thereby understood.
No other insertions have to be considered here, since in the planar limit the interactions
have to occur between adjacent fields.

The permutation structures (3.2) admit a definition of the range of the interaction
in flavour space obtained from their lists of arguments as

κ = max
a1,...,an

− min
a1,...,an

+2 . (3.3)

3See chapter [IV.1] for a review concerning effects of non-planarity.
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The range κ and hence also the possible arguments a1, . . . , an of the permutation struc-
tures are subject to constraints from the underlying Feynman diagrams. In order to find
the restrictions for those structures that can appear in the expression of the dilatation
operator, we focus on Feynman diagrams in which the elementary interactions occur in
a single region that is simply connected also when the composite operator is removed
from the diagram. These diagrams may have overall UV divergences that contribute
with simple 1

ε
poles to the renormalization constant Z and hence according to (2.2) also

to the dilatation operator. The remaining diagrams, in which the elementary interac-
tions occur in several non simply-connected regions after the removal of the composite
operator, cannot contribute with simple 1

ε
poles. Their calculation is only required if one

wants to determine Z itself completely, for example in order to check explicitly that in
lnZ all higher order poles in ε cancel. Here, we will not consider them further and only
focus on the diagrams that can contribute to the dilatation operator. The interaction
range R of a diagram of the latter type is defined as the number of adjacent elementary
fields of the composite operator that enter the single simply connected interaction region.
It can only yield contributions with permutation structures (3.2) that obey the following
conditions:

n ≤ K , κ ≤ R , R ≤ K + 1 , (3.4)

where K denotes the number of loops inside the diagram. The first inequality considers
that each nearest-neighbour permutation is associated with at least one loop. The second
condition ensures that the range of the interaction in flavour space does not exceed the
interaction range R of the Feynman diagram. In a third inequality R itself is bounded
from above by the loop order, since each interaction between nearest neighbour fields of
the composite operator generates at least one loop. We denote the diagrams that saturate
this bound, i.e. the ones with interaction range R = K+ 1 as maximum range diagrams.
Since the summation in (3.2) runs over all insertion points with periodicity L, the smallest
integer entry can always be fixed, e.g. to 1 by shifting all ai by a common integer.
According to (3.4) the biggest integer can then be at most K. Further relations between
the structures (3.2) can be found in [14]. The independent permutation structures which
obey (3.4) then form a basis in which the K-loop dilatation operator can be written
down.

The basis with elements (3.2) is not the best choice in order to express the result
of an explicit Feynman diagram calculation, since the different flavour arrangements
within a single Feynman diagram generate linear combinations of several permutation
structures (3.2) with fixed relative coefficients. If, instead, the generated combinations
themselves are used as basis elements, each Feynman diagram is associated with only
one of them [15, 16]. The basis elements obtained from supergraphs are called chiral
functions and are defined as

χ(a1, . . . , an) = {a1, . . . , an}
∣∣
P→P−1 , (3.5)

where P → P−1 denotes a replacement of all permutations in (3.2) by the fixed com-
bination of permutation and identity. The expansion of the resulting products yields
χ in terms of linear combinations of permutation structures. For each χ we define the
range of the interaction in flavour space by applying the definition (3.3) to its list of
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arguments. The chiral functions capture the structure of the chiral and anti-chiral su-
perfield lines of the underlying supergraphs. Hence, all supergraphs which only differ
by the arrangement of the flavour-neutral vector fields generate contributions with the
same chiral function. In particular, at loop order K the chiral functions χ(a1, . . . , an)
with n = K are associated each with a single Feynman graph since they do not contain
any vector fields. We denote the respective graphs as chiral graphs.

Except of the identity χ() = {}, all chiral functions (3.5) yield zero when they are
applied to one of the protected states in (3.1). The expression of the dilatation operator
in terms of chiral functions should hence not explicitly depend on χ(). We will come
back to this statement at the end of Section 3.5.2.

3.2 One-loop dilatation operator

The one-loop calculation in the SU(2) subsector was addressed by Berenstein, Maldacena
and Nastase in [17]. They used component fields to compute the term involving the
permutation structure {1}, which permutes the flavour of two neighbouring fields. It is
the maximum shuffling term at one loop, since it shifts the position of the impurity by
the maximum number of one site at this loop order. Its generalization to higher loops
will be discussed in Section 3.5.1. The remaining Feynman diagrams all contribute to
the identity operation {} in flavour space and were not computed explicitly. Instead,
their contribution was reconstructed from the fact that the eigenvalue for the ground
state in (3.1) should be zero. Furthermore, the contributions in which two neighbouring
impurities interact with each other were neglected.

Using N = 1 superfields instead of component fields for the one-loop calculation,
only a single Feynman diagram contains a UV divergence and hence contributes to the
renormalization constant in (2.1). It is evaluated as

= +λI1χ(1) , (3.6)

where the bold horizontal line represents the composite operator of arbitrary length
L ≥ 2, thereby omitting its L−2 elementary field lines that do not participate in the local
interaction. The D-algebra manipulations are trivial in this case as explicitly displayed
in Appendix A. The resulting loop integral is given in Appendix B. The further one-
loop diagram of gluon exchange is finite, and the one-loop wave function renormalization
vanishes. This is different from their behaviour in component formalism, where they have
to be considered. According to the description (2.2), the one-loop dilatation operator
follows from (3.6) as

D1 = −2χ(1) . (3.7)

Including also the contributions to the trace operator in flavour space, which extends
the result to the flavour SO(6) subsector,4 the full one-loop calculation in component
fields was performed in [18], and the result was recognized as the Hamiltonian of a
respective integrable Heisenberg spin chain.

4The flavor SO(6) subsector is only closed to one loop.
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R = 1 R = 2 R = 3

χ() 2

χ(1) −

χ(1, 2) − −

Table 1: Diagrams in N = 1 superfields (apart from eventual reflections) which
can in principle contribute to the two-loop dilatation operator. Graphs which
contain the vanishing one-loop self-energies are not drawn. It turns out that all
diagrams depicted in gray are also irrelevant. The two-loop chiral self-energy is
finite, and the remaining range R ≥ 2 diagrams are irrelevant due to generalized
finiteness conditions [10].

3.3 Two-loop dilatation operator

A two-loop renormalization of composite operators in the SU(2) subsector was performed
in [19] in component formalism. As in the one-loop case [17] only the diagrams which
contribute to genuine flavour permutations were explicitly calculated, and the coefficient
of the identity operation was determined by the condition of a vanishing eigenvalue of
the ground state (3.1). Furthermore, the contributions in which impurities interact with
each other were neglected.

The relevant diagrams for the complete two-loop calculation of the dilatation operator
in terms of N = 1 superfields are given in Table 1. The chiral self-energy is identically
zero at one loop and finite at higher loops. According to the generalized finiteness
conditions derived in [10], all range R ≥ 2 diagrams, in which all vertices appear in loops
are also finite. This concerns all remaining diagrams in the first line and in the second
line the respective first diagram in the second and third columns. The pole parts of the
last two diagrams in this line in the third column cancel against each other [15,16]. This
cancellation is based on the fact that, in order to obtain contributions with overall UV
divergences, a sufficient number of spinor derivatives Dα and D̄α̇ has to remain inside
the loops in order to be transformed into spacetime derivatives. This yields constraints
on the D-algebra manipulations that amount to the formulation of generalized finiteness
conditions in [10]. All diagrams that are irrelevant due to these conditions are depicted in
gray. We only have to compute the remaining diagrams and consider also their reflections
where necessary. The substructures in the relevant range R = 2 diagrams with chiral
function χ(1) combine into the one-loop chiral vertex correction that is explicitly given
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in (A.2). We then find

1
= + + = −2λ2I2χ(1) , = +λ2I2χ(1, 2) , (3.8)

where we have to consider also the reflection of the last diagram which contributes
with chiral function χ(2, 1). According to the description (2.2), the two-loop dilatation
operator is then obtained by extracting the 1

ε
pole of the sum of these diagrams and

multiplying it by −4. With the pole part of the respective integral I2 given in (B.4) this
then yields

D2 = 4χ(1)− 2[χ(1, 2) + χ(2, 1)] . (3.9)

An explicit demonstration of the cancellation of the double poles in lnZ as mentioned
after (2.2) can be found in [10], where the one- and two-loop calculations were presented
as a demonstration for the efficiency of the used approach.

3.4 Three-loop dilatation operator

At three-loop order a calculation of the dilatation operator directly from Feynman graphs
of N = 1 superfields was recently performed in [10]. The result reads

D3 = −4(χ(1, 2, 3) + χ(3, 2, 1)) + 2(χ(2, 1, 3)− χ(1, 3, 2))− 4χ(1, 3)

+ 16(χ(1, 2) + χ(2, 1))− 16χ(1)− 4(χ(1, 2, 1) + χ(2, 1, 2)) .
(3.10)

It determines the planar spectrum in the SU(2) subsector to three loops and hence goes
beyond an earlier test of two eigenvalues [20], which employs Anselmi’s trick [21] to
reduce the calculation to two loops. The three-loop results confirm the prediction from
integrability in [13]. Earlier checks of some of the three-loop eigenvalues are summarized
in Section 3.5.3.

3.5 Partial tests at higher loops

To three-loop order and also beyond, certain parts of the respective Bethe ansatz and
dilatation operator have been checked by direct Feynman diagram calculations. This
concerns the so-called maximum shuffling terms, which contribute to the dispersion re-
lation of the Bethe ansatz. Further terms in the higher loop expressions of the dilatation
operator have also been tested explicitly.

3.5.1 Tests of the magnon dispersion relation

Even if with the assumed integrability the SU(2) dilatation operator itself has been
determined only to the first few loop orders (see chapter [I.3] for a review), the magnon
dispersion relation of the Bethe ansatz is an all-order expression and directly related to
certain Feynman diagrams. For a single magnon of momentum p it is given by [3]

E(p) =
√

1 + 16g2 sin2 p
2
− 1 , (3.11)
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and it is fixed by the underlying symmetry algebra up to an unknown function of the
coupling constant [22], which in the N = 4 SYM case essentially appears to be given by
g2 itself and has already been substituted accordingly.5

At a fixed loop order K in the expansion of the above relation, the momentum
dependence can be expressed as linear combination of the elements cos(k−1)p sin2 p

2
with

1 ≤ k ≤ K. In particular, the term with k = K is generated by the so-called maximum
shuffling diagrams, which include shifts of the position of a single impurity (which is a
magnon in the spin chain notation) by the maximum number of K neighbouring sites.
The relevant diagrams are given by

→ λKIKχ(1, 2, . . . , K − 1, K) (3.12)

and by its reflection. When the sum of these two diagrams is applied to the eigenstate
of a single magnon with momentum p, it yields the eigenvalue

λKIK
[
χ(1, 2, . . . , K) + χ(K, . . . , 2, 1)

]
→ −8λKIK cos(K − 1)p sin2 p

2
. (3.13)

According to the description (2.2), the 1
ε

pole of this expression has to be multiplied by
−2K to obtain its contribution to the magnon dispersion relation. A comparison with
the respective term in the expansion of (3.11), thereby taking into account the relation
(2.3) between the couplings, then makes a prediction for the 1

ε
pole of the integral IK as

Res0(K R(IK)) =
1

(4π)2K

(2K − 2)!

(K − 1)!K!

1

K
. (3.14)

The explicit expressions for the poles of IK for some K are listed in (B.4). They are
consistent with this result.

In [23] it was shown that at generic loop order the pole structure of the maximum
shuffling diagrams in component fields is in accord with the BMN square root formula
[17]. The latter was proposed as an all-order expression for the anomalous dimensions in
the so-called BMN limit, where the length L of the operators and the coupling g become
infinite L, g →∞, thereby keeping fixed the numbers of impurities inside the operators
and also the effective coupling constant g′ = g

L
. For magnon momenta pj =

2πnj
L
� 1 the

dispersion relation (3.11) yields the individual contributions of each magnon j with mode
number nj to the BMN square root formula. Since the scattering of magnons is neglected,
their momenta pj assume a simple form and are solutions of the originally proposed Bethe
equations [3] with a magnon S-matrix that becomes trivial in the BMN limit. However,
these Bethe equations do not yield the anomalous dimensions of N = 4 SYM theory
since the S-matrix is incomplete. One has to consider the so-called dressing phase [24]
that first appeared at strong coupling [25] but is important also at weak coupling [24,26],
where it alters the magnon momenta at order O(g6).6 Due to the dressing phase, the

5The explicit Feynman diagram calculation in [10] confirms that this is correct to three loops. It is
non-trivial in the AdS4/CFT3 correspondence that is reviewed in chapter [IV.3].

6The dressing phase is reviewed in chapter [III.3].
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S-matrix violates perturbative BMN scaling, i.e. its perturbative expansion diverges if
after the replacement g → g′L the limit L → ∞ is taken, thereby keeping g′ fixed and
small. The Bethe equations involving this S-matrix then yield anomalous dimensions
that violate perturbative BMN scaling from four loops on. However, the BMN square
root formula obeys this scaling, and hence it cannot describe the anomalous dimensions
of operators with two or more impurities beyond three loops.7 Since the dressing phase
only affects the scattering of magnons, all tests and derivations of the BMN square root
formula that rely on the calculation of phase shifts of a single magnon are insensitive
to this failure and succeed. This concerns the previously mentioned all-order test of the
maximum shuffling terms [23] and also an all order derivation employing the N = 1
superfield formalism [27]. It would be more appropriate to say that in these calculations
the magnon dispersion relation in the BMN limit is obtained.

The magnon dispersion relation (3.11) describes the free propagation of one magnon.
It it thus built up from all Feynman diagrams with chiral functions that do not yield a
vanishing result when applied to the single magnon momentum eigenstate. The number
of impurities of the composite operator sets an upper bound on the number of bubbles
formed by two neighbouring lines of the composite operator inside the Feynman diagrams.
Such a bubble appears for example in the lower right corner of the graph in (3.12), and it
vanishes unless the two involved field flavours are different. The diagrams contributing to
the magnon dispersion relation hence must not contain more than one of these bubbles.
This restricts their chiral functions to χ(1, . . . , k) and χ(k, . . . , 1) after the identities
for the permutation structures (3.2) found in [14] have been used to simplify the chiral
functions, e.g. as χ(1, 2, 1) = χ(2, 1, 2) = χ(1) in the three loop result (3.10). All-
order expressions for the coefficients of these terms in the dilatation operator then follow
directly from the magnon dispersion relation (3.11) and can be found in [10]. It should
be stressed that the aforementioned contributions also yield non-vanishing results when
additional magnons are present outside of the k+ 1 interacting legs. They therefore also
contribute to the magnon S-matrix.

3.5.2 Tests of magnon scattering

The Feynman diagrams that vanish for a single magnon state, but are non-vanishing
if two or more magnons are present within their respective interaction ranges, should
exclusively be associated with the magnon S-matrix. Their contributions appear together
with the ones of the aforementioned maximum and non-maximum shuffling terms in
the dilatation operator. In the SU(2) subsector they first show up at three-loops as
the contribution with chiral function χ(1, 3) in (3.10).8 The further chiral functions
χ(2, 1, 3), χ(1, 3, 2) are also associated with magnon scattering, but they only appear in
a combination that is associated with a similarity transformation, i.e. a change in the
basis of operators [13,14], that does not affect the eigenvalues.

As a more complicated example, we consider the four-loop dilatation operator. It

7This breakdown is independent of the general restriction of the Bethe ansatz to the asymptotic
regime that requires a termination of the expansion at a loop order K ≤ L − 1 to avoid the wrapping
corrections.

8A two-loop test of the S-matrix of the SL(2) subsector can be found in [28].
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can be determined from the underlying integrability as reviewed in chapter [I.3]. In the
basis of the chiral functions (3.5) it reads

D4 = + 200χ(1)− 150[χ(1, 2) + χ(2, 1)] + 8(10 + ε3a)χ(1, 3)− 4χ(1, 4)

+ 60[χ(1, 2, 3) + χ(3, 2, 1)]

+ (8 + 2β + 4ε3a − 4iε3b + 2iε3c − 4iε3d)χ(1, 3, 2)

+ (8 + 2β + 4ε3a + 4iε3b − 2iε3c + 4iε3d)χ(2, 1, 3)

− (4 + 4iε3b + 2iε3c)[χ(1, 2, 4) + χ(1, 4, 3)]

− (4− 4iε3b − 2iε3c)[χ(1, 3, 4) + χ(2, 1, 4)]

− (12 + 2β + 4ε3a)χ(2, 1, 3, 2)

+ (18 + 4ε3a)[χ(1, 3, 2, 4) + χ(2, 1, 4, 3)]

− (8 + 2ε3a + 2iε3b)[χ(1, 2, 4, 3) + χ(1, 4, 3, 2)]

− (8 + 2ε3a − 2iε3b)[χ(2, 1, 3, 4) + χ(3, 2, 1, 4)]

− 10[χ(1, 2, 3, 4) + χ(4, 3, 2, 1)] .

(3.15)

The coefficients εi, i = 3a, 3b, 3c, 3d in the above result are not fixed by the construction
and parameterize the previously mentioned similarity transformations. The coefficient β
is the leading term of the previously mentioned dressing phase. The magnon dispersion
relation is encoded in the first two terms in the first line, the second line and the last
line. The further contributions should be associated with magnon scattering. As the
contributions from the maximum shuffling diagrams (3.12) in the last line, also the other
terms in the last four lines have chiral functions that saturate all the bounds in (3.4).
Hence, the underlying Feynman diagrams are chiral and of maximum range and their
contributions can be calculated as easily as the one of the maximum shuffling terms
(3.12).

The term in (3.15) with chiral function χ(2, 1, 3, 2) only satisfies the first bound in
(3.4), i.e. the underlying Feynman diagram is chiral but it is not of maximum range. It
involves the leading coefficient β of the dressing phase, which can be determined from
an evaluation of the respective diagram

→ λ4Iβχ(2, 1, 3, 2) (3.16)

if the coefficient ε3a of the similarity transformations is known. One finds ε3a = −4 for
example by computing the diagram which generates χ(1, 3, 2, 4) or χ(2, 1, 4, 3). With the
pole part of the integral Iβ given in (B.5), the leading coefficient of the dressing phase
is then determined as β = 4ζ(3). The result was obtained in [29], using component
formalism. It agrees with one of the proposals in [24] and with the result extracted from
a four-loop calculation of a four-point amplitude in [26].

It is also relatively easy to compute the terms with chiral functions which only satu-
rate the second and third bound in (3.4), i.e. all terms in (3.15) with chiral functions that
contain 1 and 4 in their lists of arguments and hence only stem from Feynman diagrams
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of maximum range R = 5. This calculation was performed in [15, 16] in N = 1 super-
field formalism in the context of calculating the first wrapping correction to be discussed
below. The results yield an overdetermined system of equations that uniquely fixes the
coefficients εi and provides non-trivial checks of the remaining coefficients that are fixed
by the underlying integrability. The analogous calculation of the R = 6 diagrams at five
loops can be found in [30].

The expressions (3.7), (3.9), (3.10) and (3.15) do not depend on the identity χ().
This guarantees that the anomalous dimension of the BPS operators (3.1) are zero. The
generalized finiteness conditions in [10] predict this to all orders and relate it to the
finiteness of the chiral self-energy, i.e. to the preservation of conformal invariance.

3.5.3 Checks of eigenvalues

To three loops the results (3.7), (3.9) and (3.10) for the dilatation operator have been
obtained by direct Feynman diagram calculations. At higher loops, only the terms that
saturate at least one of the bounds in (3.4) have been tested as described above. Further
checks concern the eigenvalues of the dilatation operator for some composite operators.
They should match with the anomalous dimensions obtained in direct Feynman diagram
calculations.

Of particular interest is thereby the Konishi supermultiplet. As superconformal pri-
mary it contains the N = 1 Konishi operator [31] that has bare scaling dimension ∆0 = 2
and reads

K = tr
(

e−gYMV φ̄i e
gYMV φi

)
. (3.17)

This operator is not chiral, and hence all its superfield components lie beyond the SU(2)
subsector. However, the Konishi supermultiplet also contains an operator of this sub-
sector. In order to find it, one has to select the level four descendant of bare dimension
∆0 = 4 that is chiral and pick out the relevant SU(4) R-symmetry component given by

tr
(

[φ,Z] [φ,Z]
)
. (3.18)

It contains as lowest superfield component the respective operator built out of the two
scalar fields of the flavour SU(2) subsector.

All members of a superconformal multiplet acquire the same anomalous dimension.
For the Konishi multiplet it is given to four loops in (4.1). The one- and two-loop con-
tributions were obtained by explicit Feynman diagram calculations in [32] and [33], and
then also by an OPE analysis in [34], see also [35]. These results are also found for a
twist-two operator with conformal spin S = 2 that appears within another level four de-
scendant of the Konishi multiplet. It belongs to the closed SL(2) subsector that contains
certain operators with general twist and conformal spin S. For twist-two operators with
generic S, the result to two loops has been obtained from Feynman diagrams in [36]. At
three loops it could be extracted [37] as the terms with highest transcendentality, i.e. with
highest degrees of the harmonic sums, from the NNLO QCD result for the non-singlet
splitting functions of QCD [38]. The truncation of the QCD result is based on the obser-
vation [39] that due to special properties of the DGLAP and BFKL equations in N = 4
SYM theory a mixing between functions of different transcendentality degrees does not
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occur. Specializing to S = 2, the extracted result agrees with the three-loop contribution
in (4.1). When the dilatation operator given in (3.7), (3.9) and (3.10) is applied to the
state (3.18), it also correctly yields the result in (4.1).9 In fact, the three-loop term was
first predicted in [13], where the dilatation operator was constructed from integrability.
Later, an explicit Feynman diagram calculation [20], which employs Anselmi’s trick [21]
to reduce the calculation to two loops, led to the same result. The calculation in [10]
also confirms the result and furthermore fixes the planar three-loop spectrum of all com-
posite single-trace operators of the flavour SU(2) subsector from field theory by a direct
Feynman diagram calculation of the dilatation operator.

The previously mentioned twist-two operators of the SL(2) sector are very important
for tests of the AdS/CFT correspondence and the underlying integrability. These tests
are reviewed in chapter [III.4]. In particular, the results in the strict S → ∞ limit
are not modified by wrapping interactions. At finite S such modifications occur. The
simplest example is S = 2, i.e. the operator which appears in the Konishi multiplet. Its
anomalous dimension is affected by wrapping interactions at four loops and beyond.

4 Wrapping interactions

In the following we briefly summarize the calculations of the previously mentioned wrap-
ping interactions. A more detailed review is given by [40].

The Bethe ansätze or the dilatation operator yield reliable results for the anomalous
dimensions in the asymptotic limit only. The origin and precise form of this restriction
can be understood by recalling the construction from Feynman diagrams. In Section 3
it was argued that at a given loop order K the dilatation operator is determined from
Feynman diagrams with range R ≤ K+1, which lead to flavour permutations with range
κ ≤ R. For the construction of the diagrams, it is thereby implicitly assumed that the
length L of the involved composite operators is at least as big as the maximal interaction
range K+1. Therefore, an application of the dilatation operator to composite operators
of length L can in general only yield the correct anomalous dimensions in the asymptotic
limit, i.e. to a loop order K ≤ L−1. At K ≥ L loops, the assumption of a sufficient length
of the involved composite operators becomes invalid, and therefore contributions from
diagrams with interaction range R > L should be removed from the dilatation operator.
Instead, there are contributions from new diagrams that are built with the operators of
the respective lower length L. The new diagrams are called wrapping diagrams since, due
to the insufficient length of the composite operators, the interactions wrap around them.
Two examples of such diagrams are depicted in Figure 1. Beyond the asymptotic limit,
the dilatation operator explicitly depends on the length L of the composite operators it
is applied to. More precisely, the coefficients of the chiral functions in the expression
of the dilatation operator become functions of L at loop orders K ≥ L, while in the
asymptotic limit they are constants, and the dilatation operator depends on the length
only via the permutation structures (3.2).

9At four and higher loops this is no longer the case since the wrapping interactions have to be
considered. This will be discussed in Section 4.
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The appearance of wrapping interactions is closely connected to the truncation of the
genus h expansion of the dilatation operator beyond the planar h = 0 contribution [4].
If in a planar wrapping diagram the composite operator is replaced by a longer operator,
the additional fields lines cannot leave the diagram without crossing any other lines, i.e.
it becomes a diagram of genus h = 1. The appearing wrapping diagrams hence come
from certain genus h = 1 contributions to the dilatation operator, which become planar
when it is applied to a sufficiently short composite operator. Wrapping diagrams appear
at all orders in the genus expansion of the dilatation operator. They are of genus h+1 in
the asymptotic regime and encode the finite size effects at genus h. The planar wrapping
diagrams are special since they can be projected out of all genus one contributions by
introducing spectator fields [4]. While in general for higher genus diagrams the notion
of the range of the interaction is not meaningful, it is still well defined for the subset
of genus one diagrams when they become the planar wrapping diagrams. Integrability
seems to persist, even if in general at higher genus its breakdown is expected [13].10

In order to obtain the anomalous dimensions beyond the asymptotic regime, one
should not abandon the dilatation operator as obtained from the underlying integrability
at loop orders K ≥ 4 and compute all Feynman diagrams. Instead, the considerations at
the beginning of this section imply that the dilatation operator is still useful, since it can
be corrected for an application to composite operators of shorter length L. First, at each
loop order K all contributions from Feynman graphs of longer range K+1 ≥ R > L have
to be removed. Then, contributions from the wrapping interactions have to be added.

This procedure is particularly powerful at the critical order K = L where wrapping
arises for the first time, since only relatively few Feynman diagrams of restricted topology
have to be computed explicitly. Most diagrams are captured automatically by those terms
in the dilatation operator that are not removed in the modification process. Also, the
only contributions that one has to remove from the dilatation operator are the ones that
come from Feynman diagrams with maximum range R = K+1. It is convenient to divide
these diagrams according to their range of interaction in flavour space κ into two classes.
The first class contains diagrams with κ = R = K + 1, i.e. according to the definition of
κ in (3.3) their range R is encoded within the list of arguments of their chiral functions.
The second class collects all the remaining diagrams with κ < R = K+1. Such Feynman
diagrams contain a chiral structure with interaction range κ, and the remaining R − κ
neighbouring field lines are connected with it and with each other only by vector fields.
Since the latter are flavour neutral, the range R of these diagrams is not captured by the
chiral functions. It was shown in [16] in theN = 1 superfield formalism that the diagrams
of the second class do not contribute to the dilatation operator: either they are finite
or their overall UV divergences cancel against each other. This is also an implication
of the generalized finiteness conditions derived in [10]. In Section 3.3 we have already
used the results when we disregarded the two-loop diagrams with R = 3 but κ < 3 in
the first two rows of the last column of Table 1. The diagrams of the first class that
have κ = R = K + 1 are the only maximum range diagrams that contribute with their
overall UV divergences. These contributions can be easily identified and removed from
the expression of the dilatation operator, since their chiral functions are of maximum

10In chapter [IV.1] the analyses of higher genus contributions are reviewed.
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range. The subtraction procedure becomes almost trivial: one just has to remove all
contributions with chiral functions that have 1 and K within their list of arguments.
This does not require the calculation of any Feynman diagrams. For example, in the
four-loop expression (3.15) one removes the last contribution in the first line and the ones
in the fifth, sixth and the last four lines. The eigenvalues of the subtracted dilatation
operator are no longer independent of the scheme coefficients εi, which have to be fixed
by calculating at least some of the diagrams with range R = K+1. If one could compute
the wrapping interactions that have to be added to the subtracted dilatation operator
also as functions of εi, the eigenvalues of the resulting operator should not depend on
the εi. However, the calculation of the wrapping interactions takes place in a scheme
fixed by the use of N = 1 supergraphs, and therefore the εi in the subtracted dilatation
operator have to assume the respective values. Finally, it is important to remark that
the simplicity of the subtraction procedure is only guaranteed if chiral functions (3.5)
are used as basis elements. If, instead, the basis of permutation structures (3.2) is used,
the subtraction of the contribution from a Feynman diagram with R = K + 1 affects
the coefficients of several permutation structures also with different flavour interaction
ranges κ ≤ R in the dilatation operator.11

The aforementioned method was first introduced and used in [15], with the details
given in [16], in the case K = L = 4, i.e. for the four-loop anomalous dimension of
the Konishi operator. In N = 4 SYM theory it is the simplest case where wrapping
arises. The calculation starts from the four-loop asymptotic dilatation operator (3.15)
and modifies it for an application to the length four Konishi descendant of the flavour
SU(2) subsector (3.18) in order to determine the correct eigenvalue [15, 16]. Including
also the lower orders, the anomalous dimension of the Konishi operator to four-loops was
then determined as

γ = 12g2 − 48g4 + 336g6 + (−2496 + 576ζ(3)− 1440ζ(5))g8 , (4.1)

where the full conformal dimension is obtained as ∆ = ∆0 + γ with the bare scal-
ing dimension ∆0 as described in Section 3.5.3. The four-loop contribution has also
been obtained from a generalized Lüscher formula [42]. This approach is reviewed in
chapter [III.5]. Furthermore, it was later also found in a computer-based calculation in
component formalism [43]. The matching of the Feynman diagram and Lüscher based
calculations provides the first test of AdS/CFT and the underlying integrability beyond
the asymptotic limit. It is also reproduced by the recently proposed Y -system [44],
which is derived from the thermodynamic Bethe ansatz (TBA) [45] and is a candidate
to capture the full planar spectrum of N = 4 SYM theory. The TBA and Y-system are
reviewed, respectively, in chapters [III.6] and [III.7]. Earlier attempts to describe the
wrapping effects in terms of integrable systems are included in chapter [I.3].

In [46] the result (4.1) which also holds for the earlier mentioned twist-two operator
with conformal spin S = 2 has been generalized to arbitrary S. When analytically
continued to S = −1, it yields the correct pole structure as predicted from the BFKL
equation.

11In the context of the BMN matrix model a subtraction attempt was made in [41]. It does not lead
to the correct result, since the necessary modifications of the contributions with permutation structures
of lower range and the addition of the wrapping diagrams was not performed.

76



Chapter I.2: The spectrum from perturbative gauge theory

A result for the five-loop anomalous dimension of the Konishi operator has been
obtained in impressive calculations on the basis of the generalized Lüscher formula [47]
and the TBA [48]. Also this result has been generalized to arbitrary spin S, and it is
in accord with the pole structure from the BFKL equation [49]. To obtain the five-loop
result for the Konishi multiplet from a Feynman diagram calculation is very difficult,
even with the universal cancellation mechanisms discovered in [10]. Instead, a five-loop
result for the L = 5 operator tr

(
[φ,Z] [φ,Z]Z

)
which is in the same supermultiplet as

certain twist-three operators has been computed [30], and it agrees with the result from
the generalized Lüscher formula [50]. The six-loop results for the twist-three operators
with generic conformal spin S has recently become available [51].

Beyond the asymptotic limit, the contributions of highest transcendentality, i.e. which
contain the ζ-function with biggest argument, are generated entirely by the wrapping
interactions. In the four-loop result in (4.1) this is the term with ζ(5). Its generalization
to twist-two operators with generic conformal spin S has been obtained from a Feyn-
man diagram calculation in component formalism in [52]. At generic loop and critical
wrapping order K = L the highest transcendentality degree of the wrapping diagrams is
2K−3 compared to 2K−5 of the dressing phase in the asymptotic Bethe ansatz. A clean
setup that allows one to study the transcendentality structure without admixtures from
the dressing phase is provided by single-impurity operators in the β-deformed N = 4
SYM theory.12 The leading wrapping corrections have been calculated up to 11 loops
in [53] and were confirmed in [54]. A clear pattern emerges also for the terms of lower
transcendentality. The diagrams in Figure 1 are responsible for the highest transcen-

Figure 1: Wrapping diagrams that generate contributions of highest transcen-
dentality at leading wrapping order.

dentality contribution involving ζ(2K − 3). The respective term can be traced back to
a component 1

2
PK in the decomposition of the integrals, where PK is the K-loop cake

integral given in (B.6).

5 Conclusions

We have reviewed the explicit Feynman diagram calculations which at small ’t Hooft
coupling determine the planar spectrum of composite operators in the flavour SU(2)
subsector of N = 4 SYM theory and test the underlying integrability. We have presented
the calculations up to two loops in detail and summarized the calculations and partial
checks at higher loops. The use ofN = 1 superspace techniques and of chiral functions as
operators in flavour space allowed us to directly interpret the Feynman diagrams in terms

12Among other deformations the β-deformation is reviewed in chapter [IV.2].
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of the dispersion relation and the scattering matrix that appear in the integrability-based
Bethe ansatz.

Then, we reviewed how anomalous dimensions beyond the asymptotic limit can be
obtained by computing the leading wrapping corrections and which properties and in-
terpretation these interactions have. The existing tests in these setups have been sum-
marized.
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A D-algebra

The propagators and vertices of superfields depend not only on the bosonic, but also on
the fermionic coordinates θα, θ̄α̇, of superspace and carry covariant spinor derivatives
Dα, D̄α̇. By the D-algebra manipulation which consists of transfers, partial integrations
and the use of (anti)-commutation relations for products of these spinor derivatives, the
underlying expression is transformed into the final result that is localized at a single point
in the coordinates θα, θ̄α̇. We refer the reader to [11] for an introduction to the N = 1
superfield formalism in the adopted conventions and to [10] for an explicit presentation of
the relevant Feynman rules. Here, we only recall that two Dα and two D̄α̇ have to remain
in each loop in order to obtain a non-vanishing result. The loop is then localized in the
fermionic coordinates. We indicate this by filling it grey. Also, we recall two simple
relations, D2 D̄2 D2 = 2 D2 and D̄2 D2 D̄2 = 2 D̄2, which transform spinor derivatives
into spacetime derivatives 2 = ∂µ∂µ.

The one-loop diagram (3.6) requires no D-algebra manipulations, and one directly
obtains

D̄
2

D̄
2

D
2

D̄
2

D
2

=

D̄
2

D̄
2

D
2

→ −I1 , (A.1)

where the loop integral I1, given in (B.2) for K = 1, is the one extracted from the grey-
scaled region. Its UV pole is listed in (B.4). There appears an additional factor −1 in
front of I1: we have to transform the full fermionic measure in the algebraic expression of
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the diagram into the chiral measure of the term that adds the chiral composite operator
with a chiral source to the action. This means, we replace d4θ → d2 D̄2 and combine
the extra derivatives D̄2 with the remaining D2 in the above diagram to 2, such that
the propagator that connects the chiral and anti-chiral cubic vertex is cancelled, thereby
yielding the factor −1. In the result we have not considered any other non-trivial pref-
actors of the propagators and vertices. They are contained within the color- and flavour
factors (chiral functions) of the complete result given in (3.6).

The one-loop correction to the chiral vertex that enters (3.8) is easily evaluated

1

D̄ 2

D̄
2

=
D̄2

D̄ 2
D 2

D
2

D̄ 2

D̄
2

+ · · · =

 2

D̄ 2

D̄
2

+ . . .

 iλgYMεijk tr
(
T a
[
T b,T c

] )
,

(A.2)
where the ellipsis denote the remaining two diagrams obtained by cyclic permutations
of the external legs, and we have included the color and flavour factors. Also in this
case, the 2 is produced after reducing the full fermionic measure to the chiral measure
as mentioned above. When 2 cancels the propagator a factor −1 is produced.

The D-algebra manipulations for the diagrams (3.8) contributing to the two-loop
dilatation operator are

D̄
2

D̄
2

D
2

D̄
2

D
2 1

=

D̄
2

D̄
2

D
2

D̄
2

D
2

2

+

D̄
2

D̄
2

D
2

D̄
2

D
2 2

+

D̄
2

D̄
2

2

D
2

D̄
2

D
2

= 2

D̄
2

D̄
2

D
2

2

→ 2I2 ,

D̄
2

D̄
2

D
2

D̄
2

D
2

D̄
2

D̄
2

D
2

D̄
2

D
2

=

D̄
2

D̄
2

D
2

2

D̄
2

→ I2 ,

(A.3)

where equalities hold up to disregarded finite contributions, and the final expressions in
terms of the integral I2 consider the aforementioned factor −1.
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B Integrals

Using the scalar G-function defined as

G(α, β) =
Γ(D

2
− α)Γ(D

2
− β)Γ(α + β − D

2
)

(4π)
D
2 Γ(α)Γ(β)Γ(D − α− β)

, (B.1)

in D-dimensional Euclidean space, the following integrals can be found exactly to all
loop orders

IK = 3

K K−1

21

=
K−1∏
k=0

G(1− (D
2
− 2)k, 1) . (B.2)

They are logarithmically divergent in D = 4 − 2ε dimensions, and their overall UV
divergence is obtained with the operations K to extract the pole part and R to subtract
subdivergences as

K R(IK) = K
(
IK −

K−1∑
k=1

K R(Ik)IK−k

)
. (B.3)

To the first few loop orders, one finds

K R(I1) =
1

(4π)2

1

ε
,

K R(I2) =
1

(4π)4

(
− 1

2ε2
+

1

2ε

)
,

K R(I3) =
1

(4π)6

( 1

6ε3
− 1

2ε2
+

2

3ε

)
,

K R(I4) =
1

(4π)8

(
− 1

24ε4
+

1

4ε3
− 19

24ε2
+

5

4ε

)
,

K R(I5) =
1

(4π)10

( 1

120ε5
− 1

12ε4
+

11

24ε3
− 19

12ε2
+

14

5ε

)
,

K R(I6) =
1

(4π)12

(
− 1

720ε6
+

1

48ε5
− 25

144ε4
+

47

48ε3
− 1313

360ε2
+

7

ε

)
.

(B.4)

The pole parts of the integrals that appear in the calculations of the four-loop dressing
phase or of the wrapping interactions at critical wrapping order can very efficiently be
computed by using a modified and extended version of the Gegenbauer polynomial x-
space technique [55, 16]. The integral of the simplest contribution that allows us to
determine the leading four-loop coefficient of the dressing phase reads

Iβ = , K R(Iβ) =
1

(4π)8

(
− 1

12ε4
+

1

3ε3
− 5

12ε2
− 1

ε

(1

2
− ζ(3)

))
. (B.5)

The terms of highest transcendentality from wrapping corrections at critical order
are determined by the cake integral. This integral is logarithmically divergent for K ≥ 3
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loops and reads

PK =K 3

K−1 4

21

, K(PK) =
1

(4π)2K

1

ε

2

K

(
2K − 3

K − 1

)
ζ(2K − 3) , (B.6)

where the pole part has been obtained in [56] at generic loop order.
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Chapter I.3: Long-range spin chains

1 Introduction

The appearance of integrability in the planar AdS/CFT [1] is a rather unexpected oc-
currence. The unravelling of the integrable structures on the gauge theory side of the
duality began with the ground-breaking work [2], where the one-loop dilatation opera-
tor in the so(6) sub-sector has been derived and identified with the Hamiltonian of an
integrable so(6) spin chain. This was subsequently generalised to the full interaction
sector of the theory psu(2, 2|4) in [3]. At one-loop order the dilatation operator is of the
nearest-neighbour type and thus resembles Hamiltonians of other integrable spin chains.
At higher orders in perturbation theory, however, this is not the case anymore. The
first higher-loop corrections to the dilatation operator were first studied in the su(2)
sub-sector, see [4], and the two-loop correction found therein has been shown to be in-
tegrable as well. Conjecturing the integrability to hold at higher loops and with help of
further assumptions, also the three- and four-loop corrections have been found1. This
has furnished first evidence that the integrability might be an all-loop feature of the
dilatation operator of N = 4 SYM theory. The higher-rank sectors were first studied
in [6], where the two- and three-loop corrections to the dilatation operator in the maximal
compact sub-sector of the theory su(2|3) have been determined and their integrability
has been verified. The generalisation to the full theory has turned out to be very intri-
cate, nevertheless higher corrections for the non-compact su(1, 1|2) sub-sector have been
derived in [7] and [8]. These developments were paralleled by the formulation of the
corresponding one-loop and higher-loop Bethe ansätze, as well as a host of discoveries
of integrable structures on the string theory side. Integrable structures have also been
found in the context of the AdS4/CFT3 and AdS3/CFT2 correspondences. Please refer
to other reviews of this series for further details and references.

The perturbative corrections to the dilatation operator have been found assuming
that wrapping interactions may be neglected. These interactions wrap around the chain
and thus account for highly non-local interactions between the spins. Since an interaction
between two neighbouring spins contributes a factor O(λ), first wrapping interactions
may in general appear at the order O(λL), where L is the length of the system. Please
refer to [9] for further discussion of these non-local interactions. In what follows we will
always assume that the order of perturbation theory ` is smaller then the length of the
system, i.e. ` < L.

The higher-loop corrections to the dilatation operator exhibit novel features when
compared with Hamiltonians of the vast majority of integrable spin chains. Firstly, the
range of the interactions increases with the loop order. Secondly, beyond the one-loop
level operators with the same classical dimension but different lengths are mixed together.
The simplest example of such process furnishes the mixing of three scalar fields with two
fermions

tr
(
. . . XYZ︸ ︷︷ ︸

∆0=3, L=3

. . .
)
↔ tr

(
. . . UV︸︷︷︸

∆0=3, L=2

. . .
)
. (1.1)

Integrable long-range spin chains with these properties have not been hitherto inves-

1The four-loop contribution was only determined up to a single coefficient, which was then uniquely
fixed in [5].
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tigated. They should distinguished from the long-range spin chains considered before
in the literature, as they are defined as long-range deformations of nearest-neighbour
models. There is a host of evidence that these unusual features do not hinder the in-
tegrability. This suggests that integrable perturbatively long-range spin chains should
be well-defined and could constitute an interesting class of models not studied in the
literature. The Inozemtsev model, see [10], an important intrinsically long-range spin
chain and its connection to perturbatively long-range spin chains will be briefly discussed
in section 4.3. Unless stated otherwise, throughout this review by long-range spin chains
we will mean perturbative long-range spin chains.

The investigation of generic closed integrable long-range spin chains has been initiated
in [11], where the underlying symmetry algebra was assumed to be gl(n). It has been
found that integrable long-range spin chains are characterised by four infinite families of
parameters and thus span a very large class. However, it turns out that only two families
of the parameters influence the Bethe equations. The two other correspond to rotations
of the higher conserved charges and to similarity transformations. The latter do not
influence the spectrum. These findings were subsequently generalised to arbitrary Lie
(super)algebra in [12]. Moreover, a novel recursion relation has been proposed, which
allows to lift an integrable nearest-neighbour spin chain to its long-range counterpart,
see also [13]. This has laid solid foundations for the theory of perturbative long-range
systems.

This review is structured as follows. In section 2 we will briefly discuss the pertur-
bative corrections to the dilatation operator in the su(2) sub-sector of the planar N = 4
gauge theory. The higher-rank sectors su(2|3) and su(1, 1|2) are the subject of section
3. In section 4 we will review the general theory of perturbative long-range integrable
spin chains. Finally, in section 5 we will explain an interesting relation between the
Hubbard model and long-range spin chains. In this article we assume that the reader is
familiar with the rudiments of integrable spin chains and their application to AdS/CFT
correspondence presented in [14].

2 The su(2) sub-sector

The su(2) sector is one of the simplest dynamical sectors. It has been proven in [4] that
this sector is closed, i.e. there is no mixing with other types of the operators. It consists
of two types of scalar X and Z

tr
(
XMZL−M

)
+ . . . . (2.1)

In the spin chain picture one identifies the X fields with say up spins ↑ and the Z fields
with down spins ↓

tr
(
XMZL−M

)
+ . . . ←→ |↑↑ . . . ↑︸ ︷︷ ︸

M

↓↓ . . . ↓︸ ︷︷ ︸
L−M

〉+ . . . . (2.2)

The cyclicity of the trace imposes closed periodic boundary conditions on the spin chain.
Up to now this is merely a change in the notation. The advantage of the spin chain
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reinterpretation becomes apparent when one considers the one-loop dilatation operator
in this sector, which may be extracted from the one-loop so(6) dilatation operator found
in [2] by restricting to the case of two scalar fields. Introducing the notation

{n1, n2, . . . , nl} =
L∑
k=1

Pk+n1,k+n1+1Pk+n2,k+n2+1 . . . Pk+nl,k+nl+1 , (2.3)

where Pa,b permutes the spins at site a and b in the chain, the one-loop dilatation operator
may be written as

D2 = 2({} − {0}) . (2.4)

Thus D2 is proportional to the Hamiltonian of the XXX spin chain! The computation
of higher-loop corrections with diagrammatic methods becomes very involved beyond
the leading order. A novel method of determining the higher-loop corrections has been
introduced in [4]. The authors have analysed and classified the two-loop Green functions
corresponding to the operators (2.2). They have advocated that only certain types of
interactions are permited, which in the spin chain picture correspond to permutations
of the neighbouring sites. Furthermore, it has been argued that at two-loop order only
interactions permuting at most three consecutive spins are allowed. One can thus assume
that a subclass of (2.3) consisting of all permutations of at most three nearest-neighbours
span the basis for the two-loop dilatation operators D4. The coefficients of the linear
combinations may be fixed using additional constraints. The simplest one follows from
the fact that the scaling dimension of the half-BPS operators trZL is protected and does
not receive any radiative corrections. Consequently,

D4

(
trZL

)
= 0 , (2.5)

for any L. Further constraints follow from the so-called BMN scaling. It has been argued
in [15] that the `-loop anomalous dimension of the operators trXMZJ should scale as

γ2` ∼ (λ′)`(1 +O(1/J)) , λ′ =
g2

J2
, (2.6)

for M = fixed and J → ∞. Moreover, the leading coefficient should match the string
theory prediction

∆ = J +
M∑
k=1

√
1 + 4πλ′n2

k . (2.7)

The mode numbers nk are subjected to the level matching condition
∑M

k=1 nk = 0. While
it is now known that BMN scaling breaks down at the four-loop order, see the discussion
in [16], it has played a major role in the development of the subject. At the two-loop
order these both requirement uniquely fix D4 to

D4 = 2(−4{}+ 6{0} − ({0, 1}+ {1, 0})) . (2.8)

One of the very few manifestations of the integrability at the level of the spectrum are
the so-called parity pairs, i.e. pairs of operators with opposite parity and equal energies.
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Please see review by Charlotte Kristjansen [17] for the definition of parity and further
discussion of parity pairs. The existence of such pairs hints at the presence of higher
conserved charges which commute with the dilatation operator, but anticommute with
the parity operator. At one-loop order the simplest of these charges is

Q
(2)
3 = 4({1, 0} − {0, 1}) . (2.9)

It should be stressed that it is rather a non-trivial task to find explicitly the higher
conserved charges for an integrable spin chain. The situation is facilitated to a great
extent if the so-called boost operator is known, see [18] and [19]. Interestingly, as argued
in [20], the mere existence of Q(3) seems to guarantee the existence of all higher charges.

The authors of [4] have discovered that the first higher charge may also be determined
at the two-loop order such that [D(λ), Q3(λ)] = 0 holds up to O(λ3), i.e.[

D4, Q
(2)
3

]
+
[
D2, Q

(4)
3

]
= 0 . (2.10)

This guarantees the degeneracy of the spectrum at two-loop order. It is thus plausible
to assume that integrability will be present at higher loops. More generally, if the higher
charges are determined to a given loop order ` and commute with each other up to
O(λ`+1), the system is said to be perturbatively integrable up to `-th order.

There is strong evidence that the su(2) sector is perturbatively integrable at least
up to three-loop order. The three-loop dilatation operator may be again found [4] by
imposing the degeneracy for the paired operators (i.e. imposing the presence of the
parity pairs) in conjunction with the constraints discussed above

D6 = 4
(
15{} − 26{0}+ 6({0, 1}+ {1, 0}) + {0, 2} − ({0, 1, 2}+ {2, 1, 0})

)
. (2.11)

Also the corresponding three-loop correction to the first higher charge satisfying the
perturbative integrability condition at three-loop order may be found. The same set of
conditions allowed to constrain the form of the four-loop correction to the dilatation op-
erator up to two coefficients [4]. Moreover, it has been found that one of these unknowns
does not affect the spectrum since it can be eliminated by a similarity transformation

D′ = J(λ)DJ(λ)−1 . (2.12)

In [5] the remaining constant has been fixed by a more careful analysis of the implications
of the BMN limit. This analysis has been further extended to the five-loop order in [21].
In [22] it has been argued that the BMN limit is sufficient to determine the all-loop
two-spin interaction part of the dilatation operator. One should however note that it is
incorrect to assume the BMN limit at and beyond four-loop order and the corrections
found with help of this constraint need to be modified. It has been proposed in [23] to use
instead the form of the one-magnon dispersion relation together with the two-magnon
scattering matrix derived in [24]. This allowed to determine the four-loop correction up

to an unknown constant β
(4)
2,3 and parameters related to the similarity transformations,

cf. (2.12). It turns out that the constant β
(4)
2,3 multiplies a term with four permutations

that reshuffle only four consecutive spins and thus may be determined by evaluating only
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a sub-class of the Feynman diagrams. These diagrams have been calculated in [23] and

the remaining coefficient could have been fixed to β
(4)
2,3 = 4ζ(3). This is the first evidence

of the so-called dressing phase introduced in section 4. For a discussion of the dressing
factor of the AdS/CFT correspondence the reader should refer to the review by Pedro
Vieira and Dmytro Volin [25].

3 Higher-rank sectors : su(2|3) and su(1, 1|2)

In this section we will discuss higher-order corrections to the dilatation operator beyond
the su(2) sub-sector. The novel feature, when compared with the previous case, is
the central role played by the symmetry algebra. The higher-loop corrections to the
symmetry generators are strongly constrained by the algebra relations

[JA(λ), JB(λ)] = fABC JC(λ) . (3.1)

The structure constants fABC do not receive quantum corrections. In what follows we
will discuss two particular examples: su(2|3) and su(1, 1|2) sub-sectors.

3.1 The maximal compact sub-sector su(2|3)

The su(2|3) sector consists of three scalars and two fermionic fields and can be schemat-
ically represented by

tr
(
XM1YM2UM3VM4ZL−M

)
+ . . . , (3.2)

where M = M1 +M2 +M3 +M4. Please note that in view of the mixing processes (1.1)
the length L is not conserved beyond the one-loop order. A generic state of the N = 4
SYM theory is characterised by the classical dimension ∆0, the su(2)2 labels [s1, s2], the
su(4) Dynkin labels [q1, p, q2], the u(1) hypercharge B and the length L. Please refer
to [14] for details. The truncation to the su(2|3) sector is obtained by restricting to the
states with

∆0 = p+ 1
2
q1 + 3

2
q2 . (3.3)

This also implies certain relations on some of the generators, see [6]. The full symmetry
algebra psu(2, 2|4) thus effectively reduces to su(2|3). It consists of the generators

J = {Lαβ, Ra
b, D, δD |Qa

α, S
α
a} . (3.4)

The su(2) and su(3) generators Lαβ and Ra
b are traceless. The corresponding commu-

tation relations are as follows

[Lαβ, Jγ] = δαγ Jβ − 1
2
δαβJγ , [Lαβ, J

γ] = −δγβJ
α + 1

2
δαβJ

γ , (3.5)

[Ra
b, Jc] = δacJb − 1

3
δabJc , [Ra

b, J
c] = −δcbJa + 1

3
δabJ

c . (3.6)

The commutators of the dilatation operator and its anomalous part are given by

[D, J ] = eng(J)J , [δD, J ] = 0 , (3.7)
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with eng(Q) = −eng(S) = 1
2
. The supercharges Qa

α and Sαa anticommute 2

{Sαa, Qb
β} = δbaL

α
β + δαβR

b
a + 1

6
δbaδ

α
β

(
2D + δD

)
. (3.8)

The symmetry generators act on (3.2) by reshuffling the operators in the trace and
changing the labels M1,M2,M3,M4 and L. An interaction replacing the sequence of
fields A1, . . . An within the state |C1 . . . CL〉 = (−1)(C1...Ci)(Ci+1...CL)|Ci+1 . . . CLC1 . . . Ci〉
by B1, . . . , Bm will be denoted as{

A1...An
B1...Bm

}
|C1 . . . CL〉 =

L−1∑
i=0

(−1)(C1...Ci)(Ci+1...CL)δA1
Ci+1

. . . δAnCi+n|B1 . . . BmCi+n+1 . . . CLC1 . . . Ci〉 . (3.9)

Here (−1)XY equals −1 if both X and Y are fermionic and +1 otherwise.
The key observation of [6] is that the algebra relation (3.5)-(3.8) largely constrain

the form of the generators. For example, at tree-level one expects the following general
su(3)× su(2) invariant form of the generators

Ra
b = c1

{
a
b

}
+ c2 δ

a
b

{
c
c

}
, (3.10)

Lαβ = c3

{
α
β

}
+ c4 δ

α
β

{
γ
γ

}
, (3.11)

D0 = c5

{
a
a

}
+ c6

{
α
α

}
, (3.12)

(Q0)aα = c7

{
a
α

}
, (3.13)

(S0)αa = c8

{
α
a

}
. (3.14)

Please note that the generators Ra
b and Lαβ are not influenced by radiative corrections

and the formulas (3.10) and (3.11) will be thus valid to all orders. The non-trivial
solution to (3.5)-(3.8) is furnished by

c1 = c3 = c5 = 1 , c2 = −1
3
, c4 = −1

2
, c6 = 3

2
, c7 = eiβ , c8 = e−iβ . (3.15)

Moreover, the parameter β corresponds to the similarity transformation

J0 → e2 i β D0 J0 e
−2 i β D0 . (3.16)

Thus, the commutation relations allowed to unambiguously determine the form of the
generators! A similar method has been applied in [6] to determine corrections to the
generators Q and S up to the order O(λ2) and up to the order O(λ3) for the dilatation
generator D. Please note that since the perturbative expansion of δD starts at O(λ)
and in view of (3.7) the k-th order contribution to δD may be constrained through
the perturbative expansion of the remaining generators up to the order O(λ(k−1)). At
higher orders, however, the relations (3.5)-(3.8) do not determine all physical coefficients
and further assumptions must be made. Up to the three-loop order it is sufficient to

2The supersymmetry generator Qaα should not be confused with the higher conserved charges Qr.
Even though the same symbol is used to denote both charges, it will become clear from the context
which quantity is referred to.
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exploit constraints following from the topology of the Feynman diagrams together with
the absence of the radiative corrections for the half-BPS states and impose the BMN
limit, see [6]. The two- and three-loop corrections to the dilatation operator found in
this way preserve the maximum amount of parity pairs and the dilatation operator was
conjectured to be perturbatively integrable up to three-loop order [6]. The next conserved
charge Q3 has been constructed in [26] up to the order O(λ2).

In [27] it has been proposed how to reformulate the description of the su(2|3) spin-
chain in order to eliminate the length-changing processes (1.1). The underlying idea is
to “freeze out” the dynamic effects by choosing one of the bosonic fields, say φ3 := Z as
the background field. The other fields in the sector are then redefined as follows

{φ1, φ2, ψ1, ψ2} 3 F 7→ Fn := F Z . . .Z︸ ︷︷ ︸
n

. (3.17)

In this way the dynamic effects are traded for infinitely many spin degrees of freedom
labelled by n and the spin chain becomes static. This reformulation may be useful to
make the dynamic spin chains accessible to an algebraic treatment.

3.2 The non-compact su(1, 1|2) sub-sector

The constraints following from algebra relations become particularly important in the
non-compact sectors, where the modules are infinite-dimensional. Any diagrammatic
calculations in this case are only realistic at low loop order, as for example at the two-
loop level in the fermionic sl(2) sub-sector [28]. The algebraic approach in non-compact
sectors has been advocated in [7] and the complete O(λ3/2) symmetry algebra in the
su(1, 1|2) sub-sector as well as the two-loop correction to the dilatation operator have
been found. The su(1, 1|2) sub-sector consists of two scalar fields, two fermions and
derivatives

DkZ , DkX , DkU , DkU̇ . (3.18)

Formally, the truncation of the full symmetry algebra to the su(1, 1|2) sub-sector is
achieved by setting the classical dimensions of states simultaneously equal to the fol-
lowing linear combination of the eigenvalues of the Cartan generators of the psu(2, 2|4)
algebra

D0 = s1 + 1
2
q2 + p+ 3

2
q1 = s2 + 1

2
q1 + p+ 3

2
q2 . (3.19)

Interestingly, the residual symmetry is larger than expected and consists of a tensor
product psu(1, 1|2)× (psu(1|1))2. The anomalous part of the dilatation operator δD is a
central charge for both components of the product. The full set of commutation relations
may be found in [7].

By invoking constraints from Feynman rules, imposing the algebra relations (3.1) and
using representation theory, it has been found in [7] that the next-to-leading corrections3

to the psu(1, 1|2) algebra generators satisfy

JNLO = ± [JLO, X] . (3.20)

3The generators of psu(1, 1|2) have an expansion in g2 ∼ λ, while the expansion parameter of the
psu(1|1) generators is g ∼

√
λ.
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The sign in front of the commutator is different for generators corresponding to positive
and negative algebra roots. The generator X may be expressed through the psu(1|1)2

supercharges T± and T̄± together with an auxiliary generator h

X = 1
2

(
{T̄−, [T̄+, h]} − {T+, [T−, h]}

)
. (3.21)

The generator h at the leading order is a one-site generator of the harmonic numbers
H(j)

h |DkZ〉 = H(k) |DkZ〉 , h |DkX〉 = H(k) |DkX〉
h |DkU〉 = H(k + 1) |DkU〉 , h |DkU̇〉 = H(k + 1) |DkU̇〉 . (3.22)

The higher corrections to h may be found recursively [7]. Also the O(λ3/2) corrections
to the fermionic generators of the two copies of psu(1|1), that is T± and T̄±, could have
been determined in a compact form. Since the classical action of these generators is
trivial, this is enough to determine the two-loop dilatation generator

δD
su(1,1|2)
4 = 2

{
T̄+, T̄−

}
4

= 2
{
T+, T−

}
4

= 2
{
T+

3 , T
−
1

}
+ 2

{
T+

1 , T
−
3

}
. (3.23)

The two-loop correction determined in this way was found to reproduce correctly the two-
loop anomalous dimension in the sl(2) and su(1|1) sub-sectors, at least for the states
considered [7]. It has been argued in [8] that the relation (3.20) has a very simple
generalisation at higher orders

∂

∂λ
J(λ) = ± [J(λ), X(λ)] . (3.24)

In other words, X(λ) generates translations in λ for symmetry generators. The leading
order result (3.21) is lifted to higher orders in the simplest possible way

X(λ) = 1
2

(
{T̄−(λ), [T̄+(λ), h(λ)]} − {T+(λ), [T−(λ), h(λ)]}

)
. (3.25)

The function h(λ) may be recursively determined from the corresponding Serre-like rela-
tions, see [8] for further details. The equation (3.24) allowed to determine the dilatation
operator in this sector up to three-loop order, which was subsequently subject to numer-
ous spectral tests (see [7] and [8]) and appears to be perturbatively integrable.

4 Generic integrable long-range spin chains

The su(2), su(2|3) and su(1, 1|2) spin chains discussed above furnish examples of novel
long-range integrable spin chains. The integrability of any spin chain is based on the
existence of an infinite set of independent hermitian commuting charges Qr

[Qr, Qs] = 0 . (4.1)

The Q2 charge is usually associated with the Hamiltonian, while the total momentum
operator is usually identified with exp(i Q1). It is an interesting question what are the
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generic long-range spin chains satisfying (4.1). In this section we will discuss the recent
progress in the theory of such systems.

In this section we will assume that the spin chain charges admit perturbative expan-
sion

Qr(λ) =
∞∑
k=0

(
λ

16π2

)k
Q(k)
r . (4.2)

Furthermore, we will assume that the maximal range of Q
(k)
r is r+k, i.e. Q

(k)
r acts locally

on r+ k adjacent sites in the spin chain. Please note that for finite values of λ the range
of interactions becomes formally infinite.

4.1 Closed long-range spin chains with gl(n) symmetry algebra

Generic spin chains with the underlying symmetry algebra gl(n) have been investigated
in [11]. It has been proposed that the gl(n)-invariant long-range interactions may be
expanded in the basis (2.3). The range of an interaction {n1, . . . , nl} is given by R =
max{ni} −min{ni}+ 2. Consequently, the basis for the k-loop correction to the charge
Qr is spanned by (2.3) with R ≤ r + k. The number of all permutations up to range
R is given by R!− (R − 1)! + 1. Please note that at the k-loop order the relation (4.1)
amounts to

k∑
j=0

[Q(j)
r , Q(k−j)

s ] = 0 , (4.3)

so that the procedure is recursive. The authors of [11] have applied this method to
Q2 and Q3 charges up to and including four-loop order. Interestingly, it is enough to
consider solely commutation relations between Q2 and Q3 since the commutators with
higher charges do not lead to further restrictions. The relation (4.3) does not fix all the
coefficients of the basis. For example, the Q2 charge up to two-loop order is presented
in Table 1. The free parameters appearing at any loop order can be divided into three
classes, which we will discuss in what follows.

The first class constitute the moduli αl(λ) and βr,s(λ). They govern propagation
and scattering of the spins and differ for different models. They enter directly into the
Bethe equations and dispersion relation. It has been conjectured in [11] that only the
main equation out of the set of Bethe equations corresponding to the nearest-neighbour
integrable gl(n) spin chain needs to be modified. Explicitly, the main Bethe equations
take the following form

1 =

(
x(uk − i

2
)

x(uk + i
2
)

)L Ku∏
j=1,j 6=k

uk − uj + i

uk − uj − i
exp (2 i θ(uk, uj))

Kv∏
l=1

uk − vl − i
2

uk − vl + i
2

. (4.4)

The reader might find it useful to refer to [29] and [30] for a pedagogical discussion
of single-level and nested Bethe equations. Here, the main Bethe roots are labelled
by uk, while the auxiliary Bethe roots coupling to the main roots are denoted by vj.
The difference to the Bethe equations of the nearest-neighbour spin chain is twofold.
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Firstly, the function x(u), the so-called rapidity map, determines the momentum-rapidity
relation of a single magnon

exp(i p(u)) =
x(u+ i

2
)

x(u− i
2
)
. (4.5)

The rapidity map depends on the αl(λ) parameters through the relation

u(x) = x+
∞∑
l=0

αl(λ)

xl+1
, (4.6)

which needs to be solved for x. Secondly, the additional piece of the scattering matrix,
exp(2 i θ(u, v)), known in the literature as the dressing factor, is determined by the βr,s(λ)
parameters

θ(u, v) =
∞∑
r=2

∞∑
s=r+1

βr,s(λ) (qr(u) qs(v)− qs(u) qr(v)) . (4.7)

The βr,s(λ) coefficients start at order O(λs−1)

βr,s(λ) =
∞∑

k=s−1

(
λ

16π2

)k
β(k)
r,s . (4.8)

The parity conservation requires βr,s = 0 for all even r + s. The quantities qr(u) are the
elementary magnon charges and are given by

qr(u) =
i

r − 1

(
1

x(u+ i
2
)r−1
− 1

x(u− i
2
)r−1

)
. (4.9)

Clearly, the distinct character of the αl(λ) and βr,s(λ) moduli parameters becomes ap-
parent. The αl(λ) parameters specify the one-magnon state, while the βr,s(λ) “dress”
the scalar part of the scattering matrix of two magnons. Thanks to integrability these
pieces of information are enough to fully describe the system.

The second class of parameters γr,s(λ) are elements of the normalisation matrix of the
charges. Upon introducing the normalised charges, for which the eigenvalues are given
by a sum over the charge densities Q̃s :=

∑Ku
k=1 qs(uk), the [γ(λ)]r,s matrix simply acts

as a rotation matrix

Qr = γr,0(λ)L+
∞∑
s=2

γr,s(λ)Q̃s . (4.10)

This transformation readily preserves the commutation relations (4.1).
Finally, the last class is spanned by the parameters εk,l(λ), which merely influence the

eigenvectors and correspond to similarity transformations. They are thus unphysical.
The authors of [11] have only analysed Q2 and Q3 charges. Although it seems very

plausible that all charges may be constructed in this way, it was still rather a hypothesis.
The integrability of the long-range spin chains with the gl(n) symmetry algebra has
been first confirmed in [31] by constructing the corresponding Yangian algebra up to and
including three-loop order. Please refer to [32] for details on Yangians and their relation
to integrability.
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4.2 Generic integrable long-range spin chains

A method for constructing integrable closed long-range spin chains with generic Lie
(super)algebras and spin representations has been introduced in [12, 13] inspired by the
findings of [33]. Interestingly, it is a bottom-up approach. The starting point provides
an integrable nearest-neighbour spin chain with a symmetry (super)algebra A and a
given spin representation. It has been proposed that the higher-loop deformations of the
conserved charges are governed by a generating equation similar to (3.24)

d

dλ
Qr(λ) = i [X(λ), Qr(λ)] +

∞∑
s=2

γr,s(λ)Qs(λ) . (4.11)

Here, X(λ) is some operator with well-defined commutation relations with all conserved
charges. It is straightforward to check that the deformations generated by (4.11) pre-
serve the commutation relations (4.1). Substituting the expansion (4.2) into (4.11) one
can order by order “boost” an integrable nearest-neighbour spin chain to its long-range
counterpart. The freedom encountered in the previous sub-section while determining
the generic form of the higher-loop corrections corresponds to freedom in choosing the
X(λ) operator. It has been advocated in [12,13] that there are three different admissible
classes of such operators: boost charges, bi-local charges and local charges. The first
two act inhomogeneously on the spin chain and are parametrised by αr(λ) and βr,s(λ)
respectively. The local operators, on the other hand, do not influence the spectrum and
thus may be associated with the εk,l(λ) degrees of freedom. The Bethe equation diago-
nalising spin chains constructed in such way are similar to those presented in sub-section
4.1

1 =

(
x(uk − i

2
ta)

x(uk + i
2
ta)

)L r∏
b=1

Kb∏
j=1

(b,j)6=(a,k)

ua,k − ub,j + i
2
Cab

ua,k − ub,j − i
2
Cab

exp(2 i θ{t}(ua,k, ub,j)) . (4.12)

The number of levels of the Bethe equations r coincides with the rank of the Lie (su-
per)algebra A. The Dynkin labels of the spin representation are denoted by ta, a =
1, . . . , r and the symmetric Cartan matrix is represented by Cab. The dressing phase θ{t}

is indexed with t to remind that the elementary magnon charges are also influenced by
the spin representation

qr(t, u) =
i

r − 1

(
1

x(u+ i
2
t)
− 1

x(u− i
2
t)

)
. (4.13)

These results were obtained by applying asymptotic Bethe ansatz techniques to the chain
constructed by means of (4.11). Equation (4.11) thus plays a central role in the theory
of closed long-range integrable spin chains.

In [33] the most general perturbatively long-range integrable spin chains in the funda-
mental representation of the gl(n) symmetry algebra and with open boundary conditions
have been studied. For open spin chains any excitation returns back to its initial position
after being shifted 2L times. On its way it is reflected at the two boundaries, each of
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them giving rise to a boundary scattering phase. Moreover, in general, the momentum
after reflection is not equal to reversed incoming momentum and the relation between
those two momenta needs to be specified via the reflection map. This is due to the fact
that the Hamiltonian will generically not preserve parity. Thus the corresponding Bethe
equations differ structurally from the Bethe equations for the closed chains. A set of such
Bethe equations for arbitrary boundary scattering phase has been formulated in [33].

4.3 Examples: Inozemtsev spin chain

In [34] the first attempt has been made to embed the novel perturbative long-range
integrability in the framework of well-studied integrable models. It was found that up
to three-loop order the dilatation operator in the su(2) sector may be constructed from
the conserved charges of the Inozemtsev model [10].

The Inozemtsev model furnishes one of the few known examples of integrable long-
range spin chains which are not defined as a deformations of nearest-neighbour models.
The Hamiltonian of this model is given by

H =
L∑
j=1

L−1∑
n=1

fL,κ(n)(1− Pj,j+n) , (4.14)

where Pa,b, as before, denotes the permutation of sites a and b. The spin chain is assumed
to be in the fundamental representation of the su(2) symmetry algebra. The interaction
strength fL,κ(n) is given by the elliptic Weierstrass function

fL,κ(z) = 1
z2 +

∞∑
′

m,n=−∞

(
1

(z −mL − i n π/κ)2
− 1

(mL + i n π/κ)2

)
, (4.15)

where the prime means that the term m = n = 0 should be omitted. A detailed study of
the Hamiltonian (4.14), see [10], gave compelling evidence in favour of its integrability.
In particular, the corresponding Lax pair has been found. In the limit κ → 0 the
interaction interpolates smoothly to the Haldane-Shastry interaction [35]- [36], which is
another known example of an integrable long-range spin chain.

The authors of [34] have found that simple linear combinations of the higher conserved
charges of the Inozemtsev model allow to reconstruct the dilatation operator in the
su(2) model up to three-loop order. It is necessary to invoke the higher charges since
the Hamiltonian (4.14) only involves two spin interactions, while already at three-loop
order the su(2) dilatation operator acts on three sites simultaneously. Under a suitable
identification of the coupling constant

λ

16π2
=
∑
n>0

1

4 sinh2(nκ)
(4.16)

and keeping λ
16π2 perturbatively small, the Inozemtsev model turns into long-range model

of the type discussed in 4.1. Up to four-loop order

αl = λδl,0 + λ3 +O(λ4) , βr,s = 0 +O(λ4) , (4.17)
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γ2,r = (2 + 6λ− 20λ2 + 120λ3) δr,2 + (6λ2 − 30λ3) δr,4 +O(λ4) . (4.18)

It would be interesting to find higher-loop corrections to the above formulas.

5 Hubbard model

In this section we will discuss an intriguing relation between a short-range dynamical
model of electrons, the Hubbard model, and the long-range spin chains discussed before.

The Hubbard model is a dynamical, short-range model of N electrons on L lattice
sites. Due to Pauli’s exclusion principle, there are four possible states on each lattice
site: no particle, spin-up electron, spin down electron and double occupied state with
spin-up and spin-down electrons. In what follows, we will consider the half-filled case
N = L. The Hamiltonian of the Hubbard model consists of the kinetic part that forces
the electrons to jump between different sites and the potential part, which according to
the value of U corresponds to repulsive or attractive force

ĤHubbard = −t
L∑
i=1

∑
σ=↑,↓

(
c†i,σci+1,σ + c†i+1,σci,σ

)
+ t U

L∑
i=1

c†i,↑ci,↑c
†
i,↓ci,↓ . (5.1)

The operators c†i,σ and ci,σ are canonical Fermi operators obeying standard anticommuta-
tion relations. We assume the system to be closed and thus we identify cL+1,σ = c1,σ and

c†L+1,σ = c†1,σ. The Hamiltonian is invariant with respect to the su(2) transformations

[ĤHubbard, Ŝ
a] = 0 , a = +,−, z , (5.2)

with Ŝ a =
∑L

i=1 Ŝ
a
i . This allows to classify the spectrum according to the eigenvalues

of the total spin an its z component. The integrability of this model has been shown
in [37].

It has been shown in [38] that upon the following identification of the parameters

t = − 2 π√
λ
, U =

4 π√
λ
, (5.3)

this short range model may be identified with the BDS spin chain [21]. Please note that
with the identification (5.3) and in the limit λ → 0 the potential part of the Hamilto-
nian is dominating and perturbation theory around the states with minimal potential
energy may be applied. This allowed to show that the effective Hamiltonian acting on
the ground state space of the potential part coincides at one-, two- and three-loop order
with the corresponding dilatation operator in the su(2) sub-sector, cf. formulas (2.4),
(2.8) and (2.11). The reader should note that the ground space of the potential part of
the Hamiltonian (5.1) is identical with the Hilbert space of a su(2) spin chain. Please
refer to [38] for detailed description of this procedure. Moreover, the spectral equa-
tions of the Hubbard model (Lieb-Wu equations [37]) have been shown to reproduce to
any perturbative order the Bethe equations of the long-range spin chain with the su(2)
symmetry algebra and the following moduli parameters

αl = λδl,0 , βr,s = 0 . (5.4)
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Even though this choice disagrees with the asymptotic Bethe equations of the su(2) sub-
sector of N = SYM at four-loop order and beyond, see [25], it may suggest that generic
long-range spin chains as well as the asymptotic integrability in the N = 4 SYM theory
may be intimately related to yet-to-be-discovered integrable short-range models.

6 Conclusions

Integrable long-range spin chains are a natural and very non-trivial extension of the
nearest-neighbour spin chains, a prime example in the literature on integrable models.
The complexity of the long-range interactions gives evidence that even seemingly very
complicated models may exhibit integrability, which is often indispensable to under-
stand the dynamics of a system. There is a host of evidence that planar AdS/CFT
correspondence may be one such system and several long-range spin chains have found
applications in this string/gauge theory duality. This has already allowed to study
many non-perturbative aspects of the duality, see [39]. Moreover, methods based on
integrability have allowed to conjecture the spectral equations of the planar AdS/CFT
correspondence, see [40].
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A Three-Loop Hamiltonian of a generic long-range

spin chain with gl(n) symmetry algebra

Q2(λ) = ({} − {0})

+ α0(λ) (−3{}+ 4{0} − {0, 1, 0})

+ α0(λ)2(20{} − 29{0}+ 10{0, 1, 0} − {0, 1, 2} − {2, 1, 0}+ {0, 2, 1}+ {1, 0, 2}
− {0, 1, 2, 1, 0})

+ i
2
α1(λ) (−6{0, 1}+ 6{1, 0}+ {0, 1, 2, 1} − {1, 2, 1, 0}+ {0, 1, 0, 2} − {0, 2, 1, 0})

+ 1
2
β2,3(λ) (−4{}+ 8{0} − 2{0, 1} − 2{1, 0} − 2{0, 2}
− 2{0, 1, 2} − 2{2, 1, 0}+ 2{0, 2, 1}+ 2{1, 0, 2}
+ {0, 1, 2, 1}+ {1, 2, 1, 0}+ {0, 1, 0, 2}+ {0, 2, 1, 0} − 2{1, 0, 2, 1})

+ iε2,1(λ) ({1, 0, 2} − {0, 2, 1})
+ iε2,2(λ) (−{0, 1, 2, 1}+ {1, 2, 1, 0}+ {0, 1, 0, 2} − {0, 2, 1, 0})

+O{λ3}

Table 1: Normalised Hamiltonian up to third order.
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Chapter II.1: Classical AdS5 × S5 string solutions

1 Introduction

AdS5 × S5 space plays a special role in superstring theory [1]. This space (supported
by a 5-form flux) is one of the three maximally supersymmetric “vacua” of type IIB
10-d supergravity [2], along with its limits – the flat Minkowski space and the plane-
wave background [3]. It appears as a “near-horizon” region of the solitonic D3-brane
background [4]; that explains its central role in the AdS/CFT duality [5] (see [6] for
a review). The duality states that certain “observables” in N = 4 supersymmetric
SU(N) 4-d gauge theory have direct counterparts in the type IIB superstring theory in
AdS5 × S5 space, and vice versa.

The type IIB superstring theory in a curved space with a 5-form Ramond-Ramond
(RR) background is defined by the Green-Schwarz [7] action (T0 = 1

2πα′
)

I = I
B

+ I
F
, I

B
= 1

2
T0

∫
d2σ
√
−ggabGµν(x)∂ax

µ∂bx
ν , (1.1)

I
F

= iT0

∫
d2σ(
√
−ggabδIJ − εabsIJ)θ̄IρaDbθ

J +O(θ4) . (1.2)

Here xµ (µ = 0, 1, ..., 9) are the bosonic string coordinates, θI (I = 1, 2) are two
Majorana-Weyl spinor fields, gab (a, b = 0, 1) is an independent 2-d metric, ρa are pro-
jections of the 10-d Dirac matrices, ρa ≡ ΓAE

A
µ ∂ax

µ, EA
µ is the vielbein of the target

space metric, Gµν = EA
µE

B
ν ηAB. εab is antisymmetric 2-d tensor and sIJ =diag(1,−1).

Da is the projection of the 10-d covariant derivative Dµ. The latter is given by Dµ =
∂µ + 1

4
ωABµ ΓAB − 1

8·5!
Γµ1...µ5Γµ Fµ1...µ5 , where ωABµ is the Lorentz connection and Fµ1...µ5

is the RR 5-form field. Here Gµν and Fµ1...µ5 should be related so that the 2-d Weyl and
kappa-symmetry anomalies cancel.

In the case of the AdS5×S5 background the explicit form of the superstring action can
be found using the supercoset construction [8]. The group of super-isometries (Killing
vectors and Killing spinors or solutions of Dµε

I = 0) of this background is PSU(2, 2|4),
i.e. the same as N = 4 super-extension of the 4-d conformal group SO(2, 4). Using
that AdS5 = SO(2, 4)/SO(1, 4) and S5 = SO(6)/SO(5) the superstring action can be
constructed in terms of the components of PSU(2, 2|4) current restricted to the coset
PSU(2, 2|4)/[SO(1, 4)× SO(5)] (see [9] for details).

Since the metric of AdS5 × S5 has direct product structure, the bosonic part of the
action (1.1) is a sum of the actions for the AdS5 and S5 sigma models. The two sets of
bosons are coupled through their interaction with the fermions. The latter fact is crucial
for the UV finiteness of the superstring model [8, 10,11] (see also [12]).

Below we shall consider classical bosonic solutions of the AdS5×S5 string action. The
study of classical string solutions and their semiclassical quantization initiated in [13–16]
is an important tool for investigating the structure of the AdS/CFT correspondence
(for reviews see, e.g., [17–20]). The AdS energy of a closed string solution expressed in
terms of other conserved charges and string tension gives the strong coupling limit of
the scaling dimension of the corresponding gauge-theory operator. Classical solutions
for open strings ending at the boundary of AdS5 describe the strong coupling limit of
the associated Wilson loops and gluon scattering amplitudes (see [21] and [22–24]).
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Coset space sigma models are known to be classically integrable [25, 26] and this
integrability extends [27] also to the full kappa-invariant AdS5 × S5 superstring action.
The integrability allows one to describe, in particular, large class of (finite gap [28])
classical string solutions in terms of the associated spectral curve [29,30] (see [31]).

This description is, however, formal and obscures somewhat the physical interpreta-
tion of the solutions. It is very useful to complement it with a study of specific examples
of solutions that can be constructed directly from the sigma model equations of motion
by starting with certain natural ansatze. This will be our aim below.

We shall mostly concentrate on the simplest spinning “rigid” closed string solutions
for which the shape of the string does not change with time (extra oscillations increase the
energy for given spins). We shall consider several types of solutions and their limits that
reveal different patterns of dependence of the energy on the string tension and the spins.
This provides an important information about the strong ‘t Hooft coupling limit of the
corresponding gauge theory anomalous dimensions and thus aids one in understanding
the underlying description of the string/gauge theory spectrum valid for all values of the
string tension or ‘t Hooft coupling.

2 Bosonic string in AdS5 × S5

At the classical level (with fermion fields vanishing) the AdS5 and S5 parts of the string
action are still effectively coupled through their interaction with 2-d metric gab. If one
solves for gab one gets a non-linear Nambu-Goto type action containing interactions
between the AdS5 and S5 coordinates. In the conformal gauge

√
−ggab = ηab the classical

equations for the AdS5 and S5 parts are decoupled, but there is a constraint on their
initial data from the equation for gab, i.e. that the 2-d stress tensor should vanish (the
Virasoro conditions). We shall study the corresponding solutions below but let us start
with the definition of the AdSn space and the explicit form of the AdS5 × S5 bosonic
string action.

2.1 AdS5 × S5 space

Just like the d-dimensional sphere Sd can be represented as a surface in Rd+1

XMXM = X2
1 + ...+X2

d+1 = 1 (2.1)

the d = n+1 dimensional anti - de Sitter space AdSd can be represented as a hyperboloid
(a constant negative curvature quadric)

−ηPQY PY Q = Y 2
0 − Y 2

1 − ...− Y 2
n + Y 2

n+1 = 1 (2.2)

in R2,d−1 with the metric

ds2 = ηPQdY
PdY Q , ηPQ = (−1,+1, ...,+1,−1) . (2.3)

We set the radius of the sphere and the hyperboloid to 1. In what follows we will be
interested in the case of d = 5.
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It is often useful to solve (2.2),(2.1) by choosing an explicit parametrization of YP
and XM in terms of 5+5 independent “global” coordinates

Y1 ≡ Y1 + iY2 = sinh ρ cos θ eiφ1 , Y2 ≡ Y3 + iY4 = sinh ρ sin θ eiφ2 ,

Y0 ≡ Y5 + iY0 = cosh ρ eit , X3 ≡ X5 + iX6 = cos γ eiϕ3 , (2.4)

X1 ≡ X1 + iX2 = sin γ cosψ eiϕ1 , X2 ≡ X3 + iX4 = sin γ sinψ eiϕ2 .

Then the corresponding metrics are

(ds2)AdS5 = dρ2 − cosh2 ρ dt2 + sinh2 ρ (dθ2 + cos2 θ dφ2
1 + sin2 θ dφ2

2) , (2.5)

(ds2)S5 = dγ2 + cos2 γ dϕ2
3 + sin2 γ (dψ2 + cos2 ψ dϕ2

1 + sin2 ψ dϕ2
2) , (2.6)

and they are obviously related by an analytic continuation.
Note that choosing ρ > 0 and 0 < t ≤ 2π (and standard periodicities for the S3

angles θ, φ1, φ2) already covers the hyperboloid once. Near “the center” ρ = 0 the AdS5

metric is that of S1×R4 while near its boundary ρ→∞ it is that of S1× S3. To avoid
closed time-like curves and to relate the corresponding theory to gauge theory in R×S3

it is standard to decompactify the t direction, i.e. to assume −∞ < t <∞. Thus in all
discussions of AdS/CFT and in what follows by AdS5 we shall understand its universal
cover (in particular, we will ignore the possibility of string winding in global AdS time
direction). In the case of AdS2 plotted as a hyperboloid in R2,1 that corresponds to going
around the circular dimension infinite number of times or “cutting it open”. We present
images of S2 and of a universal cover of AdS2 in Figure 1.† Another useful image of the
universal cover of the AdS3 space is a body of 2-cylinder with Rt × S1 as a boundary
and ρ as a radial coordinate.

Figure 1: Images of a sphere and of a universal cover of AdS space

Let us mention also another choice of AdS5 × S5 coordinates – the Poincaré coordi-
nates – that cover only part of AdS5 (for more details see, e.g., [6]):

Y0 =
x0

z
= cosh ρ sin t , Y5 =

1

2z
(1 + z2 − x2

0 + x2
i ) = cosh ρ cos t ,

Yi =
xi
z

= ni sinh ρ , Y4 =
1

2z
(−1 + z2 − x2

0 + x2
i ) = n4 sinh ρ , (2.7)

†We thank N. Beisert for sending us these figures.
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Here n2
i+n

2
4 = 1 (i = 1, 2, 3) parametrizes the 3-sphere in (2.5): dnkdnk = dΩ3(θ, φ1, φ2).

Then the AdS5 metric (2.5) takes the form (m,n = 0, 1, 2, 3)

(ds2)AdS5 =
1

z2
(dxmdxm + dz2) , xm = ηmnx

n . (2.8)

The full AdS5 × S5 metric may be written also in the conformally-flat form as

(ds2)AdS5×S5 =
1

z2
(dxmdxm + dz

M
dz

M
) , z2 = z

M
z
M
, M = 1, ..., 6 , (2.9)

where dz
M
dz

M
= dz2 + z2dΩ5(γ, ψ, ϕ1, ϕ2, ϕ3). The Poincaré coordinates are useful

for the discussion of solutions representing open strings ending at the AdS boundary
(see [22–24]).

2.2 String action, equations of motion and conserved angular
momenta

The bosonic part of the AdS5 × S5 action (1.1) in the conformal gauge is

I
B

= 1
2
T

∫
dτ

∫ 2π

0

dσ (LAdS + LS) , T =
R2

2πα′
=

√
λ

2π
, (2.10)

where
√
λ ≡ R2

α′
(λ corresponds to ‘t Hooft coupling on the N=4 super Yang-Mills side),

R is the (same) radius of AdS5 and S5 and

LAdS = −∂aYP∂aY P − Λ̃(YPY
P + 1) , LS = −∂aXM∂

aXM + Λ(XMXM − 1) .(2.11)

Here XM , M = 1, . . . , 6 and YP , P = 0, . . . , 5 are the embedding coordinates of R6 with
the Euclidean metric δMN in LS and of R2,4 with ηPQ = (−1,+1,+1,+1,+1,−1) in
LAdS, respectively (YP = ηPQY

Q). Λ and Λ̃ are the Lagrange multipliers imposing the
two hypersurface conditions. The classical equations for (2.10) are

∂a∂aYP − Λ̃YP = 0 , Λ̃ = ∂aYP∂aY
P , YPY

P = −1 , (2.12)

∂a∂aXM + ΛXM = 0 , Λ = ∂aXM∂aXM , XMXM = 1 . (2.13)

The action (2.10) is to be supplemented with the conformal gauge constraints

ẎP Ẏ
P + Y ′PY

′P + ẊMẊM +X ′MX
′
M = 0 , ẎPY

′P + ẊMX
′
M = 0 . (2.14)

We will be interested in the closed string solutions with the world sheet as a cylinder,
i.e. will impose the periodicity conditions

YP (τ, σ + 2π) = YP (τ, σ) , XM(τ, σ + 2π) = XM(τ, σ) . (2.15)

The action (2.10) is invariant under the SO(2, 4) and SO(6) rotations with the conserved
(on-shell) charges

SPQ =
√
λ

∫ 2π

0

dσ

2π
(YP ẎQ − YQẎP ), JMN =

√
λ

∫ 2π

0

dσ

2π
(XMẊN −XNẊM) (2.16)
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There is a natural choice of the 3+3 Cartan generators of SO(2, 4)×SO(6) corresponding
to the 3+3 linear isometries of the AdS5 × S5 metric (2.5),(2.6), i.e. to the translations
in the time t, in the 2 angles φa and the 3 angles ϕi:

S0 ≡ S50 ≡ E =
√
λ E , S1 ≡ S12 =

√
λ S1 , S2 ≡ S34 =

√
λ S2 , (2.17)

J1 ≡ J12 =
√
λ J1 , J2 ≡ J34 =

√
λ J2 , J3 ≡ J56 =

√
λ J3 . (2.18)

2.3 Classical solutions: geodesics

We will be interested in classical solutions that have finite values of the AdS energy E
and the spins Sr, Ji (r = 1, 2; i = 1, 2, 3). The Virasoro condition will give a relation
between the 6 charges in (2.17),(2.18) allowing one to express the energy in terms of
the other 5, i.e. E =

√
λ E(Sr, Ji; ks) =

√
λ E( Sr√

λ
, Ji√

λ
; ks). Here ks stands for other

(hidden) conserved charges, like “topological” numbers determining particular shape of
the string (e.g., number of folds, spikes, winding numbers, etc).‡

For a solution to have a consistent semiclassical interpretation, it should correspond
to a state of a quantum Hamiltonian which carries the same quantum numbers (and
should thus be associated to a particular SYM operator with definite scaling dimension).
It should represent a “highest-weight” state of a symmetry algebra, i.e. all other non-
Cartan (non-commuting) components of the symmetry generators (2.16) should vanish;
other members of the multiplet can be obtained by applying rotations to a “highest-
weight” solution.§

Let us start with point-like strings, for which YP = YP (τ), XM = XM(τ) in (2.12)–
(2.14), i.e. with massless geodesics in AdS5 × S5 . Then Λ, Λ̃ = const (as follows
directly from (2.12),(2.13)) and (2.14) implies that Λ = −Λ̃ > 0. The generic massless
geodesic in AdS5×S5 can be of two “irreducible” types (up to a global SO(2, 4)×SO(6)
transformation): (i) massless geodesic that stays entirely within AdS5; (ii) a geodesic
that runs along the time direction in AdS5 and wraps a big circle of S5. In the latter
case the angular motion in S5 provides an effective mass to a particle in AdS5, i.e. the
corresponding geodesic in AdS5 is a massive one,

Y5 + iY0 = eiκτ , X5 + iX6 = eiκτ , κ =
√

Λ , Y1,2,3,4 = X1,2,3,4 = 0 . (2.19)

The only non-vanishing integrals of motion are E = J3 =
√
λ κ, representing the energy

and the SO(6) spin of this BPS state, corresponding to the BMN “vacuum” operator
tr(ZJ3) in the SYM theory [13] (see also [12]).

The solution for a massless geodesic in AdS5 is a straight line in R2,4, YP (τ) =
AP + BP τ with BPB

P = APB
P = 0 , APA

P = −1. The SO(2, 4) angular momentum
tensor in (2.16) is SPQ =

√
λ (APBQ − AQBP ). It always has non-vanishing non-

Cartan components [18], e.g., if Y5 + iY0 = 1 + ip τ, Y3 = p τ, Y1,2,4 = 0 we get

‡A simple example of an infinite-energy solution is an infinitely stretched string in AdS2 described (in
conformal gauge) by t = κτ, ρ = ρ(σ), ρ′2−κ2 cosh2 ρ = 0, i.e. cosh ρ = | cos(κσ)|−1. It is formally 2π
periodic if κ = 1. In the Poincare patch the corresponding solution is z = cosκσ

cosκτ−sinκσ , x0 = sinκτ
cosκτ−sinκσ .

§For a discussion of the relation of the above SO(2, 4) charges to the standard conformal group
generators in the boundary theory and a relation between SO(2, 4) representations labelled by the AdS
energy E = S50 and the dilatation operator D = S54 see [18] and refs. there.
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S50 = S53 =
√
λ p. This geodesic thus does not represent a “highest-weight” semiclassical

state. In terms of Poincare coordinates (2.8) the massless geodesic is represented by
x0 = x3 = pτ, z = a = const, i.e. it runs parallel to the boundary (reaching the boundary
at spatial infinity where Poincare patch ends – that follows from its description in global
coordinates).

Below we shall consider examples of extended (σ-dependent) solitonic string solutions
of the equations (2.12),(2.13) subject to the constraints (2.14),(2.15) that have finite AdS
energy and spins. The aim will be to find the expression for the energy E in terms of
other charges.¶ In general, a string all points of which can move fast in S5 will admit
a “fast string” (BMN-type) limit in which E will have an analytic dependence on the
square of string tension or on λ when expressed in terms of Sr and Ji and expanded in
large total spin of S5 [15, 16]. At the same time, the energy of a string whose center is
at rest or which moves only within the AdS5 will depend explicitly on

√
λ (i.e. will be

non-analytic in λ) [14, 16,40].

3 Simplest rigid string solutions

Here we shall consider few simple explicit closed-string solutions of the non-linear equa-
tions (2.12),(2.13) which are “rigid”, i.e. for which the shape of the string does not
change with time. These may be interpreted as examples of non-topological solitons of
the AdS5 × S5 conformal-gauge string sigma model (2.10) on a 2-d cylinder (τ, σ).

3.1 Examples of string solutions in flat space

Let us start with recalling several examples of string solutions in flat space. The flat-
space string action and equations of motion in the conformal gauge are (

√
−ggab = ηab,

xµ = ηµνx
ν , ηµν = diag(−1, 1, ..., 1))

I
B

= 1
2
T0

∫
d2σ ∂axµ∂

axµ , ∂+∂−x
µ = 0 , ∂±x

µ∂±xµ = 0 . (3.1)

The general solution of free equations xµ = xµ0 + pµτ + fµ+(σ + τ) + fµ−(σ− τ) subject to
the closed string periodicity condition xµ(τ, σ) = xµ(τ, σ + 2π) is parametrized by con-
stants, fµ±(σ± τ) =

∑
n

(
aµ(±)n cos[n(σ ± τ)] + bµ(±)n sin[n(σ ± τ)]

)
, which are constrained

by the Virasoro conditions. Simple explicit solutions representing semiclassical (coher-
ent) states corresponding to particular quantum states in the string spectrum have only
finite number of the Fourier modes excited. The Virasoro condition then implies a rela-
tion between the energy of the string E = T0

∫
dσ ∂τx

0 and its linear momenta, spins,
oscillation numbers, etc. Some explicit examples are:

¶Early discussions of semiclassical strings in de Sitter and Anti de Sitter spaces appeared, e.g.,
in [32, 33]. The fact that in AdS space the string mass scales linearly with large quantum numbers (as
opposed to square root Regge relation in flat space) was first observed in [33].
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Folded string rotating on a plane:

x0 = κτ , x1 + ix2 = a sinσ eiτ , (3.2)

E = 2πT0κ =
√

2
α′
J , J = a2

2α′
. (3.3)

Spiky string rotating on a plane:

x0 = κτ , x1 + ix2 = 1
2
a
[
eim(τ+σ) +mei(τ−σ)

]
, (3.4)

E =
√

4m
(m+1)α′

J , κ = am , J = a2m(m+1)
4α′

. (3.5)

Here m+ 1 is the number of spikes, i.e. m = 1 is the case of the folded string.‖

Circular string rotating in two orthogonal planes of R4:

x0 = κτ, x1 + ix2 = a ei(τ+σ), x3 + ix4 = a ei(τ−σ) (3.6)

E = κ
α′

=
√

4
α′
J , J1 = J2 = J = a2

α′
. (3.7)

Here J1 = J12, J2 = J34 are the values of the orbital momentum.
Circular string pulsating in one plane:

x0 = κτ , x1 + ix2 = a sin τ eiσ , (3.8)

E = 2πT0κ =
√

2
α′
N , N =

a2

2α′
. (3.9)

Here N is the oscillation number (an adiabatic invariant). This solution is formally not
rigid but is very similar – the shape of the string remains circular, only its radius changes
with time. An example of a non-rigid solution is a “kinky string” [34] for which the string
has a shape of a quadrangle at the initial moment in time, then shrinks to diagonal due
to the tension, then expands back, etc.

3.2 Circular rotating strings: rational solutions

A simple subclass of “rational” solutions of the AdS5×S5 equations (2.12),(2.13) is found
by assuming that Λ, Λ̃ = const [16, 35]. In this case YP and XM are given by simple
trigonometric solutions of the linear 2-d massive scalar equation and one is just to make
sure that the constant parameters are such that all the constraints in (2.12)–(2.15) are
satisfied. An example is a circular string solution in Rt × S5 part of AdS5 × S5 which is
a direct analog of the circular 2-spin solution (3.6) [16] (see (2.4))

Y0 = eiκτ , X1 = a√
2
eim(τ+σ), X2 = a√

2
eim(τ−σ), X3 =

√
1− a2 , (3.10)

J1 = J2 ≡ J =
ma2

2
=

κ2

4m
, E =

√
λ κ =

√
4m
√
λ J . (3.11)

Here m is a winding number, Λ̃ = κ2, Λ = 0, i.e. the S5 part of the solution is essentially
the same as in flat space: the string rotates on S3 of radius a ≤ 1 inside S5 of radius

‖The relation between (3.4) and (3.2) for m = 1 involves σ → σ + π
2 .
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1. The semiclassical spin parameter J is bounded from above, i.e. the fast-string BMN-
type limit (J → ∞) cannot be realised. Instead, there is a smooth small spin (J → 0)
or “small-string” limit (a→ 0) in which the Regge form of the energy is to be expected.
Remarkably, the exact expression for the classical string energy has the same “Regge”
form as in flat space (3.7) with 1

α′
→
√
λ . This solution is thus a semiclassical analog [36]

of a “short” quantum string for which the energy should scale (for fixed charges) as

E ∼
√√

λ [37]. The solution (3.10) has an obvious generalization to the case of the
3-rd non-zero spin in S5 [16]: one needs to consider a non-zero X3 =

√
1− a2eiw

′τ .
There is a different solution (with Λ = w2−m2) describing a circular string with two

equal spins moving on a “big” S3 ⊂ S5 [16]

Y0 = eiκτ , X1 = 1√
2
ei(wτ+mσ), X2 = 1√

2
ei(wτ−mσ), X3 = 0 , (3.12)

J1 = J2 ≡ J = 1
2
w, κ2 = w2 +m2, E =

√
(2J)2 + λm2 . (3.13)

The two solutions coincide when a = 1 in (3.10) and w = m in (3.12). This solution
admits the fast-string limit in which (J� 1)

E = 2J +
λm2

4J
− λ2m4

64J3
+O(

λ3

J5
) , (3.14)

but it does not have a small-string limit as here the radius of the string is always 1:
even though J may become small, the energy does not go to zero due to string winding
around big circle of S5. In contrast to (3.10), this solution is unstable under small
perturbations [16,38].

There is another counterpart of the flat-space solution (3.6) in AdS5 × S5 when the
circular string rotates solely in AdS5 [16, 35] (here we choose the winding number to be
m = 1)

Y0 =
√

1 + 2r2 eiκτ , Y1 = r ei(wτ+σ) , Y2 = r ei(wτ−σ) . (3.15)

Here r = sinh ρ0 = 1
2
κ, w2 = κ2 + 1 and the energy E =

√
λE. The two equal

spins S1 = S2 = 1
2
S =

√
λ S and the energy are related by the parametric equations

S = 1
4
κ2
√
κ2 + 1, E = κ+ 1

2
κ3. This solution again admits a “small-string” limit (S→ 0)

in which it represents a small circular string rotating around its c.o.m. in the two
orthogonal planes in the central (ρ ≈ 0 or “near-flat”, see (2.5)) region of AdS5. In the
small spin limit S� 1 [36]

E =

√
4
√
λS
[
1 +

S√
λ
− 3S2

2λ
+O(

S3

λ3/2
)
]
. (3.16)

Here in contrast to the J1 = J2 solution (3.10) the classical energy contains non-trivial
“curvature” corrections which modify the leading-order flat-space Regge behavior. In
the opposite large spin limit S� 1 we get [16,35,40]

E = 2S +
3

4
(4λS)1/3 +O(S−1/3) . (3.17)
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Yet another AdS5 × S5 counterpart of the flat-space solution (3.6) is found by having a
circular string rotating both in AdS5 and in S5 (we choose again the winding numbers
in σ to be 1)

Y0 =
√

1 + r2 eiκτ , Y1 = r ei(wτ+σ) , X1 = a ei(τ−σ) , X2 =
√

1− a2 (3.18)

Here w2 = κ2 + 1 and r = sinh ρ0 and a = sin γ0 determine the size of the string
in AdS5 and S5 respectively (cf. (2.5),(2.6)). The conformal gauge conditions (2.14)
imply (1 + r2)κ2 = r2(w2 + 1) + 2a2, r2w = a2 and thus for this solution one has
S = r2w = J = a2 ≤ 1, i.e. S = J ≤

√
λ . Also, E = (1 + r2)κ = κ + Sκ√

κ2+1
, where

κ satisfies κ2 = 2S√
κ2+1

+ 2S which is readily solved. In the small S limit one finds (cf.

(3.16))

E =

√
4
√
λS
[
1 +

S

2
√
λ
− 5S2

8λ
+O(

S3

λ3/2
)
]
. (3.19)

In the small-size or S = J→ 0 limit (when w → 1, r → a→ 0) this solution reduces to
the flat-space one (3.6) with the energy taking the form (3.7).

At the S = J = 1 point (where a = 1, κ =
√

3, w = 2, r =
√

2) this “small-string”
S = J solution coincides with the “large-string” S = J solution discussed in [35,41]

Y0 =
√

1 + r2 eiκτ , Y1 = r ei(wτ+σ), X1 = ei(ωτ−σ), (3.20)

w2 = κ2 + 1, S = r2w = ω = J . (3.21)

Then E = κ+ Sκ√
κ2+1

, where κ(S) satisfies κ2 = 2S√
κ2+1

+ S2 + 1. The cubic equation for κ2

admits two real solutions κ(1,2) =
√

1 + 1
2
S2 ± 1

2
S
√

8 + S2. The first solution is defined

for any S ≥ −1 and the corresponding energy [36]

E =

√
1 + 1

2
S2 + 1

2

√
8 + S2

[
1 + S√

2+
1
2

S2+
1
2

√
8+S2

]
(3.22)

admits a regular large S expansion as in (3.14) [35,41]:

E = 2S +
λ

S
− 5λ2

4S3
+O(

λ3

S5
) . (3.23)

In the small S expansion we get E =
√
λ +

√
2 S + S2

4
√
λ

+ ..., i.e. this solution does
not have the flat-space Regge asymptotics; this is not surprising since here the string is
wrapped on a big circle of S5 and its tension gives a large contribution to the energy
even for small spin.

The above examples illustrate possible patterns of behaviour of the classical string
energy on the string tension and conserved spins in different limits. They should be
reproducible from the exact results for the string spectrum in appropriate semiclassical
string limits.
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3.3 Rigid string ansatz: reduction to 1-d Neumann system

The above examples of solutions in AdS5×S5 are special cases of a rigid string ansatz for
which the shape of the string does not change with time τ or the AdS time t. Making such
an ansatz and substituting it into the equations (2.12),(2.13) one finds that they can be
obtained from a 1-d integrable action describing an oscillator on a sphere – the Neumann
model [42, 35, 16]. Along with the integrability of the equations describing geodesics in
AdS5×S5 this reduction of the AdS5×S5 string sigma model to an integrable 1-d system
is a simple illustration of the integrability of this 2-d theory.

The general solution of the resulting equations can then be written in terms of hyper-
elliptic (genus 2 surface) functions, with the rational solutions discussed above and the
elliptic solutions described below in the next section being the important special cases.
The general rigid string ansatz may be written as (see (2.4))

Yr = zr(σ) eiωrτ (r = 0, 1, 2) ; Xi = zi(σ) eiwiτ (i = 1, 2, 3) (3.24)

Here ω1,2 and wi are rotation frequencies and zr and zi (which are, in general, complex)
satisfy

zr = rre
iβr , ηrsrrrs = −1 , zi = rie

iαi , riri = 1 , (3.25)

rr(σ + 2π) = rr(σ) , βr(σ + 2π) = βr(σ) + 2πkr , (3.26)

ri(σ + 2π) = ri(σ) , αi(σ + 2π) = αi(σ) + 2πmi . (3.27)

Here ηrs = (−1, 1, 1), kr and mi (which are the “winding numbers” for the corresponding
isometric angles in (2.4)) are integers. We assume that β0 = 0, k0 = 0, ω0 ≡ κ. The

corresponding Cartan charges are (cf. (2.16),(2.17),(2.18))∗∗ Sr = ωr
∫ 2π

0
dσ
2π

r2
r(σ),

Ji = wi
∫ 2π

0
dσ
2π

r2
i (σ). The equations for the remaining “dynamical” variables rr and ri

can be derived from the following 1-d “mechanical” Lagrangian

L = ηrs(z′rz
′∗
s − ω2

rzrz
∗
s)− Λ̃(ηrszrz

∗
s + 1) + z′iz

′∗
i − w2

i ziz
∗
i + Λ(ziz

∗
i − 1) . (3.28)

The trajectory of this effective “particle” belonging to a product of a 2-hyperboloid (rr)
and 2-sphere (ri) gives the profile of the string. The angular parts of zr and zi can be
easily separated leading to an effective Lagrangian for a particle on a constant curvature
surface with an “r2 + r−2” potential or to a special case of a 1-d integrable Neumann
system – the Neumann-Rosochatius system [35]. The corresponding 2+2 integrals of
motion can be explicitly written down [42, 35]. The resulting solutions represent, in
particular, folded or circular bended wound rotating rigid strings.

For example, such closed string solutions in AdS5 will be parametrised by the fre-
quencies ω0 = κ, ωi = (ω1, ω2) as well by two integrals of motion bk. (ωi, bk) may be
viewed as independent coordinates on the moduli space of these solitons. The closed
string periodicity condition implies that the solutions will be classified by two integer
“winding numbers” ni related to ωr and bi. In general, the energy E will be a function

∗∗Here E = S0. All other components of the conserved angular momentum tensors in (2.16) vanish
automatically if all the frequencies are different [42], but their vanishing should be checked if 2 of the 3
frequencies are equal.
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not only of S1, S2 but also of ni. Depending on the values of these parameters the string’s
shape may be of the two types: (i) “folded”, i.e. having a shape of an interval, or (ii)
“circular”, i.e. having a shape of a circle. A folded string may be straight as in the
one-spin case [14] or bent [42,43]. A “circular” string may be a round circle as in [16] or
may have a more general “bent circle” shape. Some of such solutions will be discussed
explicitly below.

4 Spinning rigid strings in AdS5 × S5:

elliptic solutions

In this section we shall consider an important example of a non-trivial rigid string solution
describing a folded spinning string in AdS3 part of AdS5 [44, 14]. We shall then discuss
some of its generalizations and similar solutions described in terms of elliptic functions.

4.1 Folded spinning string in AdS3

Let us consider a rigid string moving in AdS3 part ds2 = − cosh2 ρ dt2 +dρ2 +sinh2 ρ dφ2

of AdS5 (2.5), i.e. Y0 = cosh ρ(σ) eiκτ , Y1 = sinh ρ(σ) eiωτ , or

t = κ τ, φ = ω τ, ρ = ρ(σ) = ρ(σ + 2π) . (4.1)

This ansatz satisfies the equations for t and φ while for ρ we get 1-d sinh-Gordon equation
ρ′′ = 1

2
(κ2 − ω2) sinh(2ρ). Its first integral satisfying the Virasoro condition (2.14) leads

to the following solution

ρ′2 = κ2 cosh2 ρ− ω2 sinh2 ρ, (4.2)

sinh ρ(σ) =
k√

1− k2
cn(ω σ + K | k2) , k ≡ κ

ω
. (4.3)

Here we assumed that ρ(0) = 0; cn is the standard elliptic function and K ≡ K(k2) =∫ π/2
0

du(1− k2 sin2 u)−1/2 is the complete elliptic integral of the first kind. This solution
describes a folded closed string rotating around its center of mass and generalizes the flat-
space solution (3.2) (for σ → 0 we get sinh ρ→ a sinσ, a = k√

1−k2 ). In (4.3) σ varies from

0 to π
2

with ρ changing from 0 to its maximal value ρ0, coth ρ0 = ω
κ

= k−1. The full (2π
periodic) folded closed string solution is found by gluing together four such functions
ρ(σ) on π

2
intervals to cover the full 0 ≤ σ ≤ 2π interval. The periodicity condition

2π =
∫ 2π

0
dσ = 4

∫ ρ0

0
dρ√

κ2 cosh2 ρ−ω2 sinh2 ρ
implies a relation between the parameters κ

and ω, i.e. κ = 2 k
π

K, ω = 2
π

K. The classical energy E =
√
λ E and the spin

S =
√
λ S are expressed in terms of the complete elliptic integrals K = K(k2) and

E = E(k2) =
∫ π/2

0
du(1− k2 sin2 u)1/2

E =
2

π

k

1− k2
E , S =

2

π

( 1

1− k2
E−K

)
. (4.4)
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Solving for k gives the relation E = E(S). The expression for E(S) can be easily found
in the two limiting cases: (i) large spin or long string limit: ρ0 → ∞, i.e. k → 1, and
(ii) small spin or short string limit: ρ0 → 0, i.e. k → 0. In the first limit the string’s
ends are close to the boundary of AdS5 and one obtains [14,15,45]

E = S +

√
λ

π

[
ln( 8π√

λ
S)− 1

]
+

λ

2π2

ln( 8π√
λ
S)− 1

S
+O(

ln2 S

S2
) , S� 1 . (4.5)

The coefficient of the lnS term [14] is governed by the strong-coupling limit of the so-
called “scaling function” (cusp anomaly) and the subleading terms can be shown to obey
non-trivial reciprocity relations [46, 45] (see [47]). The leading S term in (4.5) [44] may
be interpreted as being due to the fold points of the string moving (in the strict S =∞
limit) along null lines at the boundary while the ln S term [14] is due to the stretching
of the string (this term is string length times its tension). Indeed, in the large spin limit
or κ, ω � 1 the solution (4.3) with σ ∈ (0, π

2
) simplifies to [15,48]††

t = κ τ, φ = ω τ, ρ = κσ , κ = ω � 1 . (4.6)

This very simple form of the asymptotic large spin solution allows one to compute quan-
tum 1-loop [15] and 2-loop [11] corrections to the energy (see [12,31]).

Let us mention also that the asymptotic solution (4.6) with κ→∞ describing infinite
string with folds reaching the AdS boundary and capturing the coefficient of the lnS
term in E−S (4.5) is closely related to the “null cusp” open string solution [50] describing
an open string (euclidean) world surface ending on the two orthogonal null lines at the
boundary of AdS5 in Poincare coordinates, z =

√
2x+x−, x± = x0 ± x1 (see (2.8)). In

the conformal gauge

z =
√

2 e
√

2τ , x+ = e
√

2(τ+σ) , x− = e
√

2(τ−σ) . (4.7)

This solution written in the embedding coordinates (2.7) is then equivalent to (4.6) after
a euclidean continuation (τ → iτ) and an SO(2, 4) coordinate transformation [51]. This
explains (from strong-coupling or semiclassical string perspective) why the coefficient of
the lnS term in (4.5) can be interpreted as a cusp anomalous dimension (a dimension
of a Wilson loop defined by null cusp, see also [47,22]).

In the small spin or “short string” limit, when the string is rotating in the central
(ρ = 0) region of AdS3 we get the same flat-space (3.3) Regge type asymptotics [14,15,49]
as in the circular string cases in (3.16),(3.19)

E =

√
2
√
λ S

[
1 +

3S

8
√
λ

+O(S2)
]
, S� 1. (4.8)

4.2 Some generalizations and similar solutions

The above AdS3 solution is special having minimal energy for given spin. It has several
generalizations. One may consider a similar solution of circular shape with several spikes

††This is readily seen directly from (4.2) in the limit when κ→ ω.
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[52] that is the analog of the spiky string in flat space (3.4).‡‡ For the spiky string in
AdS the large spin limit of the energy is (cf. (4.5))

E = S +
√
λ n
2π

(
ln 16πS√

λ n
− 1 + ln sin π

n

)
+ ... , where n is the number of spikes (n = 2 is

the folded string case). The large-spin asymptotic solution consists of n segments each
of which is conformally equivalent to the limit (4.6) of the folded string [53].

One may also find similar rigid string solutions with lnS scaling of E − S at large
spin with two non-zero spins S1, S2, i.e. moving in the whole AdS5 [16, 42, 54, 55, 43]
subject to the rigid string ansatz (3.24), i.e. t = κτ, ρ = ρ(σ), θ = θ(σ), φ1 =
ω1τ, φ2 = ω2τ . The simplest circular solution of that type is a round string [16] with
ρ = ρ0 = const, θ = π

4
, ω1 = ω2 and thus with S1 = S2 already discussed above in

(3.15)-(3.17). It does not, however, represent a state with a minimal energy for given
values of the spins. To get a stable lower-energy solution with S1 = S2 one is to relax
the ρ = const condition, allowing the string to develop, in the large spin limit, long arcs
stretching to infinity (i.e. to the boundary of AdS5) and carrying most of the energy.
Then for a particular S1 = S2 = S string of circular shape with with 3 cusps described
by an elliptic function limit of a general hyperelliptic solution of the Neumann model

(3.28) one finds for its energy [54, 43]: E = 2S + 3
2
×
√
λ
π

lnS + .... Similar open-string
solutions were discussed in [56].

Another important generalization of the folded spinning string in AdS3 is found by
adding an angular momentum J in S5, i.e. by assuming in addition to (4.1) that the string
orbits a big circle in S5, ϕ = ντ [15]. The AdS5 and S5 parameters are coupled via the
Virasoro constraint (4.2) which is modified to ρ′2 = (κ2 − ν2) cosh2 ρ− (ω2 − ν2) sinh2 ρ
so that the relations (4.3)–(4.4) have straightforward generalizations. The resulting
expression for the energy E =

√
λ E(S, J) (with J = ν) can be expanded in several

limits. In the short string limit with J� 1, S� 1 one finds [15]

E =

√
J2 + 2

√
λ S + ... . (4.9)

This limit probes the ρ ≈ 0 region of AdS5 where the energy spectrum should thus be
as in flat space, i.e. should be just a relativistic expression for the energy of a string
moving with momentum J and rotating around its c.o.m. with spin S, i.e. E2 − J2 =
2
√
λ S + .... If the boost energy is smaller than the rotational one, J2 � S, then

E ≈
√

2
√
λ S + O( J

2
√
S

). For strings with J � 1 and J
S
=fixed we get a regular “fast-

string” expansion as in (3.14),(3.23), E = J + S + λS
2J2 + .... In the limit when S is

large the string can become very long and its ends approach the boundary of AdS5. The
analog of the asymptotic solution (4.6) is

ρ = µσ, κ = ω, µ2 = κ2 − ν2 , κ, µ, ν � 1 . (4.10)

The spin S and µ are related by µ ≈ 1
π

ln S + ... so in the limit when κ, ω, µ, ν are large
with their ratios fixed, i.e. S� 1 with ` ≡ πJ

ln S
=fixed we get [57,48,58]

E = S +
√
J2 + λ

π2 ln2 S + ... = S +

√
λ

π
f0(`) lnS + ... , (4.11)

‡‡The spiky string is described (in conformal gauge) by a generalization of the ansatz in (3.24) dis-
cussed below.
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where f0(`) =
√

1 + `2. Again, the fast-string expansion in the limit when ln S� J (i.e.
` � 1) gives a regular series in λ [15], E = S + J + λ

2π2J
ln2 S

J
+ ..... This solution has

also a generalization to the case of winding along S1 in S5 [59, 61].
There is also an analog of the folded spinning string in S5 [14], where the string

is spinning on S2 with its center at rest. The corresponding ansatz is X1 + iX2 =
sinψ(s) eiwτ , X3 = cosψ(s) where ψ solves the 1-d sine-Gordon equation. The short
string (small spin) limit here gives again the flat-space Regge behaviour,

E =
√

2
√
λJ
(
1 + J

8
√
λ

+ ...
)
. For large spin E = J + 2

√
λ
π

+O(J−1).

There is a (J1, J2) generalization of this solution discussed in [39,60]. The AdS spiky
string of [52] also admits a generalization to the case of non-zero J or/and winding in
S1 of S5 [62]; in this case the spikes are rounded up.

Among other elliptic solutions let us mention also pulsating strings in AdS5×S5 that
generalize the flat space solution (3.8) [14, 63, 64, 40]; here the role of the spin is played

by the adiabatic invariant – the oscillation number N =
√
λ

2π

∫
dθpθ. It is interesting to

compare the large/small spin expansions of the classical string energy in the equations
(3.14),(3.16),(3.17),(3.19),(3.23) and (4.5),(4.8) with what one finds for pulsating string
solutions in AdS3 [63, 40] (N = N√

λ
)

E = N + c1

√√
λ N +O(N0) , N� 1 , c1 = 0.7622... (4.12)

E =

√
2
√
λ N

[
1 +

5N

8
√
λ

+O(N2)
]
, N� 1 , (4.13)

and R× S2 [63, 64]

E = N +
λ

4N
+O(N−2) , N� 1 , (4.14)

E =

√
2
√
λ N

[
1− N

8
√
λ

+O(N2)
]
, N� 1 . (4.15)

4.3 Spiky strings and giant magnons in S5

An important class of rigid strings that are described by a slight generalization of the
ansatz in (3.24) are strings with spikes [52, 65] and (bound states of) giant magnons
[66–68] with several non-zero angular momenta. Both the spiky strings in S5 and the
giant magnons can be described [69] by a generalization of the rigid string ansatz (3.24)
of [42, 35]. It is possible to show that the giant magnon solutions are a particular limit
of the spiky string solutions and that a giant magnon with two angular momenta can be
interpreted as a superposition of two magnons moving with the same speed. Consider
strings moving in Rt×S5 part of AdS5×S5 and described by the following generalization
of the rigid string ansatz in (3.24) [69]

t = κτ , Xi = zi(ξ) e
iwiτ , ξ ≡ σ + bτ , (4.16)

where zi = rie
iαi , zi(ξ + 2π) = zi(ξ). Here b is a new parameter. The 1-d mechanical

system for the functions zi that follows from (2.13) is an integrable model: a generaliza-
tion of the Neumann-Rosochatius one where a particle on a sphere is coupled also to a
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constant magnetic field. This ansatz describes the S5 analog of the AdS5 spiky string
of [52] with extra angular momenta [69]. The spiky string is built out of several arcs; in
the limit when J1 → ∞ with E − J1=finite the single arc is the giant magnon of [66]
with an extra momentum J2 [68] (see also [70,71]). In this limit κ→∞ and it is natural
to rescale ξ so that it takes values on an infinite line (a single arc is an open rather than
a closed string). Then

E − J1 =
√
J2

2 + λ
π2 sin2 p

2
, (4.17)

where p is related to the length of the arc and may be interpreted as a momentum of
the giant magnon [66]. The giant magnon may be viewed as a strong-coupling “image”
of the elementary spin-chain magnon on the gauge-theory side.

One may also find a generalization of the giant magnon with two finite angular
momenta J2, J3 [69]. A single-spin folded string in S2 [14] in the limit when the folds ap-
proach the equator can be interpreted [66] as a superposition of two magnons with p = π

and J2 = 0. A generalization to the case of J2, J3 6= 0 is E−J1 =
√
J2

2 + λ
π2 +

√
J2

3 + λ
π2 .

When J2 = J3 = 0, one recovers the expression for the energy of two giant magnons with

p = π, i.e. E − J1 = 2
√
λ
π

or the leading term in the folded spinning string energy in the
limit J1 →∞. Spiky strings with several spins were discussed also in [72–74].

Let us mention also some related rigid string elliptic solutions. A “helical” string so-
lution interpolating between the folded or circular spinning string and the giant magnon
with spin was constructed in [75]. Refs. [76, 77] found an “inverted” single-spike string
wrapping the equator of S2 in S5 (see also [78]). Ref. [79] (see also [80] for a review)
discussed a general family of “helical” string solutions in Rt × S3 (which are most gen-
eral elliptic solutions on Rt×S3) interpolating between pulsating and single-spike strings
which was obtained from the helical string of [75] by interchanging τ and σ in S3 co-
ordinates (this maps a string with large spin into a pulsating string with large winding
number).

4.4 Other approaches to constructing solutions

The integrability of the sigma model equations (2.12),(2.13) implies that one is able
to construct large relevant class of solutions – “finite gap” solutions in terms of theta-
functions [81]. Also one can construct new non-trivial solutions from given ones using
“dressing” [82] or Bäcklund transformations [83]. Using the dressing method one may
generate non-trivial solutions from simple ones, e.g., non-rigid or non-stationary (scatter-
ing) solutions from rigid string ones. Examples are scattering and bound states of giant
magnons with several spins and arbitrary momenta [72, 84] or the single-spike solution
of [76] from a static wrapped string and solutions with multiple spikes describing their
scattering [77]. Similar methods can be applied also in the open-string (Wilson loop)
setting [21] to find generalizations of the null cusp solution (4.7) [85].

An alternative approach to constructing explicit AdS5×S5 string solutions of (2.12)–
(2.14) is based on the Pohlmeyer reduction [25,32,33,18,66,68,75,86–89]. The basic idea
is to solve the Virasoro conditions (2.14) explicitly by introducing, instead of the string
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coordinates (YP , XM), a new set of “current”-type variables. Then (2.12)–(2.14) become
equivalent to a generalized sine-Gordon (non-abelian Toda) 2-d integrable system. Given
a solitonic solution of this system one can then reconstruct the corresponding string
solution by solving linear equations for (YP , XM) with Λ̃ and Λ in (2.12),(2.13) being
given functions of (τ, σ). For example, in the case of a string on Rt × S2 one may set
t = κτ and then the three 3-vectors Xi, ∂+Xi, ∂−Xi (i = 1, 2, 3) will have only one non-
trivial scalar product ∂+Xi∂−Xi ≡ κ2 cos 2α = −Λ. The remaining dynamical equation
takes the SG form: ∂+∂−α+ κ2

2
sin 2α = 0. The Pohlmeyer-reduced model for a string on

Rt×S3 is the complex SG model, while strings moving in AdS5 are related to generalized
sinh-Gordon-type models. The giant magnon corresponds to the SG soliton [66] while
its J2 6= 0 generalization – to charged soliton of the complex SG model [68]. Various
examples of solutions (multi giant magnons, spikes, etc.) obtained using this method can
be found in [75, 88–90]. The approach based on the Pohlmeyer reduction was recently
applied also to constructing open-string surfaces ending on null segments which generalize
the null cusp solution [91,92].
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Chapter II.2: Quantum Strings in AdS5 × S5

1 Introduction

The semiclassical study of strings in AdS5×S5 has played a key role in extending our
understanding of the AdS/CFT correspondence beyond the supergravity approximation.
The analysis of quantum corrections to the energies of strings with large charges has gone
hand-in-hand with the discovery and application of the integrable structures present in
the duality. In particular, it has been important for comparison with the Bethe ansatz
predictions for the anomalous dimensions of long operators and to understand the finite
size corrections of short operators.

Due to the presence of Ramond-Ramond fields one must make use of the Green-
Schwarz formalism for the string action, adapted to the AdS5×S5 geometry [1] (see [2]
for a brief introduction), 1 which to quadratic order in fermionic fields is

I = −
√
λ

4π

∫
d2σhabGµν∂ax

µ∂bx
ν − i

√
λ

2π

∫
d2σ

(
habδIJ − εabsIJ

)
θ̄I%aDbθ

J . (1.1)

Here we have used the rescaled worldsheet metric hab =
√
−ggab, the induced Dirac

matrices %a = ∂ax
µEµ

AΓA and the covariant derivative

Daθ
I =

(
∂a +

1

4
∂ax

µωµ
ABΓAB

)
θI +

1

2
%aΓ01234ε

IJθJ . (1.2)

Directly quantizing this action is beyond current methods and one must take a perturba-
tive approach, expanding about a given classical solution in powers of the effective string
tension,

√
λ. A classical solution is characterised by the conserved charges corresponding

to the AdS energy, E, two AdS spins, Si, and three angular momenta of the sphere, Js,
in addition to any parameters specifying further properties of the string such as non-
trivial winding. The Virasoro conditions provide a constraint on these parameters and
for the solutions we are interested in we can express the string energy as a function of the
remaining charges: E = E(Si, Js; kr). In the semiclassical approach one takes a string
solution where one or more of the rescaled charges are finite, Si = Si√

λ
or Js = Js√

λ
, and

computes the worldsheet loop corrections to the energy as an expansion in large tension,

E =
√
λ
[
E0(Si, Js; kr) +

1√
λ

E1(Si, Js; kr) +
1

λ
E2(Si, Js; kr) + . . .

]
. (1.3)

In general, calculating these corrections involves gauge-fixing the diffeomorphism and
kappa gauge invariance, and studying the fluctuations of the fields – bosonic, fermionic
and conformal ghosts from gauge fixing – about the classical solution. An important
point is that all UV divergences of the worldsheet theory cancel and, relatedly, the
conformal anomaly vanishes once the contribution from the path integral measure is
accounted for; thus the semiclassical expansion is well defined. On general grounds this
is expected as the string theory is of critical dimension and it was explicitly shown at

1One can also study strings in different backgrounds, AdS4×CP3 is of particular interest where many
results parallel the AdS5×S5 case. See [3].
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one-loop in [4] and [5]. 2 A solution which has played a particularly important role in
our quantitative understanding of the AdS/CFT duality is the spinning folded string
in AdS5, introduced in [6] and whose semiclassical analysis was initiated in [5]. In the
large spin limit [6–8], the difference between its energy E and spin S scales like lnS
with the coefficient being the universal scaling function, f(λ). This function provided
the first example of a result interpolating between weak and strong coupling which can
be calculated from the all-order asymptotic Bethe ansatz (ABA) [9,10] (see [11,12] for a
review of the all-order ABA). The one and two-loop semiclassical calculations [5,13–15]
have been shown to match the predictions of the string ABA [16–18] using the one-loop
phase factor [19–21] and its all-order generalisation [22, 10] in a very non-trivial test of
the duality and its quantum integrability (see [23] for a review of the ABA calculation
and references). We will discuss this solution, its generalisations and related solutions
in Sec. 2.3. While for the most part we focus on closed strings, similar semiclassical
analysis has also been applied to open strings: duals to cuspy Wilson loops, to Wilson
loops describing “quark–anti-quark” systems, [4, 24], to Wilson loops describing high
energy scattering [25] and more recently, dimensionally reduced amplitudes [26].

Another solution which has played a crucial role in our understanding of the quantum
string in AdS5×S5 is the BMN string, [27] [6] see also [2], which is the BPS solution dual
to the ferromagnetic vacuum of the spin chain description of the gauge theory. This
solution is the natural vacuum state in the light-cone quantization of the worldsheet
theory where the physical Hamiltonian, Hl.c., is proportional to P− = E− J , with J one
of the sphere angular momenta. 3 Finding quantum string energies, E, corresponds to
computing the spectrum of the Hl.c.. Unfortunately the exact light-cone Hamiltonian has
a non-polynomial form [30, 34] and is not a suitable starting point for “first-principles”
quantization. One can, however, solve for the spectrum perturbatively. At leading
order the theory is simply that of free massive fields [27, 35] while at subleading orders
[36,29,30,37,32] the interactions are somewhat more complicated and, due to the gauge
fixing, do not respect worldsheet Lorentz invariance. Alternatively, as the worldsheet
theory is integrable, it is possible to find the spectrum of the decompactified theory, via
the ABA, by calculating the worldsheet S-matrix [17], [16, 18]. A review of the exact
form of this S-matrix and its properties can be found [12], in this review we will restrict
ourselves to briefly describing its perturbative calculation (for a more thorough review
see [38]).

2 Quantum spinning strings

We will, as an illustrative example, consider the the folded spinning string [6], [5], see
also [2]. This solution describes a string extended and rotating with spin, S, in an AdS3

2 Particular care must be taken with the fermionic fields. Importantly, they couple to the worldsheet
metric rather than the zweibein and so contribute to the conformal anomaly four times the usual 2-d
Majorana fermion amount.

3There are essentially two ways to fix the light-cone gauge in AdS5×S5, which differ by picking
inequivalent light-cone geodesics. In one case, which is possible only in the Poincaré patch, the light-
cone directions lie entirely in AdS5 [28]. In our case the light-cone is shared between AdS5 and S5
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(a) (b)

Figure 1: In (a) we show the classical folded spinning string moving in AdS3

⊂ AdS5 at a certain time (dark solid line) and earlier/later times (dashed lines).
The quantum fl uctuations, corresponding to oscillations transverse (light wavy
lines) to the classical solution, acquire mass due to the background curvature. In
(b) we show the motion of the string on the sphere, essentially a point moving
along a great circle, with its fl uctuations again seeing more of the geometry.

subspace of AdS5 while additionally moving along a great circle of the S5 with angular
momentum J (see Fig. 1). In terms of the global coordinates

ds2
AdS5

= − cosh2 ρ dt2 + dρ 2 + sinh2 ρ
(
dθ 2 + cos2 θ dφ 2

1 + sin2 θ dφ 2
2

)
, (2.1)

ds2
S5 = + cos2 γ dϕ2

3 + dγ 2 + sin2 γ
(
dψ2 + cos2 ψ dϕ2

1 + sin2 ψ dϕ2
2

)
, (2.2)

the string solution is given by θ = γ = ψ = π
2
,

t = κ τ , φ 2 = ωτ , ρ = ρ (σ ) = ρ (σ + 2π ) , ϕ2 = ν τ . (2.3)

The equations of motion and the conformal constraints are satisfi ed provided

ρ ′′ = (κ 2 − ω2) sinh ρ cosh ρ , ρ ′2 = κ 2 cosh2 ρ − ω2 sinh2 ρ − ν 2 , (2.4)

and the other fi elds are zero. This string can be thought of as four segments: the fi rst,
for 0 ≤ σ ≤ π

2
, extends from the origin of the AdS5 space along the radial direction to

a maximum ρ ( π
2
) = ρ 0 i.e. ρ ′( π

2
) = 0. The string then turns and runs back along itself

to the origin, this then repeats before the string closes on itself. In fact, this solution is
generically rather complicated however, in various limits it simplifi es dramatically.

2.1 Quantum corrections

It is possible to extract the one-loop correction to the energy by various means though, of
course, all give identical results. The most direct method is to fi x a physical gauge, such as
light-cone, solve the resulting constraints and quantise the remaining degrees of freedom;
the correction to the AdS energy of the string is the correction to the two-dimensional
energy of the vacuum state. However, for many purposes, and particularly for more

e.g. [29–33].
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complicated solutions at higher orders, the most convenient method, introduced in this
context by [14,26,13] and most completely described in [39,40], is to relate the correction
to the energy to the calculation of the worldsheet effective action. 4As in standard QFT,
and in analogy with the thermodynamic Gibbs free energy, in the presence of a non-
trivial background solution, ϕc(x), the expectation value of the conjugate source, J(x),
is given by the functional derivative of the effective action, Γ[ϕc(x)], which is simply the
Legendre transform of the vacuum energy functional. For the theory we are interested
in the sources are simply the conserved charge densities, such as E, S and J. These
are conjugate to time derivatives of the fields and so the background is specified by the
constant parameters e.g. κ, ω, and ν. Thus

1

T
Γ(κ, ω, ν) = − i

T
ln 〈eiH2dT 〉+ κ〈E〉 − ω〈S〉 − ν〈J〉 (2.5)

where T →∞ is the worldsheet time interval. Due to the classical Virasoro constraints
not all parameters are independent e.g. κ = κ(ω, ν). Furthermore, the energy functional
vanishes as 〈H2d〉 = 0 due to the quantum conformal constraint. The charges are thus
found from the effective action by e.g.

1

T

∂Γ(ω, ν)

∂ν
=
∂κ(ω, ν)

∂ν
〈E〉 − 〈J〉 . (2.6)

Hence, we need only calculate the worldsheet effective action to determine the corrections
to the string charges. In general, the leading quantum correction to the effective action,
Γ1, is found by expanding the Lagrangian, L, about a classical solution, ϕ = ϕc + ϕ̃, and
performing the Gaussian integral

Γ1 =
i

2
log det

[
− δ2L

δϕ̃δϕ̃

]
=
i

2
Tr log

[
− δ2L

δϕ̃δϕ̃

]
. (2.7)

For the string theory we must include not only the bosonic fluctuations but also those
of the fermionic and the ghost fields which give inverses of determinants.

In general the effective action is an extrinsic quantity. 5 This can be seen by consid-
ering the simple case where the quadratic fluctuation operator is given by K = −∂2 +m2

with constant masses, m. Fourier transformed this is K̃ = −ω2 + n2 +m2, and so

Γ1 =
iT

2

∫
dω

2π

∑
n

log
(
−ω2 + n2 +m2

)
=
lT

2

∫
d2pE
(2π)2

log
(
p2
E +m2

)
(2.8)

where in the last identity we have Wick rotated to Euclidean signature and taken the
extent of the spatial direction, l, to also be large. Note that by performing the integration
over ω in this constant mass case, or in fact for any stationary solution, one recovers
the sum over fluctuation frequencies which gives the more common expression for the
correction to the string energy c.f. appendix A [5]. 6

4There is yet another method, essentially a generalisation of the WKB formula, for finding the leading
quantum correction to periodic solutions due to Daschen, Hasslacher and Neveu [41]. Such methods
were applied to the semiclassical quantization of the giant magnon [42] in [43]

5Strictly speaking all our considerations are only valid in the large volume limit and under the
assumption that interactions are local.

6It is also possible to make use of the integrable structure and extract the fluctuation frequencies
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2.2 Point-like BMN string

If we consider the case ω = 0, κ = ν, for (2.3), this forces ρ0 = 0 and so corresponds to
the point-like BMN string rotating only in the S5 (see Fig. 1 (b)). As mentioned in the
introduction, this solution plays a fundamental role in our understanding the quantum
string. Here we merely calculate the one-loop correction to its classical AdS energy
E0 = J =

√
λκ.

It is convenient to switch to Cartesian coordinates: (ρ, θ, φ1, φ2) → zk, k = 1, ..., 4
and (γ, ψ, ϕ1, ϕ3)→ ys, s = 1, ..., 4 such that

ds2 = −
(1 + 1

4
z2)2

(1− 1
4
z2)2

dt2 +
dzkdzk

(1− 1
4
z2)2

+
(1− 1

4
y2)2

(1 + 1
4
y2)2

dϕ2
3 +

dysdys
(1 + 1

4
y2)2

. (2.9)

Now, expanding near zk = ys = 0,

t = ντ +
t̃

λ1/4
, zk =

z̃k
λ1/4

, ϕ2 = ντ +
ϕ̃

λ1/4
, ys =

ỹs
λ1/4

, (2.10)

the bosonic terms of the action (1.1), in conformal gauge, give the quadratic term 7

IB = − 1

4π

∫
d2σ

[
− ∂at̃∂at̃+ ∂ϕ̃∂aϕ̃+ ν2(z̃2 + ỹ2) + ∂az̃k∂

az̃k + ∂aỹs∂
aỹs

]
. (2.11)

This action corresponds to two massless longitudinal fluctuations t̃ and ϕ̃, plus eight
free, massive scalars, with mass m = ν. For the fermions we find for the induced Dirac
matrices %0 = κ Γ− and %1 = 0 so that the action becomes

IF =
iν

2π

∫
d2σ

[
θ̄1Γ−∂+θ

1 + θ̄2Γ−∂−θ
2 − 2νθ̄1Γ−Πθ2

]
(2.12)

where we have defined ∂± = ∂0±∂1, Γ± = ∓Γ0 +Γ9 and Π = Γ1234. Furthermore because
of the form of the fermionic kinetic operator it was natural to choose the kappa-gauge
fixing Γ+θI = 0 which simplified the mass term. This action corresponds to eight free,
massive fermionic excitations, with m = ±ν. Finally, one must include contributions
from the conformal bosonic ghosts, however for the cases in which we are interested, as
was shown in [4, 5], the ghost contribution is essentially trivial. Their only effect is to
cancel the two massless longitudinal bosonic fluctuations.

As the masses of the transverse bosons and physical fermions are equal one immedi-
ately sees that the ratio of fluctuation determinants cancels and the one-loop effective
action is zero. Thus the correction to the AdS energy, (2.5), 〈E−J〉 = 1

κT
Γ is zero which

is exactly as expected as this state is BPS. As we will see later, it provides a sensible
vacuum about which to study fluctuation interactions.

from the string algebraic curve. While this powerful method is widely used in the calculation of quantum
corrections we will not discuss it here, but simply refer the reader to [44] for a review and references.

7We note that this is essentially the same action as that found by expanding the action for a string in
the plane-wave geometry, [35], ds2 = dx+dx−+ 1

4x
2dx+dx++dxidxi about the solution x+ = 2ντ [27,35].
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2.3 Spinning folded string

While for the BPS solution we find zero correction to the string energy, a generic spinning
string solution spontaneously breaks supersymmetry and we expect to find a non-trivial
correction at one-loop. We will consider the so-called “semi-classical scaling” or long-
string limit of the spinning string solutions, see [7, 8] and also [39],

S� J� 1, with ` ≡ J

2 ln S
. (2.13)

As discussed at length in [8, 39], upon taking ω = κ the solution simplifies dramatically
becoming homogeneous so that ρ(σ) = µσ. The conformal gauge condition becomes
κ =

√
µ2 + ν2 and in this limit of large spin, µ = 1

π
ln S and ` = ν

µ
.

As µ is thus very large, by rescaling the worldsheet coordinate σ such that ρ = σ,
we find the string length l = 2πµ becomes infinite. The folded string becomes two
overlapping, infinite, open strings. One can further expand in small `, the so called
“slow long string limit”, [8, 39]. In this further limit the quantum string energy is given
by

E − S =

√
λ

π
f(λ) lnS , (2.14)

where f(λ) is the universal scaling function. At leading order this can be checked by
expanding the classical energy which is given by E0 − S = µ

√
1 + `2. We will see this

form persists at subleading orders in the semiclassical expansion, i.e. there are no lnk S
terms, and furthermore we can calculate the numerical coefficients [5, 8, 13, 39]

f(
√
λ) = 1− 3 ln 2√

λ
− K

λ
+ . . . (2.15)

where K is the Catalan constant.
To calculate these coefficients we expand about the homogeneous, J = 0 solution,

t̂ = κτ , ρ̂ = κσ, θ̂ = π
2
, φ̂2 = κτ , and (following [5] closely, where full details can be

found) we again consider the conformal gauge action.

Bosons The bosonic action (1.1) to quadratic order in fluctuations (using coordinates
(2.1) for the AdS5 space but (2.9) for the sphere) is

IB = − 1

4π

∫
d2σ

[
− cosh2 ρ̂(∂t̃)2 + sinh2 ρ̂(∂φ̃2)2 + 2κ sinh ρ̂ρ̃(∂0t̃− ∂0φ̃2)

+(∂ρ̃)2 + sinh2 ρ̂((∂θ̃)2 + θ̃2(∂φ1)2 + κ2θ̃2) + (∂φ̃3)2 +
∑
s

(∂ỹs)
2
]

(2.16)

where e.g. (∂t)2 = ∂at∂
at. In this expression the coefficients depend on the worldsheet

coordinates, however by making the field redefinitions

χ̄ = 1
2

sinh 2ρ̂ (φ̃2 − t̃) , ξ̄ = − sinh2 ρ̂ φ̃2 + cosh2 ρ̂ t̃ , θ̄ = sinh ρ̂ θ̃ ,

ρ̄ = ρ̃ , x̄1 = θ̃ cosφ1 , x̄2 = θ̃ sinφ1 , (2.17)
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this can be put in the form

IB = − 1

4π

∫
d2σ

[
(∂χ̄)2 − (∂ξ̄)2 + (∂ρ̄)2 + 4κ(∂1χ̄)ξ̄ − 4κ(∂0χ̄)ρ̄

+
∑
i

(
(∂x̄i)

2 + 2κ2x2
i

)
+ (∂φ̃3)2 +

∑
s

(∂ỹs)
2
]
. (2.18)

It is now straightforward to calculate the determinant of the fluctuation operator

det KB = −(∂2)7(∂2 + 2κ2)2(∂ + 4κ2) (2.19)

corresponding to two scalars with mass
√

2κ, one with mass 2κ and seven massless scalars
– two from the AdS space, five from the sphere.

Fermions Substituting the classical solution in the expressions for the induced Dirac
matrices we find (where the flat index 0 is the homologue of t, 1 corresponds to ρ, and
2 to φ2)

%0 = κ Γ0 (cosh ρ̂− sinh ρ̂ Γ02) , %1 = κ Γ1 . (2.20)

Using the expression for the quadratic action (1.1), we again find that the dependence
on the worldsheet coordinates can be removed by a field redefinition

θI = SΨI , with S = exp
(
κσ
2

Γ02

)
, (2.21)

such that the corresponding transformations of the induced Dirac matrices are

τ0 = S−1%0S = κ Γ0 , and τ1 = S−1%1S = κ Γ1 . (2.22)

Making use of the relevant terms of the spin connection, ωt
01 = sinh ρ and ωφ2

41 =
cosh ρ cos θ, one can show that the portion of the covariant derivative that couples to
the background curvature, Da = ∂a + 1

4
ωABa ΓAB, essentially becomes trivial: S−1DaS =

∂a +Ba where ηabτaBb = εabτaBb = 0. Thus the fermionic action can be written as

IF =
i
√
λ

2π

∫
d2σ (ηabδIJ − εabsIJ)(Ψ̄Iτa∂bΨ

J + 1
2
εJKΨ̄IτaΓ01234τbΨ

K) . (2.23)

As can be seen from the form of the kinetic operator one can fix the fermionic kappa-
symmetry by imposing Ψ1 = Ψ2 = Ψ resulting in the fermion action 8

IF =
i
√
λ

π

∫
d2σ Ψ̄I(τa∂a + iM)Ψ , where M = iκ2Γ234 . (2.24)

Of the eight physical fermions four have mass κ and four have −κ, thus

det KF = (∂2 + κ2)8 . (2.25)

8While it is not relevant for the case at hand in general one must be careful with the boundary
conditions imposed on the fermions which can be subtle. See [45] for a discussion.
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Energy Correction To determine the correction to the energy we must evaluate the
sum over momenta. As we are interested in the leading term in the large κ expansion
we can treat the worldsheet, after rescaling by κ, as having infinite extent and so the
worldsheet momenta are continuous. In momentum space the one-loop effective action
is (having taken into account the conformal ghosts which cancel two massless bosons)

Γ1 =
1

2
V2

∫
d2p

(2π)2

[
ln(p2 + 4) + 2 ln(p2 + 2) + 5 ln p2 − 8 ln(p2 + 1)

]
(2.26)

where we recall that two-dimensional volume is given by V2 = 2πκ2T . While the complete
expression is finite the individual terms are divergent so we introduce a cut-off at inter-
mediate stages to perform the integration. The quadratic and logarithmic divergences
cancel and the finite result is

〈E − S〉 |one−loop =
1

κT
Γ1 = −3 ln 2

π
lnS (2.27)

which is the leading correction to the universal scaling function. We note that the lnS
dependence arises from the fact that the effective action is proportional to the worldsheet
volume as, in the scaling limit, we can completely remove κ from the action. This remains
true at all orders.

Generalisations The two-loop calculation of the universal scaling function was carried
out in [13–15]. The equivalence [26] of the spinning folded string, in the l→∞ limit, to
the null cusp Wilson loop solution [46] plays a key role in these calculations; as does a
form of the action with particularly simple fermions [47]. One can obviously include the
effects of non-zero J by keeping finite ν, or equivalently `, dependence. The generalised
one-loop calculation in the “long string” limit was performed in [8] and the two-loop
analysis in [39,40,48]. Here, it is necessary to take into account the quantum corrections
to the Virasoro condition and to the relations between solution parameters and charges
as described in Sec. 2.1. Furthermore, the calculation is simplified by using a light-
cone gauge [28] adapted to a geodesic entirely in the AdS5 space. These results match
those found from the ABA [49]. These calculations thus provide vigorous checks of the
two-loop finiteness of the worldsheet theory and the underlying quantum integrability.

2.4 Circular spinning strings

While the energies of spinning folded strings have provided stringent checks of ABA
the relationship is slightly complicated. It is a separate class of solutions, rigid circular
spinning strings (see [2] for a review and further references), whose energies are most
transparently related to the strong coupling expression for the S-matrix entering the
ABA. The simplest circular strings come in two types: the so-called su(2) circular strings
moving on a S3 ⊂ S 5, [50], and the sl(2) circular strings lying in AdS3×S1 ⊂ AdS5×S5

[51].
The computation of the one-loop correction to the energies of the su(2) [52, 53] and

sl(2) [54,19,55,56] strings 9 played a key part in discovering the presence of the one-loop

9An early semiclassical analysis of circular strings in AdS was performed in [57].
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term [20] in the phase in the strong-coupling (or “string”) form of the Bethe Ansatz
[16–18].

The (S, J) string solution of [51] has a spiral-like shape, with projection to AdS3

being a constant radius circle (with winding number k), and projection to S5 – a big
circle (with winding number m). The corresponding spins are, respectively, S and J
with the Virasoro condition implying that u ≡ S

J
= −m

k
. Expanding the classical energy

in large semiclassical parameters S and J with fixed k and u [51, 54] we have

E0 = S + J +
λ

J
e1(u, k) +

λ2

J3
e3(u, k) +

λ2

J5
e5(u, k) + ... . (2.28)

For circular strings the expressions for the fluctuation frequencies are sufficiently com-
plicated that they must be expanded in J to be evaluated and subsequently summing
over modes becomes slightly subtle [54, 58, 53, 59, 19, 55, 60, 56]. The correct procedure,
given in [19] for the sl(2) case (see also [56] for the su(2) case), gives two types of terms
for the one-loop correction, E1 = Eeven

1 + Eodd
1 , where

Eeven
1 =

λ

J2
g2(u, k) +

λ2

J4
g4(u, k) + ... , Eodd

1 =
λ5/2

J5
g5(u, k) + ... . (2.29)

The absence of the 1
J

and 1
J3 terms suggests that the two leading λ

J
and λ2

J3 terms receive
no quantum corrections and their coefficients should directly match weak coupling gauge
theory results. Indeed, the coefficient g2 of the “even” 1

J2 term in (2.29) can be reproduced
as a leading 1

J
(finite spin chain length) correction from the one-loop gauge theory Bethe

Ansatz [53, 58]. At the same time, the presence of the non-analytic term λ5/2

J5 in (2.29)
implies that a similar 1

J5 term in the classical energy (2.28) is not protected so that its
coefficient cannot be directly compared to three-loop result on the gauge theory side
which implies [19] that the corresponding “string” Bethe Ansatz [16] should be modified
to contain a non-trivial one-loop correction to the phase. This phase was determined by
directly matching to higher orders in this expansion [20,21].

2.5 Finite size effects and short operators

Semiclassical analysis can also be applied to strings of finite length and even, to a certain
degree, short strings. For the folded spinning string, Sec. 2.3, the large S corrections to
the one-loop calculation were analysed in [61] and the exact one-loop expression for the
fluctuation determinants was found in [62] (for two-loop results see [48]). The one-loop
correction to the small spin or short string limit of the string were calculated in [63] and
the generalisation with non-zero J in [64]. Short, excited strings dual to operators in the
Konishi multiplet are particularly important in testing the conjectured exact results for
the spectrum at finite volume. The correction to their energies at strong coupling was
calculated semiclassically, with caveats regarding the validity of these methods in this
regime, in [65]. For the circular spinning strings, in addition to the energy correction
(2.29), a careful analysis shows the presence of exponential corrections, O(e−J) [55,56,66].
Similar exponential corrections are found for quantum corrections to finite-sized giant-
magnons calculated using algebraic curve methods (see [44]). Such corrections cannot

138



Chapter II.2: Quantum Strings in AdS5 × S5

be accounted for by modifying the phase in the BA but rather arise from finite volume
effects. See [67] for reviews and references.

3 Perturbative light-cone quantization

As we saw in Sec. 2.2, the string action expanded about the BMN string is particularly
simple and is exactly solvable to quadratic order in fluctuations. This string solution
provides a sensible vacuum about which to perturbatively quantize the AdS5×S5 Green-
Schwarz string [36, 29, 30, 32, 68]. In this context it is natural to make use of light-cone
gauge, introducing the coordinates and momenta, pµ = h0aGµν∂ax

ν ,

x+ =
1

2
(t+ φ) , x− = φ− t , p− =

1

2
(pφ − pt) , p+ = pφ + pt (3.1)

where we focus on the bosonic fields for simplicity. The Hamiltonian density H =
pµẋ

µ − L is given by

H = −h
τσ

hττ
(x′µpµ) +

1

2hττ
(pµG

µνpν + x′µGµνx
′ν) , (3.2)

with the notation x′ = ∂σx and ẋ = ∂τx. As is usual in theories with general coordinate
invariance, the Hamiltonian is a sum of constraints times Lagrange multipliers.

To impose light-cone gauge one sets x+ = τ and p− = const. The metric coefficients
1/hττ and hτσ/hττ act as Lagrange multipliers, generating delta functions that impose
two constraints which determine x− and p+ in terms of the transverse variables (and
the constant p−). 10 The transverse coordinates and momenta xA, pA A = 1, . . . , 8 will
then have dynamics which follow from the light-cone Hamiltonian −p+ = Hlc. The first
constraint, or level-matching constraint, yields x′− = −x′ApA/p−. While solving the
quadratic constraint equation for p+ we obtain the somewhat dispiriting result

−Hlc =
p−G+−

G−−
+
p−
√
G

G−−

√
1 +

G−−
p2
−

(pAGABpB + x′AGABx′B) +
G2
−−

p4
−

(x′ApA)2 , (3.3)

with G ≡ G2
+− − G++G−−. 11 Using the relation between the canonical momenta and

the target space charges we have

E − J = −P+ =
√
λ

2π

∫ 2π

0

dσ Hlc ,
1
2
(E + J) = P− =

√
λ

2π

∫ 2π

0

dσ p− . (3.4)

Perturbative expansion To make progress we perform the large tension expansion:
rescaling the transverse fields by λ−1/4 and expanding in large

√
λ, or equivalently P− =

10In fact, the constraints determine the derivatives of x− and so x− itself is non-local in this gauge.
This has important consequences for the “off-shell” symmetry algebra.

11We have made use of the fact that the AdS5 ×S5 metric, (2.9), rewritten in light-cone coordinates,
(3.1), has no G+A or G−A components.
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√
λp− ∼ J , while keeping −P+ = E − J fixed. Being careful with the expansion of the

G−− terms, see e.g. [30], one finds the first two orders,

Hpp
lc =

1

2p−

[
(ṗA)2 + (x′

A
)2 + p2

−(xA)2
]

+
1

4
√
λp−

(
z2(p2

y + y′2)− y2(p2
z + z′2) + 2z2z′2 − 2y2y′2

)
, (3.5)

where beyond leading order the eight transverse fields split into two sets of four, xA =
(zi, ys). One can remove the dependence on the density p− by rescaling the worldsheet
coordinates, and thus we see that we are taking the large charge limit but keeping the
worldsheet compact.

The leading order term is simply the plane-wave Hamiltonian whose spectrum consists
of an infinite tower of non-interacting massive oscillators,

xA(σ, τ) =
∞∑

n=−∞

xAn (τ)e−inσ , xAn (τ) =
i√
2ωn

(aAn e
−iωnτ − aA†−neiωnτ ) , (3.6)

where n ∈ Z, ωn =
√
p2
− + n2, and the raising and lowering operators obey the usual

commutation relations. One can straightforwardly include the fermions, though the
subleading interaction terms become somewhat involved [29,30,32]. At leading order one
again gets massive oscillators, bαn, α = 1, . . . , 8 and thus the full plane-wave Hamiltonian,
Hpp, is

Hpp =
1

p−

∞∑
n=−∞

ωn

(
aAn
†
aAn + bαn

†bαn

)
, (3.7)

where one can immediately see that the energy of the vacuum state, |Vac〉, corresponding
to a string with charge P− vanishes.

Near-BMN energy spectrum The quartic terms give rise to corrections of order
O(1/J), the effects of which can be perturbatively included in the spectrum. In the
simple case where we consider a single complex boson from the sphere y = y1 + iy2, the
leading correction to the two excitation state a†na

†
−n|P−〉 is

E − J = 2
√

1 + λ′n2 − 2
λ′n2

J
+
NB(n2)

J
(3.8)

with λ′ = λ/J2 an effective coupling. Due to the form of the interactions there is a
normal ordering ambiguity, here characterised by the arbitrary function NB(n2). There
are related functions in the correction to all energies and they are fixed by demanding
that the full spectrum possess the underlying global psu(2, 2|4) symmetry. This implies,
for example, NB = 0. Equivalently, they could be fixed by demanding that the algebra
of generators, including the Hamiltonian, is satisfied at this order. These expressions for
string energies can be compared to the string ABA [37, 31, 32, 68] and were one of the
first pieces of evidence for a non-trivial dressing phase interpolating between strong and
weak coupling.
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3.1 Worldsheet S-matrix

As the theory in light-cone gauge has only massive particles, we can study the interactions
by calculating the worldsheet S-matrix. Modulo issues of gauge dependence 12 this
object should match the spin chain S-matrix introduced in [17], see [12] for reviews. The
perturbative study of the worldsheet S-matrix was initiated in [70] while its symmetries
and many properties were analysed in [71,72] (see [38] for an extensive review). To define
the S-matrix one must consider the theory on the plane: this corresponds to scaling p−
out of the action and taking the decompactification limit p− → ∞. In order to define
free, asymptotic states for generic momentum one relaxes the level matching condition
and then studies the interactions in powers of

√
λ or equivalently in a small (worldsheet)

momentum expansion.

Asymptotic states Of the global group, the light-cone gauge preserves a subset
PSU(2|2)L × PSU(2|2)R ⊂ PSU(2, 2|4). The bosonic subgroup of each PSU(2|2) fac-
tor consists of two SU(2) groups and it is useful to introduce a bispinor notation for
the physical bosons Zαα̇ = (σi)αα̇z

i , Yaȧ = (σs)aȧy
s and fermions, Ψaα̇,Υαȧ, which

are charged under different combinations of the SU(2)’s. One may define superindices
A = (a|α) and Ȧ = (ȧ|α̇) combining all asymptotic fields creating incoming or outgoing

particles into a single bi-fundamental supermultiplet of which we will denote by Φ
(in/out)

AȦ
.

The S-matrix. The two-particle S-matrix is a unitary operator relating in- and out-
states. In the basis ΦAȦ(p), so that |ΦAȦ(p)ΦBḂ(p′)〉(in) = Φ

(in)

AȦ
(p)Φ

(in)

BḂ
(p′)|Vac〉, its

matrix representation is

S |ΦAȦ(p)ΦBḂ(p′)〉(in) = |ΦCĊ(p)ΦDḊ(p′)〉(out) SCĊDḊ
AȦBḂ

(p, p′) . (3.9)

Before gauge fixing the worldsheet theory is classically integrable [73]; since fixing light-
cone may be interpreted as expanding about the BMN solution and solving some of
the equations of motion, the gauge-fixed theory is also expected to be integrable at
the classical level. In such an integrable theory, the S-matrix, invariant under a non-
simple product group, must be a tensor product of S-matrices for each of the factors (see
e.g. [74])13

S = S⊗ S , SCĊDḊ
AȦBḂ

(p, p′) = SCDAB (p, p′)SĊḊ
ȦḂ

(p, p′) . (3.10)

It is important to note that a factorised tensor structure does not follow solely from the
PSU(2|2)×PSU(2|2) symmetry considerations; confirming group factorisation is thus an
important test of integrability.

12The S-matrix is gauge-dependent, since unlike the spectrum it is not a physical object with a clear
target-space interpretation. The differences between gauges can be attributed to the definition of the
string length [17]. The difference in the definition of length and the gauge-dependence of the S-matrix,
mutually cancel in the Bethe equations [32,69].

13This can be understood as a requirement that the Faddeev-Zamolodchikov algebra is also a direct
product: the field ΦAȦ is represented by a bilinear in oscillators: ΦAȦ ∼ zAzȦ each transforming under
one of the PSU(2|2) factors [72]. The two sets of oscillators mutually commute. The braiding relations
for each of these sets are determined by an PSU(2|2)-invariant S-matrix S consistent with the Lagrangian
of the theory.
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The first nontrivial order in the expansion of the S-matrix in the coupling constant
2π/
√
λ defines the T-matrix

S = I+
2πi√
λ
T+O

(
1

λ

)
. (3.11)

which inherits the factorised form T = I ⊗ T + T ⊗ I from the S-matrix. Furthermore,
since SU(2) × SU(2) ⊂ PSU(2|2) is a manifest symmetry of the gauge-fixed worldsheet
theory, T may be parametrised in terms of ten unknown functions of the momenta p and
p′. These functions, to leading order in 1/

√
λ, can be easily extracted from the matrix

elements of quartic terms of the light-cone Hamiltonian (3.5) (see [70] where explicit
expressions for T can be found). Equivalently one can Legendre transform with respect
to the transverse fields to find the light-cone Lagrangian and then use the usual LSZ
reduction to calculate the worldsheet scattering amplitudes perturbatively.

Properties of the S-matrix

• The explicit perturbative calculation does indeed show that the two-body S-matrix
has the factorised form (3.10). Furthermore, it can be explicitly checked to leading
order that the ten functions in the T-matrix agree with the corresponding functions
in the strong coupling BA S-matrix. It can be shown explicity that there is no two-
to-four particle scattering [70].

• In calculating the S-matrix we relax the level-matching constraint. In this “off-
shell” formulation of the theory the symmetries become extended by two ad-
ditional central charges related to the worldsheet momentum [71] (the same as
found in the spin chain [75]). Furthermore, as the supersymmetry generators,
Q ∼

∫
eix
−

Ω(Z, Y,Υ,Ψ), depend on the zero mode of the longitudinal coordinate,
x− ∼

∫
dσ∂σx

−, there is a mild non-locality in the action of the symmetries which
thus satisfy a Hopf algebra [70,72].

• The integrable structures of the perturbative string S-matrix have been further
studied including the construction of the classical r-matrix e.g. [76]. Furthermore,
assuming the quantum integrability of the full worldsheet theory, and using the
global symmetries, the worldsheet S-matrix was uniquely determined up to an
overall phase. We refer the reader to [12, 77] for a more complete discussion of
these and other exact properties of the worldsheet S-matrix.

3.2 Simplifying Limits

Due to the complexity of the world sheet theory, going beyond the leading perturbative
term is challenging. One simplifying limit which has proved useful is the “near-flat
limit” [78]. This limit corresponds to studying the worldsheet near a constant density
solution boosted with rapidity λ1/4 in the worldsheet light-cone direction, σ−. The left-
and right-moving excitations on the worldsheet scale differently and the right movers
essentially decouple. The resulting theory has only quartic interactions and is much
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more tractable. The one-loop and two-loop [79] corrections to the S-matrix have been
calculated and shown to match the all-order conjecture [22]; furthermore factorization at
one-loop was explicitly shown. In the two-loop calculation radiative corrections induce
a correction to the relativistic dispersion relation which corresponds to the expansion
of the sine function, natural from a spin chain perspective, which appears in the exact
dispersion relation [75].

Another interesting formulation of the theory is found via a generalisation of the
Pohlmeyer reduction [80] which is used to relate, at a classical level, the string theory on
AdS5×S5 to a massive, Lorentz invariant theory which only involves the physical fields.
Applied to strings on R×S3 this method consists of gauge fixing and solving the Virasoro
constraints so that the remaining degree of freedom satisfies the sine-Gordon equation
of motion [81]. Generalised to the full superstring [82] the reduced theory is a massive
deformation of a gauged WZW model with an integrable potential. The resulting model
has been explicitly shown to be UV finite to two-loops and there is evidence that the
equivalence to the standard formulation persists at the quantum level [83]. The two-
particle S-matrix was calculated in this formalism in [84] where it was shown that it has
the appropriate group factorisation properties. Being manifestly Lorentz invariant this
formalism may provide a better basis for understanding the quantum theory.
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Chapter II.3: Sigma Model, Gauge Fixing

1 Introduction

The list of topics reviewed in this chapter is the following. First, we review the classical
action of AdS5 × S5 superstring theory as a supercoset model and its symmetries. The
next topic concerns the integrability of that model and two important objects related
to it, the Lax pair and the monodromy matrix. For all these aspects, a key role is
played by a Z4 grading of the superalgebra psu(2, 2|4). The integrability property is
then discussed from a Hamiltonian point of view. More precisely, it is recalled how to
prove that an infinite number of conserved quantities are in involution. The first part of
this chapter ends by recalling how factorized scattering theory is used in the quantum
case. The second part of the review deals with gauge fixing, in particular with the so
called uniform light-cone gauge, which is adapted to apply factorized scattering theory
and to test the AdS/CFT conjecture. This chapter ends with some aspects related to
the pure spinor formulation.

Note The topics reviewed here are restricted on purpose. The main references related
to these topics are indicated in the last section.

2 Classical integrability

2.1 Action as a coset model and its symmetries

Metsaev-Tseytlin Action The action is of the sigma-model type on the coset super-
space1

G/H = PSU(2, 2|4)
/[
SO(4, 1)× SO(5)

]
, (2.1)

together with a Wess-Zumino term [2]. This is therefore a generalization of the situa-
tion encountered in the flat case [3]. The bosonic part of the coset defined by (2.1) is
SO(4, 2)/SO(4, 1) × SO(6)/SO(5) which corresponds to AdS5 × S5. The Lie superal-
gebra su(2, 2|4) is a non-compact real form of sl(4|4), which can itself be spanned by
the 8 × 8 matrices written in 4 × 4 blocks and whose supertrace (Str) vanishes. Here
StrM = TrA−TrD where A and D are the top and bottom diagonal 4×4 blocks of the
matrix M . The superalgebra g = psu(2, 2|4) is then obtained by quotienting su(2, 2|4)
over the u(1) factor corresponding to the identity. In the following, {tA} denotes a
corresponding basis of g, ηAB = Str(tAtB) and ηAB its inverse.

The coset (2.1) is associated with an automorphism Ω of order 4 of g. This means
that g admits a Z4 grading:

g = g(0) ⊕ g(1) ⊕ g(2) ⊕ g(3) (2.2)

with g(0) = h = so(4, 1) ⊕ so(5) and [g(m), g(n)] ⊂ g(p) with p = m + n mod 4. The
generators of g(0) and g(2) are even while those of g(1) and g(3) are odd. The supertrace

1More precisely, one needs to consider the universal cover as the physical space AdS5 is a universal
cover, see [1].
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Chapter II.3: Sigma Model, Gauge Fixing

is compatible with the Z4 grading, which means that Str(MmMn) = 0 for Mm ∈ g(m),
Mn ∈ g(n) and m+ n 6= 0 mod 4.

Let (σ, τ) be coordinates on the world-sheet and g(σ, τ) a periodic function, g(σ +
`, τ) = g(σ, τ), taking values inG. The Lagrangian is written in terms of the left-invariant
current Aα = −g−1∂αg:

L = −
√
λ

4π
Str
[
γαβA(2)

α A
(2)
β + κεαβA(1)

α A
(3)
β

]
. (2.3)

Here, εαβ is antisymmetric with ετσ = 1; γαβ is the Weyl-invariant combination of the
world-sheet metric with det γ = −1. For convenience, the coefficient in front of the La-
grangian has been written in terms of the t’Hooft coupling constant λ, with the AdS/CFT
correspondence

√
λ ↔ (R2/α′), where R is the common radius of S5 and AdS5 and α′

the string slope.
The first term of the action corresponds simply to a non-linear sigma model on AdS5×

S5. The second term is like a Wess-Zumino term which relies on the Z4 decomposition
of g. This comes from the property2 [4]

2 Str(A(2) ∧ A(3) ∧ A(3) − A(2) ∧ A(1) ∧ A(1)) = d Str(A(1) ∧ A(3))

which shows that the l.h.s. is a closed and exact 3-form and explains the 2d expression
of the Wess-Zumino term. The coefficient κ in front of this Wess-Zumino term is in fact
equal to ±1 in order to have κ-symmetry (see below).

Equations of motion and global PSU(2, 2|4) symmetry By varying the action
with respect to g, one finds the following equation of motion:

∂αS
α − [Aα, S

α] = 0 (2.4)

where Sα = γαβA
(2)
β − 1

2
εαβ(A

(1)
β −A

(3)
β ). By definition, the current Aα is also a solution

of the Maurer-Cartan equation

∂0A1 − ∂1A0 − [A0, A1] = 0. (2.5)

Aα being the left-invariant current, the action corresponding to (2.3) is invariant
under the global transformation g(σ, τ) → g̃g(σ, τ) with g̃ ∈ PSU(2, 2|4). The equa-
tion of motion (2.4) is identical to the equation of conservation of the Noether current
(
√
λ/2π)gSαg−1 associated with that symmetry. The corresponding Noether charge and

its projection onto an element M ∈ psu(2, 2|4) are respectively

Q =

√
λ

2π

∫ `

0

dσgS0g−1 and QM = Str(QM). (2.6)

SO(4, 1) × SO(5) gauge symmetry Under a local right multiplication g(σ, τ) →
g(σ, τ)h(σ, τ) with h(σ, τ) ∈ H, the components A

(1,2,3)
α of the current transform as

A
(1,2,3)
α → h−1A

(1,2,3)
α h. This shows that the action is invariant under these SO(4, 1) ×

SO(5) gauge transformations.

2Using form notations.
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Chapter II.3: Sigma Model, Gauge Fixing

Virasoro constraints and reparametrization Varying the action with respect to
the metric gives the Virasoro constraints

Str(A(2)
α A

(2)
β )− 1

2
γαβγ

ρσStr(A(2)
ρ A(2)

σ ) = 0 (2.7)

which reflect the two-dimensional reparameterization invariance of the action.

κ-symmetry This symmetry is a key property of the Green-Schwarz formulation of
superstring theories as it enables the reduction of the fermionic degrees of freedom to
the physical ones. It acts on both the group element g and the world-sheet metric γαβ.
Its action on g can be viewed as a particular local right multiplication that depends
on fermionic parameters [5]. More precisely, at the infinitesimal level, it corresponds to
δg = g(ε(1) + ε(3)) with3

ε(1) = iA
(2)
α,+κ

(1)α
− + iκ

(1)α
− A

(2)
α,+ and ε(3) = iA

(2)
α,−κ

(3)α
+ + iκ

(3)α
+ A

(2)
α,−.

In these equations, V α
± ≡ 1

2
(γαβ ∓ εαβ)Vβ, κ

(1)
+ = 0 and κ

(3)
− = 0. The corresponding

transformation of the metric can be written as:

δγαβ = −1

2
Str
(
W
(
[iκ

(1)α
− , A

(1)β
− ] + [iκ

(3)α
+ , A

(3)β
+ ]

))
where W is the diagonal matrix (1, · · · , 1,−1, · · · ,−1).

2.2 Lagrangian integrability

Lax pair and monodromy The requirement for classical integrability is the existence
of an infinite number of conserved quantities. This is ensured when the equations of
motion are equivalent to a zero curvature equation

∂αLβ − ∂βLα − [Lα, Lβ] = 0 (2.8)

associated with a Lax connection Lα(σ, τ, z) depending on the dynamical fields and on
a complex spectral parameter z. Indeed, a consequence of this equation is that the
monodromy

T (τ, z) =
←−
exp

∫ `

0

dσLσ(σ, τ, z) (2.9)

satisfies the equation
∂τT (τ, z) = [Lτ (0, τ, z), T (τ, z)].

Therefore, its eigenvalues, which depend on the complex spectral parameter z, form
an infinite set of conserved quantities. Let us remark that for an integrable model defined
on the 2d plane rather than on the cylinder, the time evolution of the corresponding
monodromy matrix obeys the equation

∂τT (τ, z) = Lτ (+∞, τ, z)T (τ, z)− T (τ, z)Lτ (−∞, τ, z).
3See §6.1 of [6] or §1.2.3 of [7] for more details.
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Chapter II.3: Sigma Model, Gauge Fixing

However, to have configurations of finite energy, one has typically Lτ (σ, τ, z)→ 0 when
σ → ±∞. If it is the case, then the whole monodromy is conserved.

A Lax connection is not unique and one can construct other Lax connections by
making a formal gauge transformation4

Lα → ULαU
−1 + ∂αUU

−1 (2.10)

where U(σ + `, τ) = U(σ, τ). The eigenvalues of T (τ, z) are invariant under such trans-
formations.

The fact that AdS5×S5 superstring theory is integrable is not the sole peculiarity of
this theory. It originates in the existence of the associated Z4 grading and is a generaliza-
tion of the situation encountered in the bosonic case for a symmetric coset corresponding
to a Z2 grading. To prove the existence of a Lax connection, one can start with an ansatz
for Lα(z) generalizing the situation for the symmetric spaces5,

L(z) = a1(z)A(0) + a2(z)A(2) + a3(z) ∗ A(2) + a4(z)A(1) + a5(z)A(3),

and determine the conditions on the coefficients ai(z) in order the flatness condition
(2.8) to reproduce the Maurer-Cartan equations (2.5) and the equation of motion (2.4).
Proceeding like that, one can show that the quantity

L(z) = A(0) + z−1A(1) +
1

2
(z2 + z−2)A(2) +

1

2
(z2 − z−2) ∗ A(2) + zA(3) (2.11)

is a Lax connection [8].

κ-symmetry and integrability As previously mentioned, the theory is invariant un-
der κ-symmetry transformations only when the parameter κ in front of the Wess-Zumino
term equals ±1. The existence of a Lax connection or, in other words, the integrability of
the theory, is only valid for the same values of κ. One rough way to understand this fact
is that the corresponding bosonic coset model is integrable. This integrability property
is thus extended to the full Green-Schwarz action, via the κ-symmetry, which relates
bosons to fermions. It is also possible to prove that under a κ-symmetry transformation,
and using the Virasoro constraints (2.7), the Lax connection (2.11) undergoes a formal
gauge transformation (2.10). This shows that the eigenvalues of the monodromy matrix
are κ-symmetry invariant. Note that it is also clear that these eigenvalues are invariant
under a SO(4, 1)× SO(5) gauge transformation.

Local and non-local conserved charges The conserved charges are both local and
non-local. Typically, they can be obtained by expansion around some particular value
of the spectral parameter. One can obtain for instance a sequence of local charges.
Another possible sequence starts with the Noether charges (2.6) and goes on with multi-
local charges. This discussion is closely related to the study of the algebraic curve [9],
which is associated with the eigenvalues of T (z). It is also related to the construction of
the Yangian charges. We refer to [10], [11] and more generally to [12].

4In the present case, U ∈ PSU(2, 2|4).
5We use here form notations and ∗ designates the Hodge star on the worldsheet.
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2.3 Hamiltonian integrability

Canonical analysis At the Hamiltonian level, a ”conservative” definition of inte-
grability requires a further condition. There must be an infinite number of conserved
quantities that are in involution, which means that their Poisson brackets (P.B.) vanish.
For finite dimensional systems, this condition is necessary in order to apply Liouville’s
theorem. The proof that such a property holds for string theory on AdS5 × S5 is rather
technical and therefore only intermediate steps will be reviewed here.

The first step is to do a canonical analysis by considering the current Aα as a dynam-
ical variable rather than the group element g itself. Due to this choice and to the gauge
invariances of the action, there are constraints on the phase space. Applying the Dirac
procedure for constrained systems, one finds that the theory can be described by the
spatial component Aσ(σ, τ) of this current and its conjugate momentum Π(σ, τ) with
four types of constraints. First the Virasoro constraints. Then a bosonic constraint,
C(0), associated with the SO(4, 1)×SO(5) gauge invariance. Finally, two fermionic con-
straints (C(1), C(3)). It is possible to extract from each of the fermionic constraints two
constraints, (K(1),K(3)), which are first-class6 and generate the κ-symmetry transforma-
tions. However, as usual with κ-symmetry, it is not possible to separate covariantly
(C(1), C(3)) into (K(1),K(3)) and a complementary set of second-class constraints.

Rather than Π itself, the interesting quantity is in fact (∇σΠ) where ∇σ = ∂σ− [Aσ, ].
In the case of the principal chiral model, this can be understood as (∇σΠ) coincides with
the time component Aτ of the current. The result of this analysis is that the P.B. of Aσ
and (∇σΠ) take the same form as in the principal chiral model. The most convenient
way to write these P.B. is to use tensorial notation and to define for any quantity M ∈ g,
M1 = M ⊗ 1 and M2 = 1⊗M . Then, we have7,

{Aσ1(σ), Aσ2(σ′)} = 0,

{(∇σΠ)1(σ), Aσ2(σ′)} =
[
C12, Aσ2

]
δσσ′ − C12∂σδσσ′ ,

{(∇σΠ)1(σ), (∇σΠ)2(σ′)} =
[
C12, (∇σΠ)2

]
δσσ′ .

The quadratic Casimir is defined by:

C12 = ηABtA ⊗ tB = C
(00)
12 + C

(13)
12 + C

(22)
12 + C

(31)
12 ,

where in the last equality we have projected into the different gradings. The important
characteristic of these P.B. is the presence of a non-ultra local term, proportional to δ′.

Hamiltonian Lax Connection The next step is to mimic the procedure recalled
above for the Lagrangian analysis. One can start with a general expression for an Hamil-
tonian Lax connection as a linear combination of A

(i)
σ and (∇σΠ)(j). However, this does

not fix completely the Lax connection and leads to many different possibilities, that
differ from each other by terms proportional to the constraints. It is nevertheless possi-
ble to determine a unique linear combination that satisfies the two following conditions.

6Which means that their P.B. with all the other constraints vanish on the constraint surface.
7The time dependence is not indicated in the P.B. as they are equal-time P.B.
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Firstly, that the zero curvature condition holds on the whole phase space, which means
even without using the constraints. Secondly, that the conserved quantities Str[T n(z)]
obtained from the monodromy matrix associated with this particular Lax connection
are first-class, or, in other words, gauge-invariant. It is possible to show that the cor-
responding LHα (z) differs from the corresponding Lagrangian expression (2.11) by terms
proportional to the constraints.

Poisson brackets of LHσ (z) The goal is to compute the Poisson brackets of the
monodromy matrix associated with LHσ (z). This requires first to compute the Poisson
brackets of two spatial Lax components. This computation is straightforward. How-
ever, organizing the result in a specific algebraic form is much more difficult. Denoting
L(σ, z) ≡ LHσ (σ, τ ; z), the result of this analysis is

{L1(σ, z1),L2(σ′, z2)} = [r−12(z1, z2),L1(σ, z1)]δσσ′ + [r+
12(z1, z2),L2(σ, z2)]δσσ′

−
(
r+
12(z1, z2)− r−12(z1, z2)

)
∂σδσσ′ . (2.12)

The matrices r±12 have the following expression:

r−12(z1, z2) =
2
∑3

j=0 z
j
1z

4−j
2 C

(j 4−j)
12

φ(z2)(z4
2 − z4

1)
, r+

12(z1, z2) =
2
∑3

j=0 z
4−j
1 zj2C

(4−j j)
12

φ(z1)(z4
2 − z4

1)

with φ(z) = z(du/dz) where

u(z) = 2
1 + z4

1− z4
(2.13)

is the Zhukovsky map. The form (2.12) of the P.B. is exactly similar to the one appearing
in the principal chiral model [13], [14]. It is again non ultra-local due to the presence of
the δ′ term. The Jacobi identity for the Poisson bracket (2.12) is ensured by the following
property

[r−12, r
−
13] + [r−12, r

−
23] + [r−32, r

−
13] = 0 (2.14)

satisfied by r−12.

Algebraic interpretation and the Zhukovsky map As usual with integrable mod-
els, it is also possible and instructive to start the story from a purely algebraic point
of view. In this framework, the approach corresponds to the so-called R-matrix one.
This means to construct first the r±12 matrices independently of the model considered i.e.
without any reference to phase-space variables. The realization in terms of phase space
variables is then achieved at the end via the matrix L(σ, z).

Starting from g = psu(2, 2|4), one considers its loop algebra8 Lg = g[[z, z−1]]. Any
X(z) ∈ Lg can be decomposed into its pole part, π−(X) and its regular part π+(X).
This splitting of Lg enables one to define a R-matrix on End Lg. It is simply given by
R = π+ − π− and satisfies the modified classical Yang-Baxter equation:

[R(X), R(Y )]−R([R(X), Y ] + [X,R(Y )]) = −[X, Y ]. (2.15)

8More precisely, it is necessary to consider its twisted loop algebra LgΩ, where the twist is induced
by the Z4-grading Ω of g.
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Let ( . , . ) be an inner-product on Lg. This inner product has a natural extension on
Lg⊗Lg. One can then associate to any operator O ∈ End Lg its kernel O12 ∈ Lg⊗Lg
through the relation

∀X, Y ∈ Lg, (O(X), Y ) = (O12, Y ⊗X).

An important property is that the kernel of O∗ is simply9 O21. The eq.(2.15) can then
be rewritten successively as

[R12, R13] + [R12, R23] + [R32, R13] = −ω̂123,

[R12, R13] + [R12, R23]− [R13, R
∗
23] = −ω̂123. (2.16)

For simplicity the expression of ω̂ is not reproduced here (see [15]).
The key point is the following: if we take the inner product

(X, Y )u =

∮
du

2πi
Str (X(z)Y (z))

with u(z) given by (2.13), then R∗ 6= −R. This means that the eq.(2.16) does not
correspond to the classical Yang-Baxter equation but to10 the eq.(2.14) with R12 = r−12

and R∗12 = −r+
12. Therefore, the integrable structure of the AdS5 × S5 superstring fits

precisely into the general R-matrix approach. The specifics of this model are encoded in
its hamiltonian Lax matrix which can be formally written as

L(σ, z) = 4φ(z)−1

∞∑
k=1

zk
(
kA

(k)
1 + 2(∇σΠ)(k)

)
.

Involution of the conserved quantities The last step, which is the computation of
the P.B. of the monodromy matrix (2.9) from the result (2.12) is delicate. Indeed, the
non ultra-local term in (2.12) leads to ambiguities for the P.B. of the monodromy. The
way to proceed is the following. Consider the transition matrices

T (σ1, σ2, τ, z) =
←−
exp

∫ σ1

σ2

dσL(σ, z).

The P.B. of two transition matrices with all different points are well defined. However,
there are ambiguities whenever two points coincide. A simple argument to understand
this property is the following. To compute the P.B. of T (σ1, σ2, τ, z) with T (σ′1, σ

′
2, τ, z

′),
we have, schematically, to twice integrate a δ′ term multiplied by some smooth function.
Omitting for brevity the function, we have to evaluate∫ σ1

σ2

dσ

∫ σ′1

σ′2

dσ′∂σδσσ′ = χ(σ1; [σ′2, σ
′
1])− χ(σ2; [σ′2, σ

′
1]),

9 O21 = P (O12) with P (A⊗B) = B ⊗A.
10The r.h.s. −ω̂ is a contact term proportional to δ(z1 − z2)δ(z2 − z3) and is absent in eq.(2.14).
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where χ(σ; [σ′, σ′′]) is the characteristic function of the interval [σ′, σ′′]. But this function
is undefined when two points coincide. Therefore the P.B. of the monodromy matrices
T (τ, z) = T (`, 0, τ, z) and T (τ, z′) is not well defined. However, it has been proved in [14]
that one can give a meaning to the limit of coinciding points if one imposes that the P.B.
of the monodromy matrix satisfies the antisymmetry and the derivation rules. This leads
to a regularization which consists in point splitting and in applying a symmetric limit
procedure. This regularization is equivalent to taking θ(0) = 1/2 where θ is the Heaviside
function. This procedure leads to the following result for the P.B. of the monodromy
matrix:

{T1, T2} =
1

2
[r+

12 + r−12, T1T2] +
1

2
T1(r+

12 − r−12)T2 −
1

2
T2(r+

12 − r−12)T1, (2.17)

where T1 = T (τ, z1)⊗Id and T2 = Id⊗T (τ, z2). This P.B. is called the classical exchange
algebra. Taking the supertrace on both spaces 1 and 2 , one finds that the conserved
quantities Str[T n(z1)] and Str[Tm(z2)] are in involution. Let us however insist that
contrary to what happens for the monodromy, the P.B. of Str[T n(z1)] and Str[Tm(z2)] has
no ambiguity. In other words, its vanishing is independent of the choice of regularization.

What is the quantum exchange algebra ? The quantum analogue of the exchange
algebra (2.17) is not known. This is in fact a long-standing problem for non ultra-local
integrable models. The reason is that the P.B. (2.17) does not satisfy completely the
Jacobi identity. This means that the P.B. {T1, {T2, {· · · , · · · }, Tn}} with n occurrences
of T must be separately defined for each n. This is clearly an obstruction for the deter-
mination of the quantum exchange algebra.

There are however integrable models for which the quantum exchange algebra is
known. The simplest ones are of course ultra-local models. In that case r+

12 = r−12 is an
antisymmetric r-matrix, solution of the classical Yang-Baxter equation

[r12, r13] + [r12, r23] + [r13, r23] = 0. (2.18)

The quantum exchange algebra is then simply R12T1T2 = T2T1R12 with R12 = 1 +
~r12 + · · · a solution of the quantum Yang-Baxter equation R12R13R23 = R23R13R12.
The interest of such a relation is that one can discretize the model and apply Bethe
Ansatz techniques.

Another possibility, this time for some specific non ultra-local models, is when the
matrices r±12 are such that r12 = (1/2)(r+

12 + r−12) satisfies the classical Yang-Baxter

equation (2.18). Denoting s12 = (1/2)(r+
12 − r−12), the quantum analogue of (2.17) for

these models is [16], [17]:
R12T1S12T2 = T2S12T1R12.

with S12 = 1 + ~s12 + · · · and similarly for R and r. However, for both the principal
chiral model and the superstring on AdS5 × S5, the corresponding matrix r12 does not
satisfy the classical Yang-Baxter equation.

For AdS5 × S5 superstring theory, the only available results so far consist in the
approach developed in [18] within the pure spinor formulation (see section 4) and the
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subsequent conjecture made there. Some interesting results have however been obtained
very recently in [19] for conformal models on supergroups.

At this point, the results obtained in [20], [21] for the bosonic subsector R × S3 of
the full theory have to be mentioned. For this subsector, one has a similar P.B. as
in eq.(2.17). However, on the space of finite-gap solutions, it is possible to show that
some variables form a set of action-angle variables if one computes their P.B. from the
expression (2.17). Such a result is interesting because it confirms the correctness of the
expression for the action variables obtained from the algebraic curve.

2.4 Quantum integrability and factorized scattering theory

In order to compute the spectrum at the quantum level, one has therefore to follow
another road. The idea is then to apply the methods of factorized scattering theory [22].
The prerequisites are the following. As usual for quantization within the Green-Schwarz
formulation, the first step is to go to a light-cone gauge11. In such a gauge, the theory
has a massive spectrum. The idea is then to study first the decompactification limit by
considering the theory on a plane instead of a cylinder. Since the theory has a massive
spectrum, it makes sense to talk about a world-sheet S-matrix in that limit. Note
however that the light-cone gauge action is not Lorentz invariant and therefore some
properties must be adapted and extended to the case at hand. The key hypothesis is to
suppose that the theory remains integrable at the quantum level. This assumption means
that the n → n S-matrix factorizes into a product of 2 → 2 S-matrices. Let us insist
here that it is in fact not necessary to have an infinite number of conserved quantities
(see [24] for a review). The next step is then to determine the dispersion relation and
the two-body S-matrix from the symmetries12 of the light-cone gauged action in the
decompactification limit. Thus, an important question related to that program is to
determine these symmetries. Once all these steps are completed, finite size effects can
be considered. Here we review the first steps of this procedure.

3 Gauge Fixing

3.1 Motivation and choice of gauges

In this review, we will mainly focus on the light-cone gauge that is most adapted to the
program detailed above with the further requirement that it is suited for the comparison
between the energy of string states and the conformal dimension of the dual N = 4
Yang-Mills operators.

Let us begin by recalling a few things about light-cone gauges. Consider first the
purely bosonic case. In flat space, light-cone gauge fixing is realized in two steps. The
first one consists in going to the conformal gauge γαβ = ηαβ. The second one is to fix the

11Another possibility developed in [6], [23] and subsequent articles for the full AdS5 × S5 theory is
to go to a conformal gauge and to make a Pohlmeyer reduction. This has the advantage of keeping
manifest the 2d Lorentz invariance.

12More precisely the ”off-shell” symmetries, see below.
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residual conformal diffeomorphism symmetry by imposing x+(σ, τ) = τ . Another way to
implement these gauge fixing conditions is to use the first-order formulation [25] and to
impose x+ = τ and to fix p+, the momentum conjugate of x−, to a constant. If these two
ways to proceed are equivalent in flat space, this is no more the case for a curved space.
Furthermore, it is impossible to apply the first procedure in the case of AdS5 × S5, in
particular because its null Killing vectors are not covariantly constant [26]. Therefore,
the bosonic light-cone gauge conditions are imposed within the first-order formulation.

As recalled in [27], there are two inequivalent sets of null geodesics in AdS5×S5: for
the first set, the geodesic stays entirely in AdS5, for the second one it wraps a big circle
of S5. These two possibilities correspond to two types of light-cone gauges. In the case
of superstrings, the κ-symmetry invariance must be also fixed and this leads again to
different possibilities. Using the Poincaré coordinates patch, and viewing psu(2, 2|4) as
the four-dimensional N = 4 super-conformal algebra, one possibility to fix κ-symmetry
is to set the fermions associated with the 16 superboost generators to zero. This gauge is
called the S-gauge. It has been used in particular in [28] for the study of the 2d duality
of AdS5 × S5 related to the dual superconformal symmetry of scattering amplitudes in
N = 4 super-Yang-Mills theory [29], [30] (see [31]). Another possibility is to put to
zero half of these fermions and half of the fermions associated with the supersymmetry
generators. Combined to the AdS light-cone gauge, this leads to the action in [32] which
is at most quartic in the fermions.

3.2 Uniform light-cone gauge

The gauge we will review leads to much more complicated action than the AdS light-
cone gauge but is well suited for the AdS/CFT correspondence. Indeed, to test this
conjecture, one needs to compare the space-time energy E of a string state with the
conformal dimension of the dual operator. One feature of the uniform light-cone gauge
is precisely that the corresponding world-sheet Hamiltonian is simply related to E. We
only review here the main steps for the bosonic string on AdS5 × S5 and refer to the
literature for the complete treatment and for some subtleties omitted here.

Bosonic case (i) Consider first the metric in global coordinates

ds2 = R2

[
−
(1 + z2/4

1− z2/4

)2

dt2 +
dz2

i

(1− z2/4)2
+
(1− y2/4

1 + y2/4

)2

dφ2 +
dy2

i

(1 + y2/4)2

]

with i = 1, · · · , 4 and where (t, zi) describe AdS5, with t the global time of AdS5, while
(φ, yi) describe S5, with φ an angle parameterizing the equator of S5. The conserved
charges associated with shifts in t and φ are respectively the space-time energy E =
−
∫ `

0
dσpt and the angular momentum J =

∫ `
0
dσpφ where pt and pφ are the conjugate

momenta respectively of t and φ. Define then x− = φ−t and x+ = (1/2)(φ+t), such that
p− = (pφ + pt) and p+ = (1/2)(pφ− pt). The corresponding conserved charges associated
with these densities are

P− = J − E and P+ = (1/2)(J + E). (3.1)
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(ii) The light-cone gauge conditions are

x+ = τ and p+ = 1.

As a consequence of the last condition, the charge P+ is identical to `.
(iii) The next step is to solve the Virasoro constraints. One of them gives p− in terms

of a square root of the transverse coordinates13 (xM , pM) while the other constraint
together with the periodicity of the fields imply the following result for the world-sheet
momentum pWS of the string:

pWS = −
∫ `

0

dσpMx
′M =

∫ `

0

dσx′− = 0.

This condition is called the level-matching condition. In the dual picture, it corresponds
to the vanishing of the total momentum of multi-magnon configurations.

(iv) The Virasoro conditions being solved, the gauge-fixed Lagrangian is

pM ẋ
M + p+ẋ− + p−.

Since p+ = 1, the second term in the r.h.s. is a total derivative, which means that the
light-cone gauged action is of the form

∫
(pM ẋ

M − h) with the light-cone Hamiltonian
density h = −p−(xM , x

′
M , pM). Together with the relation (3.1), this means that the

light-cone Hamiltonian H is identical to

H = −P− = E − J. (3.2)

This is the relation announced above between the space-time energy E, the light-cone
Hamiltonian H and the angular momentum J .

(v) The way to deal with the level-matching condition is to impose it on the states.
In the dual picture, this means for instance that double-magnon excitations can be
considered. However, to correspond to a physical state, the two magnons should have
opposite momenta. When the level-matching condition is imposed (respectively relaxed),
one refers to the on-(off-)shell theory.

Full theory This short reminder does not reflect at all the difficulty when fermions are
included ! In particular, some of the steps that need to be completed include choosing
an adequate coset representative (which is such that all the fermions are neutral under
the isometries generated by shifts of t and φ), fixing the κ-symmetry gauge invariance
and developing the first-order formulation for the complete Metsaev - Tseytlin action.

Decompactification limit As discussed above, in order to make use of the factorized
scattering theory, the first step is to consider the decompactification limit, which means
to go from the cylinder to the plane. As ` corresponds to P+ this limit is obtained by
letting P+ → ∞ while keeping λ fixed. Since the energies of the states are finite, the
relations (3.1) imply that J goes to infinity in this limit.

13Formed by zi, yi and their conjugate momenta.
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Symmetry Let us first consider the case P+ finite. It is clear from the results (3.2)
and (3.1) that the light-cone Hamiltonian and P+ correspond to particular charges of
the form (2.6). More precisely, we have

H = − i
2
QΣ+ and P+ =

i

4
QΣ−

for some Σ± ∈ psu(2, 2|4). As x+ = τ , all the charges QM that are independent of x+

and commute with H are conserved. However, we have a general result

{H,QM} = − i
2
{QΣ+ , QM} = − i

2
Q[Σ+,M ]. (3.3)

Therefore, all the elements M ∈ psu(2, 2|4) that commute with Σ+ give conserved
charges. It can be shown that these elements correspond to

psu(2|2)⊕ psu(2|2)⊕ Σ+ ⊕ Σ−,

the two last elements being associated with H and P+.
We need now first to go to the decompactification limit and then off-shell. In the

decompactification limit, we are left a priori with psu(2|2) ⊕ psu(2|2) together with a
central charge that corresponds to the Hamiltonian. However, this is not the final answer
for the off-shell theory. The reason is that for odd elements M1 and M2, central charges
may appear in the Poisson bracket {QM1 , QM2}. This means that this P.B. is only equal
to Q[M1,M2] up to some central charges. An explicit computation enables one to determine
these central charges and shows that the symmetry is psu(2|2) ⊕ psu(2|2) extended by
three central charges H, C and C† with

C =
i
√
λ

4π
(eipws − 1).

As it should be, C vanishes when pws = 0. The determination of the off-shell symmetry
algebra is the starting point needed to apply factorized scattering theory.

4 Pure spinor formulation

In this section, we mention some results that have been obtained for the pure spinor
(P.S.) formulation and that are directly related to the aspects treated in this review for
the Green-Schwarz (G.S.) formulation.

The Lagrangian can be written as14 [33]

L =
1

2
A(2)Ā(2) +

1

4
A(1)Ā(3) +

3

4
A(3)Ā(1) + w∂̄λ+ w̄∂λ̄−NĀ(0) − N̄A(0) −NN̄.

It is written in conformal gauge. Here, A = −g−1∂g with ∂ = ∂0 +∂1 while Ā = −g−1∂̄g
with ∂̄ = ∂0 − ∂1. The fields λ and λ̄ are bosonic ghosts taking values in g(1) and g(3)

respectively. They satisfy the pure spinor conditions:

[λ, λ]+ = 0 and [λ̄, λ̄]+ = 0.

14Taking the supertrace is understood.

161



Chapter II.3: Sigma Model, Gauge Fixing

w and w̄, are the conjugate momenta respectively of λ and λ̄ and take values respectively
in g(3) and g(1). Finally, N and N̄ are the pure spinor currents defined by:

N = −[w, λ]+ = −wλ− λw and N̄ = −[w̄, λ̄]+ = −w̄λ̄− λ̄w̄.

They take values in g(0). There are a SO(4, 1) × SO(5) gauge invariance and a global
PSU(2, 2|4) invariance. However, κ-symmetry is not present but there is an invariance
under a BRST symmetry Q =

∫
Str(dzλA3 + dz̄λ̄Ā1).

The equations of motion can again be rewritten as a zero curvature equation ∂̄L −
∂L̄ − [L̄,L] = 0 for the Lax connection [34]

L(z) =
(
A(0) +N − z4N

)
+ zA(1) + z2A(2) + z3A(3),

L̄(z) =
(
Ā(0) + N̄ − z−4N̄

)
+ z−3Ā(1) + z−2Ā(2) + z−1Ā(3),

which means that the theory is classically integrable. In the G.S. formulation, the eigen-
values of the monodromy matrix are κ-symmetry invariant. The corresponding statement
in the P.S. formulation is that they are BRST invariant. When putting the ghosts to zero,
the Lagrangian Lax pair is different from the one in (2.11). However, it is possible again
to determine an Hamiltonian Lax connection for the P.S. formulation. This connection
agrees with the Hamiltonian one of the G.S. formulation up to terms proportional to the
ghosts. As a consequence, the P.S. classical exchange algebra is the same as in the G.S.
formulation and this property remains true when the contribution of the ghosts to the
P.B. is included. This classical exchange algebra has been first obtained in15 [18].

As this review focuses on the classical case, we just indicate briefly some results
related to the quantum case and which are directly relevant to the framework of this
review. Contrary to the G.S. formulation where going to a light-cone gauge breaks the
global PSU(2, 2|4) symmetry and the conformal invariance, the quantization of the P.S.
action is done within the framework of a 2d conformal field theory with an unbroken
PSU(2, 2|4) invariance. It has been proved that at the quantum level this theory is
conformally and BRST invariant [35], [36]. Furthermore, the classically conserved non-
local currents can be made BRST invariant at the quantum level [37]. The one-loop
corrections to the tree level OPE [38] [39] [40] of the left-invariant currents have been
studied in [41] and it has been explicitly demonstrated in [38] that the monodromy matrix
is not renormalized at one loop.

5 References

First of all, for many aspects treated in this chapter, the reader is referred to the extended
pedagogical review [7]. The reference [42] presents a systematic discussion of other string
backgrounds that share the properties reviewed in §2.1. A general reference on integrable
models is the book [12]. The classical exchange algebra was first obtained within the
pure spinor formulation in [18]. It was rederived within that formulation and within the

15There is a subtlety in the actual comparison with the result (2.12) due to the fact that the observables
considered in [18] are gauge-invariant.
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Green-Schwarz formulation in [43]. The analysis to fix the Hamiltonian Lax connection
has been presented in [44]. The algebraic origin and interpretation of the Hamiltonian
Lax connection and of the r±12 matrices have been put forward in [15]. General references
about the R-matrix approach can be found in the bibliography of the latter. For earlier
attempts to compute the classical exchange algebra, see [45], [46], [47], and [48], [49]
in AdS light-cone gauge. For the problem of non ultra-local terms we recommend the
thesis [50]. For the AdS light-cone gauge, we refer to the proceedings [51], to the original
references [52], [32] and to [53] for the integrability of the theory in that gauge. For the
uniform light-cone gauge, the references for the topics reviewed here are [54], [55], [56]
and more specifically [57], [58] and, once again, the review [7]. Further references are
indicated in [59]. Finally, the references [60] and [61] contain a pedagogical introduction
to the P.S. formulation of AdS5 × S5 superstring theory.
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and each finite-gap classical solution can be characterized in terms of such a curve. This
provides a concise and powerful description of the classical solution space. In addition,
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1 Introduction and Outlook

The integrability of the classical superstring in AdS5 × S5 follows from the existence of
an infinite set of conserved charges [1]. In principle this allows for a complete classical
solution of the theory, albeit in practice finding explicit classical solutions may be lim-
ited to simple field configurations. However, in the context of the spectral AdS/CFT
correspondence, where the main objective is to map the spectrum of string energies in
AdS5 × S5 to the spectrum of anomalous dimensions of four-dimensional N = 4 Super-
Yang Mills (SYM), finding explicit solutions is not of primary interest. Indeed, it is much
more important to find a way to directly characterize the spectrum. On the SYM theory
side, this was achieved by noting that certain Bethe ansätze compute the spectrum of the
dilatation operator. For the dual classical and semi-classical string theory in AdS5 × S5

this role is played by the spectral curve.
More specifically, using the classical Lax connection [1] and the monodromy matrix

obtained by parallel transporting the connection around the worldsheet, it is possible to
setup an elegant framework, which allows to characterize all finite gap solutions in terms
of complex algebraic curves. In this geometric description, finite-gap translates into
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finite genus of the curve. The conserved charges, such as the energy, can in this way be
computed without having to solve the equations of motion. Furthermore, semi-classical
quantization can be described in this framework, and allows for a concise description of
the one-loop energy shifts presented in the part of the review [2].

The seminal paper [3] was the first to point out the importance of the spectral curves
for the integrable systems that arise in the AdS/CFT correspondence. The algebraic
curves for the classical string in the R × S3 subspace and the corresponding subsector
of one-loop planar N = 4 SYM were shown to agree by some simple identifications. On
the gauge theory side, the spectral curve emerges in the thermodynamic limit of the
ferromagnetic Heisenberg-spin chain, that diagonalizes the one-loop dilatation operator
in the su(2) subsector. Subsequently, this analysis was generalized to the sl(2) subsector
or AdS3 × S1 string solutions [4], the su(4) subsector [5] and finally to the complete
psu(2, 2|4) symmetric one-loop Heisenberg spin-chain [6,7] and the AdS5×S5 superstring
[8].

Apart from providing a nice geometric description of classical solutions to the su-
perstring, or in the dual theory, Bethe root configurations in the thermodynamic limit,
the spectral curve is a very powerful tool to compute quantum corrections to classical
string solutions. This was first advocated in the papers [9] and then applied to the
classical string spectral curve in [10–15], in particular allowing a test of the asymptotics
Bethe ansatz [16] and an explicit formula for the one-loop energy shift for a large class
of solutions.

There are various interesting questions where spectral curves should either be useful
or give a more elegant description, in the context of the AdS/CFT correspondence.
Albeit, applications to higher order α′ corrections seem to be difficult to describe. Both
conceptually and computationally, it would be very important to find a suitable all-loop
quantization of the algebraic curve. To an extent, the Bethe ansatz, and more recently
the characterization of the complete finite-size spectrum in terms of a Y-system (see
the chapter [17] of this review) serve that purpose. However, a direct derivation of the
Y-system from a quantum monodromy matrix is still unknown.

A brief comment on other formulations of the superstring in AdS5 × S5 is in place.
In the pure spinor string, it is possible to find a flat connection that confirms the clas-
sical integrability and an associated algebraic curve [18] . It has been argued based on
BRST-cohomology that the charges generated from the monodromy matrix of this flat
connection exists to all orders in the α′ expansion [19], which has been confirmed to
subleading order in [20].

The outline of this part of the review is as follows: we begin in section 2 by reviewing
the Lax connection and monodromy matrix of the AdS5×S5 string. We then define the
algebraic curve in terms of the quasi-momenta (which are essentially the eigenvalues of
the monodromy matrix). In section 2.4 we give a characterization of the quasi-momenta
in terms of their asymptotics, poles structure etc. The example of the circular string in S3

is rephrased in terms of the algebraic curve in section 2.5. In section 3 we briefly discuss
the algebraic curve of the dual N = 4 SYM theory at one-loop. In section 4 the general
procedure for the semi-classical quantization is presented, and a general expression for
the one-loop energy shift is derived from the algebraic curve. We furthermore show,
that from this general analysis it is straightforward to compute the energy shift for the
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circular string of section 2.5.
Relation to other parts of the review:

The relevant superstring action for the AdS5× S5 string was described in [21]. The Lax
connection and monodromy matrix were already introduced in [22]. Classical finite-gap
solutions and their semi-classical quantization from the sigma-model point of view was
discussed in [2]. The present part of the review gives an alternative point of view on the
material in [2], which manifestly relies on the integrable structure of the theory.

2 Classical Integrability and Spectral Curve

2.1 Lax connection and monodromy matrix for AdS5 × S5

Recall that a classical sigma-model is integrable if its equation of motion can be put
into zero-curvature form, with a Lax connection Lα(σ, τ, z) depending on the spectral
parameter z, where α = σ, τ denotes the world-sheet coordinates:

∂αLβ − ∂βLα − [Lα, Lβ] = 0 . (2.1)

From the Lax connection we can form the monodromy matrix, by parallel transport
along the σ direction of the world-sheet, along some path γ

Ω(z) = P exp

(∫ 2π

0

Lσ(σ, τ, z)

)
. (2.2)

The classical superstring on AdS5 × S5 is described in terms of the Green-Schwarz
action by Metsaev and Tseytlin (see also [21]) as a sigma-model into the supercoset space

PSU(2, 2|4)

SO(4, 1)× SO(5)
⊃ AdS5 × S5 . (2.3)

A useful description of the superstring action is in terms of the supercurrents for the
map from the world-sheet into the supergroup g : Σ→ PSU(2, 2|4) which is gauged by
the left-action

g → gH , H ∈ SO(4, 1)× SO(5) . (2.4)

Define the currents as
J = −g−1dg ∈ psu(2, 2|4) , (2.5)

which is flat dJ − J ∧ J = 0 and transforms as J → H−1JH .
The superalgebra psu(2, 2|4) has a Z4 grading

psu(2, 2|4) = g(0) ⊕ g(1) ⊕ g(2) ⊕ g(3) , (2.6)

and we shall decompose the currents accordingly as

J = J (0) + J (1) + J (2) + J (3) . (2.7)

The action for the superstring in AdS5 × S5 then takes the form

S =

√
λ

4π

∫
STr

(
J (2) ∧ ∗J (2) − J (1) ∧ J (3) + Λ ∧ J (2)

)
, (2.8)

where the Lagrange multiplier Λ in the last term ensures the super-tracelessness of J (2),
as is required for PSU(2, 2|4).
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2.2 Spectral Curves: Generalities

Before discussing the curve for AdS5×S5 we should first elaborate on spectral curves for
classical integrable systems more generally, and point out important aspects. Consider a
classical integrable system, described by a Lax connection L(x) and monodromy matrix
Ω(x). The spectral curve is a complex curve defined defined by the eigenvalue equation
for Ω(x)

SDet (y Id− Ω(x)) = 0 . (2.9)

It is generically not an algebraic curve and may have essential singularities and infinite
genus. A useful subclass of configurations, the so-called “finite gap” solutions, are such
that the spectral curve is of finite genus, in this instance referred to then as “algebraic
curve”. These curves may still have singular points, which however can be desingularized
by standard algebraic geometric methods, e.g. by small resolutions, and we shall now
distinguish these two birationally equivalent curves in the following. Naturally, the curve
defined by (2.9) can be written in terms of the eigenvalues λi(x) of Ω(x). However, these
will exhibit essential singularities in the spectral parameter, and it is more convenient to
study the so-called quasi-momenta, pi, where λi(x) = eipi(x). In what follows, we shall
specify the curve entirely in terms of the properties of the quasi-momenta. For more
details on e.g. the maps between the various descriptions, see [23].

2.3 Algebraic Curve for AdS5 × S5

In [1] it was demonstrated that the classical equations of motion for this action are
equivalent to the flatness of a one-parameter family of connections (Lax connection),
thus establishing the classical integrability of the theory. The Lax connection depends
on the spectral parameter, which will be denoted by x ∈ C and is given as

L(x) = J (0) +
x2 + 1

x2 − 1
J (2) − 2x

x2 − 1
(∗J (2) − Λ) +

√
x+ 1

x− 1
J (1) +

√
x− 1

x+ 1
J (3) . (2.10)

For all x this is a flat connection dL(x)−L(x)∧L(x) = 0. As in (2.2) we can define the
corresponding monodromy matrix by parallel transport along a closed path γ, encircling
the compact world-sheet direction

Ω(x) = P exp

(∫
γ

L(x)

)
. (2.11)

Super-tracelessness of L(x) implies unimodularity SDetΩ(x) = 1. We can diagonalize
Ω(x) and denote the eigenvalues by eip(x), where p(x) are the quasi-momenta. More
specifically, we obtain

Ω(x) ∼ Diag
(
eip̂1(x) , eip̂2(x) , eip̂3(x) , eip̂4(x)|eip̃1(x) , eip̃2(x) , eip̃3(x) , eip̃4(x)

)
, (2.12)
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where p̂ denotes the eigenvalues corresponding to AdS5 and p̃ to S5. From unimodularity
of Ω(x) it follows that1.

4∑
i=1

p̂i(x)− p̃i(x) = 2πk , k ∈ Z . (2.13)

By definition, the eigenvalues eip(x) are the zeroes of the characteristic polynomial of Ω(x),
and as we shall define in the next section, the quasi-momenta p(x) define the spectral
curve. More precisely, the equation (2.13) entails that p is a multivalued function of x,
or alternatively, it is a single-valued function of a cover of the complex x-plane, which
defines the spectral curve. In the next section we will give a characterization of the
quasi-momenta and of the resulting curve. The degree of the characteristic polynomial
specifies the number of sheets of the cover, which in the case of the AdS5 × S5 string is
eight.

The key insight of [3] was that classical solutions can be equivalently characterized
in terms of this algebraic curve, or alternatively, the quasi-momenta.

2.4 Characterization of Solutions by Quasi-momenta

In this section we will give a hands-on description of how classical solutions are encoded
in terms of the quasi-momenta. This will be exemplified in the next subsection.

Classical solutions with global conserved charges (S1, S2, J1, J2, J3) and energy E will
be encoded in terms of quasi-momenta. Here (E, S1, S2) labels weights of the SO(4, 2)
and (J1, J2, J3) of the SO(6) isometry groups of AdS5 × S5. Rather than solving an
equivalent of the classical equations of motion, we lay out constraints, that will fully
characterize the quasi-momenta in terms of asymptotics (which will be fixed by the
global charges), behaviour at poles (which arise due to the pole in the Lax connection),
symmetries (from the automorphism of the Lie-superalgebra psu(2, 2|4)), and finally the
so-called filling fractions. We will now discuss all these points in detail:

• The eight sheets are connected by cuts. Each of these connects two sheets, e.g. i
and j, and will be denoted by Cij. The quasi-momenta will have discontinuities
along these branch-cuts

pi(x+ iε)− pj(x− iε) = 2πnij , x ∈ Cijn (2.14)

for the combination of sheets

i ∈ {1̃, 2̃, 2̂, 2̂} , j ∈ {3̃, 4̃, 3̂, 4̂} . (2.15)

Note that these cuts arise from the diagonalization of Ω, and are thus intrinsic to
the spectral data. The classical curve only depends on the branch-points, however,
in the quantum theory, the cuts become meaningful. This will become clear, in the

1The Lagrange multiplier Λ, cf. (2.8), would correspond to an unphysical, overall shift, and will be
ignored from now on [8].
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Figure 1: The spectral curve for classical superstrings on AdS5 × S5. The
sheets are connected by cuts (green), which characterize classical solutions. The
left most cut alone, e.g. corresponds to a one-cut solution in the S3×R subspace,
whereas the second cut is supported in AdS3 × S1. The remaining part of the
graph depicts all polarization of physical fluctuations. Red: bosonic fluctuations
in the S5 direction. Blue: bosonic fluctuations in the AdS5 direction. Green and
purple: fermionic fluctuations.

section on spin-chain spectral curves, where the cuts are shown to be condensates
of Bethe roots.

More specifically, we can associate with cuts stretching between sheets of various
types a ”polarization”. These correspond precisely to the sixteen physical polar-
ization of the superstring in AdS5 × S5 and are identified in the algebraic curve in
terms of cuts connecting the following pairs of sheets:

S5 : (1̃, 3̃) , (1̃, 4̃) , (2̃, 3̃) , (2̃, 4̃)

AdS5 : (1̂, 3̂) , (1̂, 4̂) , (2̂, 3̂) , (2̂, 4̂)

Fermions : (1̃, 3̂) , (1̃, 4̂) , (2̃, 3̂) , (2̃, 4̂)

(1̂, 3̃) , (1̂, 4̃) , (2̂, 3̃) , (2̂, 4̃) .

(2.16)

The situation is depicted in figure 1, where both macroscopic cuts, that correspond
to a classical solution are shown, as well as all the physical excitations from (2.16).

• The quasi-momenta have poles in the x-plane at x = ±1 – which can be readily
seen from the Lax connection, which has poles at x = ±1 – with residues that are
correlated due to the Virasoro constraint

{p̂1, p̂2, p̂3, p̂4|p̃1, p̃2, p̃3, p̃4} =
{α±, α±, β±, β±|α±, α±, β±, β±}

x± 1
+O(1) . (2.17)

• Global charges of the classical solution determine the asymptotics of the quasi-
momenta for x→∞. This follows simply from the fact that in this limit, the Lax
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connection L(x) reduces to the Noether current. It is useful to rescale the global
psu(2, 2|4) charges by 1/

√
λ and define Q = Q/

√
λ. Then the asymptotics of the

quasi-momenta are

p̂1

p̂2

p̂3

p̂4

p̃1

p̃2

p̃3

p̃4


=

2π

x



+E − S1 + S2

+E + S1 − S2

−E − S1 − S2

−E + S1 + S2

+J1 + J2 − J3

+J1 − J2 + J3

−J1 + J2 + J3

−J1 − J2 − J3


+O

(
1

x2

)
. (2.18)

For the spectral problem it is in particular of interest to note that the energy
E = E/

√
λ can be extracted from these asymptotics

E =

√
λ

4π
lim
x→∞

x(p̂1(x) + p̂2(x)) . (2.19)

We will see later, how this is done in practice.

• The quasi-momenta are furthermore restricted by an automorphism of the algebra
psu(2, 2|4), which imposes the following relations for the quasi-momenta

p̃1,2(x) = −p̃2,1(1/x)− 2πm

p̃3,4(x) = −p̃4,3(1/x) + 2πm

p̂1,2,3,4(x) = −p̂2,1,4,3(1/x) .

(2.20)

This inversion symmetry allows us to determine the quasi-momenta inside the
region |x| < 1.

• Finally, for each cut, we define the filling fraction

Sij = ±
√
λ

8π2i

∮
Cij

(
1− 1

x2

)
pi(x)dx . (2.21)

These are the action angle variables for the theory [24]. These curve data specify
precisely a macroscopic excitations of the string with Sij quanta of mode number
n.

2.5 Example: Circular String

To illustrate the spectral curve method, we now describe the circular string solution with
support in S3 × R [25, 10]. We restrict to the case, when all su(4) spins Ji are equal,
and parametrize the solution by one spin J =

√
λJ . We furthermore restrict to the

case of a single cut. Since this solution has trivial support in the AdS5 direction, the
corresponding quasi-momenta are determined simply in terms of trivial asymptotics at

174



Chapter II.4: The Spectral Curve

infinity and the correct pole structure at ±1. The poles are correlated as required by
(2.17) and determine the quasi-momenta as

p̂1 = p̂2 = −p̂3 = −p̂4 =
2πκx

x2 − 1
. (2.22)

The quasi-momenta associated to the S5 directions will have cuts, and have to be con-
sistent with the inversion symmetry. In [10] these were determined as

p̃1

p̃2

p̃3

p̃4

 =


x

x2−1
K(1/x)

x
x2−1

K(x)−m
x

1−x2K(x) +m
x

1−x2K(1/x)

 (2.23)

where K(x) =
√
m2x2 + J . The cut extends along the imaginary axis and from the

various constraints
E = κ =

√
J 2 +m2 . (2.24)

It is in general not so easy to reverse-engineer the solution from the quasi-momenta.
However, for many aspects, in particular computing the spectrum, it is a particularly
powerful way to describe solutions.

3 The Algebraic Curve of N = 4 SYM

So far our discussion of the spectral curve was focused on the classical AdS5×S5 string.
However, there is a spectral curve also for the dual N = 4 SYM theory. At one-
loop it was shown that the eigenvalues of the dilatation operator can be equivalently
computed from a ferro-magnetic Heisenberg spin chain with psu(2, 2|4) symmetry, which
can be diagonalized using a Bethe ansatz [26–28]. In the thermodynamic limit Bethe
roots condense and form cuts. The resulting structure is precisely an algebraic curve,
which intriguingly resembles the curve for the superstring [4–8]. We will now briefly
summarize the construction of the SYM curve. For details of the Bethe ansatz see the
other contributions [29,30].

3.1 Bethe Ansatz Equations

The one-loop dilatation operator can be diagonalized by a Bethe ansatz for a super-spin
chain with symmetry psu(2, 2|4) and 4|4 representation at each spin-chain site [27]. The

Bethe roots are u
(k)
i , k = 1, · · · , r = 7 and i = 1, · · · , Jk, where Jk denotes the excitation

number for the kth root. Further, define J =
∑
Jk as the total excitation number, L

be the length of the spin chain, and denote the Cartan matrix2 of psu(2, 2|4) by M and
the weight of the representation by V . Then the Bethe Ansatz equations for the nearest
neighbour spin-chain are(

u
(k)
i − i

2
Vk

u
(k)
i + i

2
Vk

)L

=
r∏
l=1

Jl∏
j=1

u
(k)
i − u

(l)
j − i

2
Mkl

u
(k)
i − u

(l)
j + i

2
Mkl

. (3.1)

2This is modulo signs that are discussed in [30].
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Translational invariance along the spin chain implies further that

1 =
r∏

k=1

Jk∏
i=1

u
(k)
i + i

2
Vk

u
(k)
i − i

2
Vk

= eiP , (3.2)

where P is the total momentum. Solving these algebraic equations for the Bethe roots
determines the values of the conserved charges, in particular the energy of the spin-chain
Hamiltonian, and thus the Dilatation operator at one-loop

Qn =
i

n− 1

n∑
l=1

Jn∑
j=1

(
1

(u
(l)
j + i

2
Vl)n−1

− 1

(u
(l)
j − i

2
Vl)n−1

)
. (3.3)

In particular, the energy E of the state is read off from Q2 as

E = cg2Q2 , (3.4)

for some constant c.

3.2 Thermodynamic Limit and Algebraic Curve

As in the case of the superstring, the main interest is in determining the values of Qr,
and not in solving an auxiliary set of equations – the classical equations of motion in
the case of the superstring, or the Bethe ansatz equations in the SYM theory. There
is an analog of the spectral curve in the SYM that arises in the limit of large number
of Bethe roots. More precisely, the algebraic curve of the above system arises in the
thermodynamic limit L→∞. Taking the logarithm of (3.1) yields

L log

(
u

(k)
i − i

2
Vk

u
(k)
i + i

2
Vk

)
=

r∑
l=1

Jl∑
j=1, j 6=i

log

(
u

(k)
i − u

(l)
j − i

2
Mkl

u
(k)
i − u

(l)
j + i

2
Mkl

)
− 2πin

(k)
i , (3.5)

where n
(k)
i ∈ Z are the mode numbers, arising due to taking the logarithm. We now

rescale the Bethe roots by 1/L to x
(k)
i = u

(k)
i /L and take L, J → ∞, while keeping n

(k)
i

fixed

− Vk

x
(k)
i

=
r∑
l=1

1

Jl

Jl∑
j=1, j 6=i

Mkl

x
(k)
i − x

(l)
j

− 2πn
(k)
i . (3.6)

It is useful to introduce a density of Bethe roots and a resolvent for their distribution

ρk(x) =

Jk∑
j=1

δ
(
x− x(k)

j

)
Gk(x) =

1

Jk

Jk∑
j=1

1

x− x(k)
j

.

(3.7)

176



Chapter II.4: The Spectral Curve

In the limit, the Bethe roots condense into cuts Ck, and the Bethe equations take the
continuum form

--

∫
C
dv

ρk(v)Mkf(v)

v − u
= −Vk

u
+ 2πn

(k)
i , u ∈ C(k)

i , (3.8)

where C = ∪kCk and each of the curves Ck associated to simple roots is on the other
hand Ck = ∪jC(k)

j . This can equivalently be written in terms of the resolvent Gk(u) in
the continuum limit

Mkk /Gk(u) +
∑
l 6=k

MklGl(u) = −Vk
u

+ 2πn
(k)
i , u ∈ C(k)

i . (3.9)

Slashes denote principal values. This equation can be put into a more familiar form by
writing them in terms of the singular resolvents G̃, where the poles in 1/u have been
absorbed into the definition of the resolvent, and furthermore taking linear combinations
(the quasi-momenta) pi ∼ ±(G̃i−1 − G̃i) (for details see [6]) so that we arrive at

Mkk /̃Gk +
∑
j 6=k

MkjG̃j(u) = /pk(u)− /pk+1(u) = 2πn
(k)
j , u ∈ C(k)

j . (3.10)

This is precisely the type of equation that characterizes the spectral curve in the super-
string case. Again, the asymptotics of the resolvent/quasi-momenta encode the relation
to the global charges

Gk(u) = −1

u

∫
Ck
dvρk(v) +O

(
1

u2

)
= −Jk

u
+O

(
1

u2

)
. (3.11)

A precise comparison of the SYM curve [6, 7] and string curve [8] can be found in [7].
The main features are, that the asymptotics and constraints on the quasi-momenta agree
up to a redefinition of the spectral parameter and modulo pole structure, and thus, also
the algebraic curves are in agreement.

4 Semi-classical Quantization of the Spectral Curve

Apart from giving a general, concise description of classical solutions, the spectral curve
is a powerful means to compute quantum fluctuations. In part [2] of the review, the
quantization around classical solutions with large spins, was already described from the
point of view of the sigma-model: a classical field configuration is perturbed and the
fluctuations quadratically quantized. The sum of the fluctuation frequencies make up
the energy shift at one-loop (in α′, or equivalently 1/

√
λ). We will not give an alternative

approach, based on the algebraic curve, and present a general expression for the one-loop
shift for general solutions.
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4.1 Perturbing the Spectral Curve

A classical configuration can be viewed as a continuous collection of poles which have
condensed into the cuts Cij. This intuition is particularly transparent in the comparison
with the algebraic curve of the Yang-Mill theory, as discussed in section 3, where indeed,
the cuts arose from condensation of Bethe roots. From this point of view, semi-classical
quantization naturally corresponds to adding small fluctuations, or poles, to the classical
configuration. Naturally, these fluctuations will have polarizations, labeled by (ij), and
amount to shifting the quasi-momenta

pi(x)→ pi(x) + δijpi(x) . (4.1)

The energy shift is then obtained as the sum over all fluctuation frequencies. The shifts in
the quasi-momenta δijpi(x) are constrained by the asymptotics etc of the quasi-momenta,
outlined in section 2.4:

• The perturbed quasi-momenta will have to continue to satisfy the relation
(2.14). First we need to determine the position of the new pole xijn

pi(x
ij
n )− pj(xijn ) = 2πnij . (4.2)

The physical poles correspond to solutions of this equation with |xijn | > 1.3 The
fluctuation δijn pi will have to add a pole at xijn with residue, α(xijn ), such that it
changes the filling fraction Sij (2.21) by one, i.e.

δijn pi = ± α(xijn )

x− xijn
, (4.3)

with

α(x) =
4π√
λ

x2

x2 − 1
. (4.4)

The total shifted quasi-momentum is obtained by summing over all fluctuations
with all relevant polarizations in (2.16)

δpi ∼
∑
(ij)

δ(ij)pi(x) =
∑
(ij)

εiN
ij
n

α(xijn )

x− xijn
, (4.5)

where N ij
n label the excitations with mode number n and polarization (ij), and the

signs are
1 = ε1̂ = ε2̂ = −ε3̂ = −ε4̂ = −ε1̃ = −ε2̃ = ε3̃ = ε4̃ . (4.6)

From (2.14) it furthermore follows that

δpi(x+ iε)− δpj(x− iε) = 0 , x ∈ Cijn . (4.7)

3 The inversion symmetry maps the region |x| > 1 maps to |x| < 1, so that considering one of these
regions (the physical region) is sufficient to describe the curve. Without loss of generality the region
|x| > 1 is chosen to be the physical region.
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• As in the classical case, the poles at x = ±1 have to be correlated due to the
Virasoro constraint

{δp̂1, δp̂2, δp̂3, δp̂4|δp̃1, δp̃2, δp̃3, δp̃4}

=
{δα±, δα±, δβ±, δβ±|δα±, δα±, δβ±, δβ±}

x± 1
+O(1) .

(4.8)

• The asymptotics at infinity (2.18) of the δijpi can be easily read off



δp̂1

δp̂2

δp̂3

δp̂4

δp̃1

δp̃2

δp̃3

δp̃4


=

4π

x
√
λ



+δ∆/2 +N1̂4̂ +N1̂3̂ +N1̂3̃ +N1̂4̃

+δ∆/2 +N2̂3̂ +N2̂4̂ +N2̂4̃ +N2̂3̃

−δ∆/2 −N2̂3̂ −N1̂3̂ −N1̃3̂ −N2̃3̂

−δ∆/2 −N1̂4̂ −N2̂4̂ −N2̃4̂ −N1̃4̂

−N1̃4̃ −N1̃3̃ −N1̃3̂ −N1̃4̂

−N2̃3̃ −N2̃4̃ −N2̃4̂ −N2̃3̂

+N2̃3̃ +N1̃3̃ +N1̂3̃ +N2̂3̃

+N1̃4̃ +N2̃4̃ +N2̂4̃ +N1̂4̃


+O

(
1

x2

)
, (4.9)

where δ∆ parametrizes the shift in the energy E . From these asymptotics we can
also determine the fluctuation frequencies Ωij

n that are familiar from the direct
semi-classical quantization by

Ωij
n = −2δi,1̂ +

√
λ

2π
lim
x→∞

xδijn p1̂(x) . (4.10)

The energy shift then takes the usual form, as sum over fluctuation frequencies

δ∆ =
∑
ij,n

Nn
ijΩ

ij
n . (4.11)

• Finally, the inversion symmetries extend trivially to the shifted quasi-momenta.
These rather inconspicuous transformations, however, turn out to be rather power-
ful in determining the energy shifts. We shall see in section 4.2 how one can derive
a closed expression for the one-loop energy shift, by invoking the asymptotics, pole
structure, and inversion symmetry.

So far we covered all the constraints that follow from the asymptotics of the classical
quasi-momenta. In addition, the fluctuations will backreact upon the classical cuts and
close to the branch-points (or cut-endpoints) we impose for pi ∼

√
(x− a) close to the

branch-point x = a

δpi ∼
d

dx
pi . (4.12)

Solving these constraints in particular fixes δE, which is the desired one-loop energy
shift.
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4.2 General expression of one-loop energy shift

Rather than presenting examples of computations of energy shifts using the algebraic
curve, which can e.g. be found for a plentitude of solutions (BMN, spinning string
solutions, giant magnon) in the literature listed in the introduction, it is perhaps more
interesting to point out that using general properties of the quasi-momenta constrain
the energy shift such that closed expressions can be obtained for fairly general solutions
(for any number of cuts) [12]. We then apply it to the circular string solution of section
2.5. This will be essentially a trivial step, once the general energy shift has been derived,
and hopefully exemplifies that the algebraic curve approach is indeed very powerful for
computing these effects.

4.2.1 Off-shell Fluctuation Frequencies

The key idea is to introduce the concept of an off-shell fluctuation (also sometimes refered
to as quasi-energies), which means, defining the fluctuation as a function of the spectral
parameter x and a variable y, such that the following holds

δijn pk(x) = δijpk(x; y)
∣∣
y=xijn

. (4.13)

This off-shell flucutation δijpk(x; y) is fixed by the same asymptotics as the on-shell shift
of quasimomenta δijn pk(x) except that the position of the pole is left unfixed. In the same
way, we can then define off-shell fluctuation energies, by applying the same reasoning to
(4.10)

Ωij
n = Ωij(y)

∣∣
y=xijn

. (4.14)

The off-shell frequency is related for the particular case of the SU(2) principal chiral
model to the quasi-energy introduced in [14].

It is simple to reconstruct the off-shell frequency from a given on-shell one Ωij
n . We

know that the mode number n is determined precisely by the requirement pi(x
ij
n ) −

pj(x
ij
n ) = 2πn, so that reverting this relation, treating n now as a function of pl(y) we

obtain
Ωij(y) = Ωij

n

∣∣
n→

pi(y)−pj(y)

2π

. (4.15)

We will now explain how, using the inversion symmetry (2.20), we can relate many
off-shell fluctuation energies. In this way we will find a powerful reduction algorithm for
the computation of the fluctuation energies and thus the one loop energy shift

δ∆1−loop =
1

2

∑
ij,n

(−1)FijΩij
n , (4.16)

around a generic classical solution.

4.2.2 Frequencies from inversion symmetry

An important property of the quasi-momenta, which follows from the Z4-grading of the
psu(2, 2|4) superalgebra, is the inversion symmetry (2.20) under x → 1/x, which ex-
changes the quasi-momenta p1̃,4̃ ↔ p2̃,3̃ and likewise for the AdS hatted quasi-momenta.
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Thereby, a pole connecting the sheets (2̃, 3̃) at position y, always comes with an image
pole at position 1/y connecting the sheets (1̃, 4̃). We can obtain a physical frequency
Ω1̃4̃(y), by analytically continuing the off-shell frequency Ω2̃3̃(y), inside the unit circle.
This is because when we cross the unit-circle, the physical pole for (2̃3̃) becomes unphys-
ical, thereby rendering its image, which lies now outside the unit-circle, a physical pole
for (1̃4̃). More precisely, it was shown in [12], that with this kind of reasoning we can
compute the (1̂4̂) fluctuation in terms of the (2̂3̂) one. For the AdS fluctuations, indeed,
the relation is

Ω1̂4̂(y) = −Ω2̂3̂(1/y)− 2 . (4.17)

This follows by invoking the general pole/asymptotics of the quasi-momenta and in the
inversion symmetry.

Similarly we can proceed for the S5 frequencies and relate Ω2̃3̃(y) with Ω1̃4̃(y). It is
clear that Ω1̃4̃(y) = −Ω2̃3̃(1/y) +constant, which can be fixed from Ω1̃4̃(∞) = 0. Thus,
the relation is similar to (4.17), except that the constant term differs:

Ω1̃4̃(y) = −Ω2̃3̃(1/y) + Ω2̃3̃(0) . (4.18)

For the purpose of computing the one-loop shift these constants are irrelevant and can
be shown to cancel in the sum over frequencies4.

So far we have obtained the frequencies (14) from (23). In the next subsection we will
show how to derive all remaining frequencies. For a very large class of classical solutions
we will be able to extract all fluctuation energies, including the fermionic ones, from the
knowledge of a single S3 and a single AdS3 fluctuation energy.

4.2.3 Basis of fluctuation energies

For simplicity we consier only symmetric classical configurations that have pairwise sym-
metric quasi-momenta

p1̂,2̂,1̃,2̃ = −p4̂,3̂,4̃,3̃ , (4.19)

This is in particular the case for all rank one solutions, i.e. su(2) and sl(2), however, a
generalization to other cases should not be difficult.

Consider e.g. the fermionic frequency Ω2̂3̃(y). This energy can be thought of as
a linear combination of the physical fluctuation Ω2̃3̃(y) and an unphysical fluctuation

Ω2̂2̃(y) (it is unphysical, as it is not one of the fluctuations in (2.16)) momentum-carrying
polarisations

Ω2̂3̃(y) = Ω2̃3̃(y) + Ω2̂2̃(y) . (4.20)

Since we are considering symmetric configurations, this unphysical fluctuation energy is
identical to Ω3̃3̂(y), i.e.

Ω2̂2̃(y) = Ω3̃3̂(y) . (4.21)

As in (4.20), these unphysical fluctuations can be linearly combined in terms of physical
fluctuations

Ω2̂3̂(y) = Ω2̂2̃(y) + Ω2̃3̃(y) + Ω3̃3̂(y) . (4.22)

4Note, that in the case of AdS4 × CP3 these constants play an important role.
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Combining all these relations we obtain

Ω2̂3̃(y) =
1

2

(
Ω2̃3̃(y) + Ω2̂3̂(y)

)
. (4.23)

Proceeding in a similar fashion all frequencies can be obtained as linear combinations of
Ω2̃3̃(y) and Ω2̂3̂(y).

4.2.4 Final result

The physical frequencies are labeled by the eight bosonic and eight fermionic polariza-
tions (2.16), so we can label them by

Ωij , where i = (1̂, 2̂, 1̃, 2̃) j = (3̂, 4̂, 3̃, 4̃) . (4.24)

To construct the complete set of off-shell frequencies for a symmetric solution (4.19) in

terms of the two fundamental S3 and AdS3 ones Ω2̃3̃(y) and Ω2̂3̂(y) and their images
under y → 1/y, we first construct by inversion

Ω1̃4̃(y) = −Ω2̃3̃(1/y) + Ω2̃3̃(0)

Ω1̂4̂(y) = −Ω2̂3̂(1/y)− 2 .
(4.25)

The remaining frequencies are then obtained by linear combination of these four fluc-
tuation frequencies. In this way we obtain the following concise form for all off-shell
frequencies

Ωij(y) =
1

2

(
Ωii′(y) + Ωj′j(y)

)
, (4.26)

where
(1̂, 2̂, 1̃, 2̃, 3̂, 4̂, 3̃, 4̃)′ = (4̂, 3̂, 4̃, 3̃, 2̂, 1̂, 2̃, 1̃) . (4.27)

To finally, make the point, that these are indeed written in terms of the basis frequencies
Ω2̃3̃(y) and Ω2̂3̂(y), we present the complete set of frequencies

Ω1̃4̃(y) = −Ω2̃3̃(1/y) + Ω2̃3̃(0)

Ω2̃4̃(y) = Ω1̃3̃(y) =
1

2

(
Ω2̃3̃(y) + Ω1̃4̃(y)

)
=

1

2

(
Ω2̃3̃(y)− Ω2̃3̃(1/y) + Ω2̃3̃(0)

)
Ω1̂4̂(y) = −Ω2̂3̂(1/y)− 2

Ω2̂4̂(y) = Ω1̂3̂(y) =
1

2

(
Ω2̂3̂(y) + Ω1̂4̂(y)

)
=

1

2

(
Ω2̂3̂(y)− Ω2̂3̂(1/y)

)
− 1

Ω2̂4̃(y) = Ω1̃3̂(y) =
1

2

(
Ω2̂3̂(y) + Ω1̃4̃(y)

)
=

1

2

(
Ω2̂3̂(y)− Ω2̃3̃(1/y) + Ω2̃3̃(0)

)
Ω2̃4̂(y) = Ω1̂3̃(y) =

1

2

(
Ω2̃3̃(y) + Ω1̂4̂(y)

)
=

1

2

(
Ω2̃3̃(y)− Ω2̂3̂(1/y)

)
− 1

Ω1̃4̂(y) = Ω1̂4̃(y) =
1

2

(
Ω1̃4̃(y) + Ω1̂4̂(y)

)
=

1

2

(
−Ω2̃3̃(1/y)− Ω2̂3̂(1/y) + Ω2̃3̃(0)

)
− 1

Ω2̂3̂(y) = Ω2̃3̂(y) =
1

2

(
Ω2̃3̃(y) + Ω2̂3̂(y)

)
.

(4.28)
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In the complete one-loop energy shift (4.16) the constant terms in (4.28) will drop
out and thus do not need to be computed. This is in particular clear, when performing
the graded sum over Ωij(xijn ) with the explicit frequencies in (4.28).

For the general case of not symmetric solutions, we can repeat the above analysis,
however the minimal set of required off-shell fluctuation frequencies will generically be
larger than two.

4.2.5 Exampe: Circular String

We shall now specialize to the case of su(2) solutions, and then apply these results to
the circular string discussed in section 2.5. For su(2) soltuions, only p̃2 (and p̃3) will be
connected by square root cuts (outside the unit circle) and

p̃2 = −p̃3 , p̃1 = −p̃4 and p̂1 = p̂2 = −p̂3 = −p̂4 , (4.29)

so that we will generically have 6 different frequencies, namely:

1. One internal fluctuation corresponding to a pole shared by p̃2 and p̃3 which we
denote by

ΩS(y) = Ω2̃3̃(y) (4.30)

2. Another S3 fluctuation connecting p̃1 and p̃4

ΩS̄(y) = Ω1̃4̃(y) (4.31)

3. Two fluctuations which live in S5 but are orthogonal to the ones in S3,

ΩS⊥(y) = Ω1̃3̃(y) = Ω1̃4̃(y) (4.32)

4. Four AdS5 fluctuations

ΩA(y) = Ω1̂3̂(y) = Ω1̂4̂(y) = Ω2̂3̂(y) = Ω2̂4̂(y) (4.33)

5. Four fermionic excitations which end on either p2̃ or p3̃ (which are the sheets where
there are cuts outside the unit circle)

ΩF (y) = Ω1̂3̃(y) = Ω2̂3̃(y) = Ω2̃3̂(y) = Ω2̃4̂(y) (4.34)

6. Four fermionic poles which end on either p1̃ or p4̃ (which are the sheets where there
are cuts inside the unit circle)

ΩF̄ (y) = Ω1̂4̃(y) = Ω2̂4̃(y) = Ω1̃3̂(y) = Ω1̃4̂(y) . (4.35)
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These expressions apply to any su(2) solution, where the cuts are symmetrically arranged
(as commented earlier, the more general case follows trivially but may require more ”basis
fluctuations”). They also apply to higher cut solutions, as exemplified in [12].

We now apply these expressions to the circular string of section 2.5. Recall, the quasi-
momenta for the circular string in S3 × R depend on the following parameters of the
solution, which are the spin J and winding m repackaged as J = J/

√
λ, κ =

√
J 2 +m2.

The classical energy is

E =
E√
λ

=
√
J 2 +m2 . (4.36)

The classical solution is determined by the quasi-momenta 2.23. The fluctuations were
first determined from the sigma-model point of view in [31], the exact expansion in
terms of 1/J as provided in [32] and a derivation of the fluctuation frequencies using
the algebraic curve was done in [10]. Here we will argue that we only need two frequen-
cies, namely the so-called ”internal fluctuations” within the S3 and one AdS-fluctuation
(which is trivial to obtain).

The off-shell frequencies in the (2̃, 3̃) and (2̂, 3̂) directions are

Ω2̃3̃(y) =
2m+ n2̃3̃

κy
=

2m+
p2̃−p3̃

2π

κy
=

2
√
m2y2 + J 2

(y2 − 1)
√
m2 + J 2

Ω2̂3̂(y) =
2

y2 − 1
.

(4.37)

This will be our only input. We will now demonstrate that the remaining su(2) frequen-
cies can be obtained with the methods outlined in the last section.

The AdS-frequencies are all given by generalizations of (4.17)

Ω1̂4̂(y) = −Ω2̂3̂(1/y)− 2 =
2

y2 − 1

Ω2̂4̂(y) =
1

2

(
Ω2̂3̂ + Ω1̂4̂

)
=

2

y2 − 1

Ω1̂3̂(y) = −Ω2̂4̂(1/y)− 2 =
2

y2 − 1
.

(4.38)

Thus showing the expected agreement of all AdS fluctuation energies.
Let us move to the less trivial S5 fluctuations. From (4.28) we know

Ω1̃4̃(y) = −Ω2̃3̃(1/y) + Ω2̃3̃(0) . (4.39)

Applied to (4.37) we get

Ω1̃4̃(y) =
2
(
−J y2 + y

√
m2 + y2J 2 + J

)
(y2 − 1)

√
m2 + J 2

=
n1̃4̃y − 2J

κ
, (4.40)
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by recalling that n1̃4̃ =
p1̃(y)−p4̃

2π
. The remaining frequencies are obtained by linear com-

bination and inversion

Ω1̃3̃(y) =
1

2

(
Ω1̃4̃ + Ω2̃3̃

)
=
y(m+ n1̃3̃)− J −

√
m2y2 + J 2

κ

Ω2̃4̃(y) = −Ω1̃3̃(1/y)− 2
∂E
∂J

=
y(m+ n2̃4̃)− J −

√
m2y2 + J 2

κ
.

(4.41)

Finally we compute the fermion frequencies, which are simply linear combinations

Ω1̂4̃(y) = Ω1̃4̃(y) + Ω1̂1̃(y) =
n1̂4̃y − J − κ

κ

Ω1̃3̂(y) = Ω1̃4̃(y) + Ω4̃3̂(y) =
n1̂4̃y − J − κ

κ
.

(4.42)

Similarly one can check the other fermionic frequencies

Ω1̂3̃(y) =
1

2
(Ω2̃3̃(y) + Ω1̂4̂(y)) =

m+ n1̂3̃

yκ
. (4.43)

The complete 1-loop energy shift is obtained by

δE =
1

2

∑
n∈Z

∑
(ij)

(−1)FijΩij(xijn ) , (4.44)

where Ωij(xijn ) are of course now the on-shell frequencies, obtained by evaluating the
off-shell frequencies at the position of the poles xijn . Note that the sum can be converted
into a contour integral in the n-plane (see e.g. [32, 10]), which simplifies the evaluation
of the energy shift. This is in complete agreement with [31,10].
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Chapter III.1: Bethe Ansätze and the R-Matrix Formalism

1 Introduction

Quantum integrability was discovered in 1931 by young postdoc Hans Bethe during a
research stay in Rome. Interestingly, this happened while the general formalism of non-
relativistic quantum mechanics was still being developed. Bethe took a look at a one-
dimensional model for a metal, the so-called Heisenberg spin chain, whose Hamiltonian
reads

H = 4
L∑
l=1

(
1

4
− ~Sl · ~Sl+1

)
with ~Sl =

1

2
~σl , (1.1)

where ~σl are the three Pauli matrices, i.e. each ~Sl is a separate spin-1
2

representation of
su(2). He managed to find, in a sense to be explained below, the exact solution of this
model by making a clever educated guess for the “wave function” |ψ〉 of the spin chain
system, that is for the eigenstates of the spectral problem

H · |ψ〉 = E |ψ〉 , (1.2)

where E are the energy eigenvalues. His original paper is still very readable today,
and easily accessible either in its original German version [1], or its English translation,
which is easily available on the internet. The last sentence of this masterpiece, just
before the acknowledgements to Enrico Fermi and the sponsor of his visit, the Rockefeller
foundation, indicates that Bethe was not quite aware how lucky he had been discovering
quantum integrability in one dimension: He states with confidence that he was intending
to generalize his method to the solution of higher dimensional lattices in a follow-up
paper. We now know that this was bound to fail.

Bethe’s discovery of the exact solution of the spectral problem (1.2) is of timeless
beauty and extraordinary importance for condensed matter theory and mathematical
physics. The method continued and continues to be relevant to a multitude of widely
differing problems. The maybe latest reincarnation occured in the context of integrability
in AdS/CFT, which is the focus of this review. As explained in the articles of part I of
this volume, the Hamiltonian (1.1) appears in N = 4 Yang-Mills theory in the scalar

field subsector, where ~S ∈ su(2) ⊂ su(4) ⊂ psu(2, 2|4), as the one-loop approximation of
the conformal dilatation generator D ∈ su(2, 2) ⊂ psu(2, 2|4)

D = L+ g2 H +O(g4) . (1.3)

To understand the meaning of these Lie algebras in the AdS/CFT context, please refer
to the article [2]. Here g2 is related to the ‘t Hooft coupling constant λ by g2 = λ

16π2 .
Note that we did not yet fully define the Hamiltonian in (1.1), since we so far did not

state how to interpret ~SL+1. In other words, we need to specify the boundary conditions
of the chain. For N = 4 we need periodic boundary conditions

~SL+1 := ~S1 , (1.4)

which is also the case originally solved by Bethe. It is relatively easy to see that H in
(1.1) with (1.4) is rotationally invariant, i.e. commutes with the total spin operator ~S:

[H, ~S] = 0 where ~S =
L∑
l=1

~Sl . (1.5)
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1.1 Understanding the problem

Let us first understand the problem, before contemplating its solution. The first thing
to grasp is that the H in (1.1) is just a simple matrix of size 2L × 2L. Why? Because
the spin chain is composed of L Pauli spins, each of which can be pointing either up
↑ or down ↓. Or, as in Bethe’s paper,1left ← or right →. In the AdS/CFT context,
the two spin orientations correspond to two of the three possible complex scalar matter
fields, say Z and X, and the spin chain is a local composite single trace operator. A basis
for the configuration space of the chain is of size 2L. The eigenstates |ψ〉 must then be
the appropriate linear combinations of these 2L basis vectors. The proper mathematical
concept to describe this set-up is the tensor product. Let us denote the state space of a
single spin by C2. Then a basis of this two-dimensional complex (as quantum mechanics
demands) vector space is

| ↑ 〉 = Z =

(
1

0

)
, | ↓ 〉 = X =

(
0

1

)
. (1.6)

The full state space of the quantum spin chain is then

C2 ⊗ C2 ⊗ · · · ⊗ C2︸ ︷︷ ︸
L−times

, (1.7)

and ~Sl in (1.1) means that this operator acts like the 2×2 identity matrix I2 on each copy
of C2, except for the l-th one, where it acts as 1

2
~σ. Tensor products can be confusing,

and I recommend the very pedagogical introduction [3] for a transparent and detailed
explanation in the same context. To illustrate, let us study the simplest non-trivial
example of this, the L = 2 spin chain. In the basis{

| ↑ 〉 ⊗ | ↑ 〉, | ↑ 〉 ⊗ | ↓ 〉, | ↓ 〉 ⊗ | ↑ 〉, | ↓ 〉 ⊗ | ↓ 〉
}
, (1.8)

or short {
| ↑ ↑ 〉, | ↑ ↓ 〉, | ↓ ↑ 〉, | ↓ ↓ 〉

}
, (1.9)

we have from (1.1) (the reader may have to play a bit with Pauli’s matrices to see this)

H =


0 0 0 0
0 +4 −4 0
0 −4 +4 0
0 0 0 0

 . (1.10)

In this simplest case, it is of course trivial to find the eigensystem of the matrix H. The
(not fully normalized) eigenvectors are{

| ↑ ↑ 〉, | ↑ ↓ 〉+ | ↓ ↑ 〉, | ↑ ↓ 〉 − | ↓ ↑ 〉, | ↓ ↓ 〉
}
, (1.11)

1An interesting historical question is why Bethe’s left-right convention lost out to up-down.
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and in this basis the diagonalized Hamiltonian reads
0 0 0 0
0 0 0 0
0 0 8 0
0 0 0 0

 . (1.12)

It is useful to reorder the basis to{
| ↑ ↑ 〉, | ↑ ↓ 〉+ | ↓ ↑ 〉, | ↓ ↓ 〉, | ↑ ↓ 〉 − | ↓ ↑ 〉

}
, (1.13)

such that the diagonalized Hamiltonian becomes
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 8

 . (1.14)

In view of (1.2) we see that we have two distinct energy eigenvalues, namely a triply
degenerate value E = 0 with eigenstates | ↑ ↑ 〉, | ↑ ↓ 〉 + | ↓ ↑ 〉, | ↓ ↓ 〉, as well as a non-
degenerate eigenvalue E = 8 with eigenstate | ↑ ↓ 〉 − | ↓ ↑ 〉. Group theoretically this
is to be expected, as we have a su(2) invariant chain, and in the tensor product of two
(since L = 2) spin-1

2
representations we have one spin-1 triplet and one spin-0 singlet:

1
2
⊗ 1

2
= 1⊕0. Recall that the Hamiltonian H commutes with the total spin, therefore, as

remarked below (1.4), the energy eigenvalues in each su(2) multiplet must be identical.
Let us introduce two further important operators. The first is the permutation oper-

ator Pl,l+1, which permutes the spins at site l and l + 1. In our simplest length L = 2
example, we clearly have, in the basis (1.8),

P1,2 =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 . (1.15)

If we denote by I1,2 the four-dimensional unit matrix, we can obviously rewrite the
Hamiltonian matrix (1.10) as H = 2 (I1,2−P1,2) + 2 (I2,1−P2,1). Since the interaction in
the Hamiltonian (1.1) for general L is nearest-neighbor and pairwise, we can immediately
lift this result from 2 to L and find that

H = 2
L∑
l=1

(Il,l+1 − Pl,l+1) . (1.16)

It is a nice exercise with tensor products to alternatively deduce this result directly from
(1.1) by using the explicit form of the three Pauli matrices. For the solution of this
exercise, see again [3].

The other important operator is the shift operator, defined as U = P1,2 . . . PL−1,L.
We invite the reader to playfully act with it on a general spin chain state, and its name
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will immediately become obvious. Strictly speaking, we could define a left-shift and a
right-shift operator, but this distinction will not be needed here. Now it is easy to see
that because of the periodic boundary conditions the shift operator commutes with the
Hamiltonian: [U,H] = 0, as well as with the total spin operator: [U, ~S] = 0. Therefore
each eigenstate |ψ〉 in (1.2) must also carry a definite shift eigenvalue U : U · |ψ〉 = U |ψ〉.
Furthermore, it should be obvious that UL = I, since shifting by L sites returns us to
the original configuration. Therefore, all eigenvalues of U have to satisfy UL = 1, and
we conclude that they are quantized in units of 1/L, i.e. U = e2πin/L with the quantum
number n = 0, 1, . . . , L− 1. In our nearly trivial L = 2 example we have U = P1,2 as in
(1.15), while the shift operator becomes diagonal in the basis (1.13) where it reads

+1 0 0 0
0 +1 0 0
0 0 +1 0
0 0 0 −1

 . (1.17)

So the triplet state has shift quantum number n = 0, and the singlet n = 1. The shift
operator plays a crucial role in the N = 4 gauge theory context: Because of gauge
invariance, all planar local composite operators are single trace operators, see part I of
this review. The trace leads to two distinct consequences for the spin chain interpretation
of these operators. The first is that the “first” field (spin chain site l = 1) inside the
trace gets “hooked” to the “last field” (site l = L). This is just the periodic boundary
condition (1.4). The second is that because of trace cyclicity only the eigenvalue U = 1
is allowed, all states with n 6= 0 are actually identically zero in gauge theory. So if we
interpret our L = 2 eigenstates in (1.13) via (1.6) in gauge theory, we find, using trace
cyclicity,{

TrZ2,TrZX + TrXZ,TrX2,TrZX − TrXZ
}

=
{

TrZ2, 2 TrZX,TrX2, 0
}
. (1.18)

So as concerns the triplet, TrZX and TrX2 are some su(2) descendents of the BPS
primary state TrZ2 (cf. part Va) with anomalous dimension E = 0, but the L = 2
Heisenberg chain’s singlet simply disappears (or maybe better to say: is projected out)
in gauge theory! So the energy E = 8 of this state has no interpretation in gauge theory,
at least not in the maximally supersymmetric N = 4 case.

1.2 Understanding the solution of the problem

As we just explained, the Hamiltonian is just a 2L× 2L matrix, so what is the problem?
The quick answer is that Hans Bethe neither had a laptop nor Mathematica or Maple
(and even if he had had one, he would have quickly run into problems for sizes L ≥ 10
or so). So he derived the equations which carry his name. Let us assume that we have
a number M of down spins in a chain of length L. While the Hamiltonian clearly shifts
around those down spins, it certainly does not change M , as is easily seen from (1.16).
In fact, this follows from (1.5), which says, in particular, that the z-component of spin
commutes with H: [H, Sz] = 0: For all-spins-up, the eigenvalue of Sz is 1

2
L, and reversing
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one spin lowers the total spin by 1 (not by 1
2
, think about it!) so we have for M reversed

spins 1
2
(L−2M). Since Sz and L are conserved, so is M . So the 2L×2L matrix is block-

diagonal, with L+ 1 blocks (M = 0, . . . , L), and the M -th block is a
(
L
M

)
×
(
L
M

)
matrix.

In order to nicely write down the eigenvalues of the M -th block, Bethe introduced M
complex numbers u1, . . . , uM . To be honest, he probably first introduced them as real
numbers, but quickly found that they needed to be complex for his solution to work in
general. According to him, the eigenvalues of the Hamiltonian H (the energies) are then
given by

E = 2
M∑
k=1

1

u2
k + 1

4

, (1.19)

and the eigenvalues of the shift operator U are

U =
M∏
k=1

uk + i
2

uk − i
2

. (1.20)

So, instead of diagonalizing a
(
L
M

)
×
(
L
M

)
matrix, we have to find the correct sets of

distinct2 numbers {u1, . . . , uM}. They are fittingly called Bethe roots, and are determined
from a system of M algebraic equations for these M variables:(uk + i

2

uk − i
2

)L
=

M∏
j=1

j 6=k

uk − uj + i

uk − uj − i
, where k = 1, . . . ,M . (1.21)

So what are the solutions of these equations? Let us see how to reproduce our results for
the L = 2 chain from the previous section. There are three blocks of H, corresponding
to M = 0, 1, 2 (look back at (1.10)). The M = 0 block is 1× 1, there are no Bethe roots,
so the sum in (1.19) is empty and indeed gives E = 0. The M = 1 block is of size 2× 2.
Solving (1.21), there is just one finite Bethe root, which is easily found to be u1 = 0.
This indeed gives from (1.19) E=8 and from (1.20) U=-1. The reader can also try the
final 1×1 block with M = 2, she will, however, not find finite, distinct Bethe roots u1, u2

corresponding to the eigenvalue E = 0 for | ↓↓〉.
This was a partial success, we did encounter the correct energies E = 0, 8 which

appear at L = 2, but the multiplicities do not seem right. Why did we only find
two instead of four states for the L = 2 chain? The answer is pretty tricky, and best
understood by manipulating the periodic boundary conditions (1.4), replacing them by

S3
L+1 := S3

1 , S±L+1 := e∓iφ S±1 , (1.22)

where φ is some phase, and S±l = S1
l ± i S2

l are the usual su(2) ladder operators. For
φ = 0 we obviously recover (1.4). Let us denote (1.1) with (1.22) instead of (1.4) by Hφ.
The length L = 2 Hamiltonian matrix (1.10) is then modified to

Hφ =


0 0 0 0
0 +2 −2 0
0 −2 +2 0
0 0 0 0

+


0 0 0 0
0 +2 −2 e+i φ 0
0 −2 e−i φ +2 0
0 0 0 0

 . (1.23)

2We will see in the next subsection why the Bethe roots must all be distinct.
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The basis (1.13) is modified to{
| ↑ ↑ 〉, e−i

φ
4 | ↑ ↓ 〉+ e+iφ

4 | ↓ ↑ 〉, | ↓ ↓ 〉, e−i
φ
4 | ↑ ↓ 〉 − e+iφ

4 | ↓ ↑ 〉
}
, (1.24)

and the diagonalized Hamiltonian now reads in generalization of (1.14)
0 0 0 0

0 8 sin2 φ
4

0 0
0 0 0 0

0 0 0 8 cos2 φ
4

 . (1.25)

We see that the degeneracy of the triplet is (partially) lifted, as the “middle state” now
has energy E = 8 sin2 φ

4
while | ↑ ↑ 〉 and | ↓ ↓ 〉 remain at E = 0. Therefore the su(2)

invariance must be broken3 for generic φ, and we indeed now have [Hφ, ~S] 6= 0.
Bethe’s equations still work with minor modifications. In fact, they work much better!

The formula for the energy (1.19) remains unaffected, but (1.21) are modified to

(uk + i
2

uk − i
2

)L
eiφ =

M∏
j=1

j 6=k

uk − uj + i

uk − uj − i
, where k = 1, . . . ,M . (1.26)

Let’s redo the L = 2 case (confer the discussion just after (1.21)). There are still three
blocks of H, corresponding to M = 0, 1, 2. As before, the M = 0 block is 1×1, there are
no Bethe roots, and thus E = 0. The M = 1 block is of size 2 × 2. However, this time
around, solving (1.26) yields not one but two finite Bethe roots. They are easily found to
be u1 = −1

2
cot φ

4
or u1 = 1

2
tan φ

4
. From (1.19) this gives, respectively, E = 8 sin2 φ

4
and

E = 8 cos2 φ
4
. Finally, for the 1 × 1 block with M = 2 we find u1,2 = −1

2
cot φ

2
± i

2 sin φ
2

.

Curiously, this leads from (1.19) for arbitrary φ to the correct energy E = 0, showing that
“non-trivial” Bethe roots can lead to trivial energies. Let us now take the φ → 0 limit.
We observe that the Bethe root u1 = −1

2
cot φ

4
of the M = 1 descendent | ↑↓ 〉+ | ↓ ↑ 〉 of

the su(2) highest weight state | ↑↑〉 diverges, while the root u1 = 1
2

tan φ
4

of the singlet
state | ↑↓ 〉−| ↓ ↑ 〉 returns to its correct untwisted value u1 = 0. Likewise, the two Bethe
roots u1,2 = −1

2
cot φ

2
± i

2 sin φ
2

of the M = 2 descendent | ↓↓〉 also both diverge. So this

is the answer to our multiplicity puzzle: The untwisted Bethe ansatz equations (1.21)
only yield the highest weight states,4 i.e. those states which are annihilated by the total
S+. The descendents of these formally correspond to adding roots at infinity! Note that
each “step” down the multiplet adds one further such infinite root.5 This is an artifact
resulting from the su(2) invariance, if we break the latter by the twist field φ, the Bethe
equations (1.26) yield the correct energies and all states are nicely described by finite
sets of Bethe roots.

3We still have [Hφ, S
z] = 0, so the number M of down-spins is still conserved.

4 It may be proved that the eigenvectors are highest weight states and, therefore, in (1.21) M should
in fact be restricted to values M ≤ L/2.

5Note that if we allow roots at infinity, we have to ad hoc relax the restriction that all Bethe roots
must be distinct, since we need n of these for level n descendents.
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The attentive reader might wonder what is the advantage of this reformulation of
the matrix diagonalization problem (1.2) by (1.21) with (1.19) (or their generalization
(1.26) with (1.19)). The system of equations (1.26) is increasingly tricky to solve, even
using numerical techniques, as L and M increase from the nearly trivial values we just
discussed. Nevertheless there are huge advantages as compared to brute force diago-
nalization of the 2L × 2L Hamiltonian. In fact, in order to understand this statement,
we invite the serious reader to take Mathematica or Maple, and to find the complete
spectrum of the L = 3, 4 and maybe the L = 5 chain by finding all states both from
(1.26) as well as directly from (1.1) with “quasiperiodic” boundary conditions (1.22).
For sure, as L increases, direct diagonalization becomes impossible even with the help of
a powerful computer due to the exponential growth of the matrix size. With a “metal”
where the number of atoms in a unit volume is L3 ∼ O(1023) this is clearly impossible.
On the other hand, the system of equations (1.26) actually tends to enormously simplify
for large values of L: One often is able to derive neat linear integral equations in this
thermodynamic limit. For one example within this review series, see [4]. Furthermore,
the reformulation of a matrix diagonalization problem to an entirely algebraic problem is
conceptually very interesting and useful. Note that this algebraic reformulation is quite
different from working out the characteristic polynomial det(E I−H) of the Hamiltonian
matrix, where we first need to compute a large 2L×2L determinant. In fact, numerically
it is a particularly bad idea to compute the characteristic polynomial and to then deter-
mine its eigenvalues, since it wildly oscillates. It is much better to obtain the spectrum
by different methods starting from the original matrix.

1.3 Understanding how to arrive at the solution, and AdS/CFT

So far we just tried to explain how Bethe’s solution of the diagonalization problem
of the Heisenberg chain works. But how to find his equations (1.19), (1.26)? If an
exact solution to some problem exists, there are usually many ways to find it. The
Heisenberg chain is no exception. In the following, we will briefly sketch a number of
rather distinct, interesting solution methods, referring for details to various excellent
pedagogical presentations already existing in the literature. We will begin in Section
2 with Bethe’s original method, nowadays called “coordinate Bethe ansatz”. We then
move on to a more “modern” approach termed “algebraic Bethe ansatz” in Section 3.
In Section 4 we briefly discuss how these techniques are related to AdS/CFT, as well as
to other articles in this review collection. We end in Section 5 with yet another method
of solution pioneered a long time ago by Baxter. Curiously, it was only very recently
properly applied to the Heisenberg magnet. This author believes that this method will
prove to be very powerful in the AdS/CFT context.

2 Coordinate Bethe Ansatz

“Ansatz” is a German word for a procedure which means “make a guess for the solution,
and check whether it works”. Bethe made an inspired guess for the form of the eigenvector
|ψ〉 in (1.2), and then constructively proved that his ansatz is correct if certain conditions,
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the Bethe equations, are satisfied. As a by-product, the energy eigenvalues E are found.
Clearly |ψ〉 may be written for a given number of down spins M as

|ψ〉 =
∑

ψ(l1, l2, . . . , lM)S−l1 S
−
l2
. . . S−lM |0〉 , (2.1)

where |0〉 = | ↑↑ . . . ↑〉 is the vacuum state where all L spins point up, and the (local)
su(2) lowering operator S−lk flips the spin from up to down at position lk. We can
think of ψ(l1, l2, . . . , lM) as the position space wave function of the spin chain, where
the positions lk live on the lattice numbered by 1, . . . , L. The sum in (2.1) is over all
orderings 1 ≤ l1 < l2 < . . . lM ≤ L, in order to avoid overcounting of states. The <
stems from the fact that we can only lower each up-spin once, since each lattice site is in a
spin 1

2
representation. Of course we could have just as well started from |0〉 = | ↓↓ . . . ↓〉,

and then used S+
lk

instead of S−lk in (2.1). But as in real life, one is often forced to make
a choice in order to proceed.

So far so good, there is nothing “Bethe” yet. Here is his ansatz:

ψ(l1, l2, . . . , lM) =
∑
{τ}

A(τ) ei pτ1 l1+...+i pτM lM . (2.2)

The sum runs over the set {τ} of all M ! permutations τ of the M downspins, so τ =
{τ1, . . . , τM} is a permutation of the M labels 1, . . . ,M . This looks like a clever linear
superposition of M ! plane wave factors, where each factor is multiplied with an amplitude
A(τ) dependent on the permutations τ , but not on the positions lk. We can also think of
this as a kind of generalization of a Fourier transform, which usually solves translation-
invariant free systems. Our system is not free, however! This picture is nevertheless
useful, as it leads to the interpretation of the set of numbers {p1, . . . , pM} as the lattice
momenta of the M down-spins in the background of the up-spin vacuum.

The next step is to check whether (2.2) really works. So, with some effort we can
just plug this expression into (2.1), and check that we indeed have a solution (i.e. (1.2)
holds) iff the momenta {p1, . . . , pM} satisfy for k = 1, . . . ,M the constraints6

ei pk Lei φ =
M∏
j=1

j 6=k

S(pk, pj) , where S(pk, pj) = −e
i pk+i pj − 2 ei pk + 1

ei pk+i pj − 2 ei pj + 1
. (2.3)

In this case, the amplitudes A(τ) in the wavefunction (2.2) are given by

A(τ) = sign(τ)
∏
j<k

(
ei pk+i pj − 2 ei pk + 1

)
, (2.4)

where sign(τ) is the signature of the permutation, while the energy eigenvalue is found
to be

E =
M∑
k=1

8 sin2
(pk

2

)
. (2.5)

6It is technically easier to first try M = 1, which trivially works, then M = 2, where we find the nice
formula for S(pk, pj), and then go about proving it for general M .
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Comparing, respectively, the expressions (2.5) and (2.3) to (1.19) and (1.21), even
the hasty reader will recognize their similarity. These are the same equations, once we
identify for all k = 1, . . . ,M

eipk =
uk + i

2

uk − i
2

⇐⇒ uk =
1

2
cot

pk
2
. (2.6)

So the Bethe roots are nothing but specially parametrized lattice momenta of the down-
spin “particles”, which are often called magnons.

The nice thing about the Bethe ansatz is that it not only yields the spectrum, but
also the (unnormalized) wavefunctions7. It is easy to see that the latter are fully an-
tisymmetric under exchange of any two momenta and, therefore, any two Bethe roots.
This is the reason, mentioned already just before (1.21), why we need to discard solutions
with coinciding roots, as in this case the eigenvector |ψ〉 of (1.2) vanishes, which is of
course disallowed by elementary linear algebra.

We recommend to the serious student to study the solution we just sketched in much
more detail. Apart from Bethe’s quite readable original paper [1], a very pedagogical
presentation of the coordinate Bethe ansatz may be found in [6]. Chapter 2.1 of [7] might
also be helpful. Insightful and artfully written accounts by B. Sutherland are found in [8]
and in his book [9].

3 Algebraic Bethe Ansatz

The coordinate Bethe ansatz is very “physical”, and widely applicable. However, one
disadvantage is that it totally obscures why a given Hamiltonian is integrable. A beautiful
general method originates in work of Baxter in the early 1970’s, and was systematized
and generalized in the late 1970’s and early 1980’s within the so-called “quantum inverse
scattering program” initiated by the “Leningrad school” around Ludvig Faddeev. Its
main advantage is that it allows to find in a rather systematic way very general classes of
integrable models. For example, it is easy to generalize the XXX Heisenberg Hamiltonian
to more general representations of the spin, and to symmetry algebras larger than su(2)
while preserving integrability.

Let us panoramically sketch its key features. I certainly cannot improve the brilliant
presentation in [10]. If this is too hard upon initial reading, please first study [3]. Some
important complementary information is in [11], and the presentation in the very recent
notes [12] as well as in the initial review part of the article [13] is also very nice.

The starting point is not the Hamiltonian (1.1), but instead a “generating object” [10],
the quantum Lax operator. It admittedly falls a bit from the sky; I do not know a very
good way to motivate it. Then again, one has to start with something8 (mathematicians
call it axiom). In the case of the Heisenberg chain, this operator reads

La,l(u) =

(
u+ i S3

l i S−l
i S+

l u− i S3
l

)
a

, (3.1)

7The normalization may also be found, see e.g. [5].
8In the case of AdS/CFT, we neither know the Hamiltonian nor a good “generating object”.
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which is a 2× 2 matrix in some auxiliary space C2 indexed by a. Each of its four matrix
elements is also a 2× 2 matrix expressed through the site-l spin operators we introduced
in (1.1). It also depends on a complex variable u, the spectral parameter. A monodromy
matrix is then built as9

Ma(u) =

(
ei

φ
2 0

0 e−i
φ
2

)
· La,L(u) · La,L−1(u) · . . . · La,2(u) · La,1(u) . (3.2)

One next takes the trace Tr a over the two-dimensional auxiliary space a

T(u) = Tr aMa(u) , (3.3)

and thereby constructs the transfer matrix as an operator on the quantum space (1.7),
which also depends on u. Now take two different auxiliary spaces a and b instead of just
one, while concentrating on a single spin chain site l. Then you can (and should, at least
once in your life) check by direct computation that the Yang-Baxter equation holds on
the triple tensor product of our three spaces a, b, l:

Ra,b(u− u′)La,l(u)Lb,l(u′) = Lb,l(u′)La,l(u)Ra,b(u− u′). (3.4)

The R-matrix R is essentially, in hopefully obvious notation, the same thing as (3.1)

Ra,b(u) =

(
u+ i

2
+ i S3

a i S−a
i S+

a u+ i
2
− i S3

a

)
b

=

(
u+ i

2
+ i S3

b i S−b
i S+

b u+ i
2
− i S3

b

)
a

.

(3.5)
Using the notation of Section 1, there are further instructive ways to write this

Ra,b(u) =

(
u+

i

2

)
Ia,b + 2 i S3

a S
3
b + i S+

a S
−
b + i S−a S

+
b = u+

i

2
+ 2 i ~Sa · ~Sb , (3.6)

the most important form being

Ra,b(u) = u Ia,b + iPa,b . (3.7)

You should also learn the beautiful graphical way (the so-called “train arguments”) to
depict (3.4), which allows to trivialize many proofs (this is one of the things very nicely
explained in the earlier Faddeev lecture [11]). For example this one,

Ra,b(u− u′)Ma(u)Mb(u
′) =Mb(u

′)Ma(u)Ra,b(u− u′), (3.8)

where Ma and Mb are built as in (3.2), using (3.1). Then taking the doubletrace
Tr a Tr b of (3.8) over the two auxiliary spaces a, b the matrix Ra,b drops out, and we
derive

T(u) T(u′) = T(u′) T(u), i.e. [T(u),T(u′)] = 0 . (3.9)

9Here · denotes 2 × 2 matrix multiplication in the auxiliary space. The entries of this 2 × 2 matrix
act on (1.7). Therefore, the whole thing Ma(u) acts on the tensor product of (1.7) and the auxiliary
space a.
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The transfer matrix operator commutes with itself at different values of the spectral
parameter u! What does all this formal stuff have to do with our earlier discussion,
though? The point is that we can expand T(u), or actually more naturally log T(u) in
a power series around any point u0 of the complex u-plane, thereby generating a set of
linearly independent operators acting on the quantum space (1.7). Because of (3.9), these
all commute with each other (or, to express this in fancier way, “are in involution”). This
formally proves the integrability, since for the special point u0 = i

2
one of these charges

is our Hamiltonian (1.1) with boundary conditions (1.22):

Hφ = 2L− 2 i
d

du
log T(u)

∣∣∣
u= i

2

. (3.10)

What is more, we may also obtain the Bethe equations within this formalism, even
though it is somewhat tedious (see chapter 4 of [10]). The basic idea is quite nice and
simple though. First, introduce the following notation for the monodromy (3.2)

Ma(u) =

(
A(u) B(u)
C(u) D(u)

)
, (3.11)

where again the 2×2 matrix acts on the auxiliary space a, and in consequence A,B,C,D
are operators on (1.7). If one is just interested in the transfer matrix operator T(u) =
A(u) + D(u) the off-diagonal components C(u) and B(u) may be ignored. They are,
however, very useful for the construction of the Bethe states. Let us use the same
“ferromagnetic” vacuum state |0〉 = | ↑↑ . . . ↑〉 as for the coordinate Bethe ansatz,
c.f. (2.1). One immediately sees from (3.1),(3.2) that C(u)|0〉 = 0. Now the algebraic
Bethe ansatz is simply the following “trial wavefunction”

|ψ〉 = B(u1) B(u2) . . . B(uM) |0〉 , (3.12)

which should be compared to (2.1),(2.2). The next step is again to check whether (3.12)
really works. What does that mean here? Well, this time around we have to check
whether the state (3.12) is an eigenstate of the transfer matrix operator T(u), i.e. that

T(u) · |ψ〉 = T (u) |ψ〉 , (3.13)

where T (u) is the eigenvalue. Then we will have killed (=diagonalized) L birds (=com-
muting charges) with one stone, and thus will have also solved (1.2) (because of (3.10)).
The tedious part is to check this, where one proceeds again from (3.8). The upshot is
that it actually does not work (i.e. the state |ψ〉 in (3.12) is not an eigenstate) unless the
set of variables {u1, u2, . . . , uM} in (3.12) satisfies the Bethe equations (1.26). In fact,
they follow from eliminating the “unwanted terms” ruining (3.13). Pretty cool!

4 Extensions, Deformations, and AdS/CFT

We just sketched two methods (coordinate and algebraic Bethe ansätze) for solving
the one-dimensional Heisenberg magnet. The latter reemerged some 80 years after its
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invention in the special su(2) sector of AdS/CFT, in the one-loop approximation (1.3)
to the dilatation operator. We found it convenient to discuss a further parameter, the
angle φ breaking the periodic boundary conditions (1.22) while preserving integrability.
In fact, this angle naturally appears in a certain deformation of the original AdS/CFT
set-up, see the article [14] by Konstantinos Zoubos.

Let us now discuss what needs to be done to apply the Bethe ansatz to AdS/CFT. The
first step is to extend the set of allowed operators from the su(2) sector of X and Z fields
(1.6) to the full, infinite set of “spins”. The full one-loop magnet (see the article [15] by
Joe Minahan) with psu(2, 2|4) symmetry is also integrable, the Hamiltonian is known,
and the Bethe equations may be derived. The main new feature is, due to the extra
components, the need for the so-called nested Bethe ansatz technique. E.g. in a magnet
with su(n) symmetry, one needs n − 1 Bethe ansatz levels. It again exists in both
versions, coordinate and algebraic. The basic idea is beautiful, but the details are rather
gruesome, and will not be discussed here. If you want to learn it, the best article I know
is a lecture course by Sutherland [16]. It is worth going through for other reasons as
well, as the article’s main topic is the Hubbard model, which is closely related to the
AdS/CFT system. You can also try his original article [17], or again his book [9], and
in particular Appendix B.8 therein.

The second, much more difficult step is to extend the integrable spin chain beyond
the one-loop level, and to connect the resulting equations to the string sigma model,
cf. the articles of section II of the review. Adding radiative corrections to the dilatation
operator, see (1.3) leads to long-range spin chains, see the article [18] by Adam Rej, which
do not fit well into the standard framework of the quantum inverse scattering method.
No equally nice general theory along the lines of the nearest neighbor spin chains exists.
It should be stressed that taking into account a finite number of corrections to (1.3) does
not lead to an integrable model. Once we go beyond one-loop, we have to deal with
the all-orders system, including the notoriously difficult wrapping interactions (see [19],
and [20]). The biggest impediment to applying the two techniques we discussed to the
full model is that we neither know the exact dilatation operator D in order to apply the
coordinate Bethe ansatz, nor the generating Lax operator of the model in order to apply
the algebraic Bethe ansatz. It somewhat contradicts the idea of making an ansatz for
|ψ〉, if we do not know which operator equation (see (1.2) or (3.13)) is to be diagonalized.

That does not mean, however, that progress is impossible, as this review collection
proves. We only briefly hinted at the beautiful picture behind the coordinate Bethe
ansatz, where the down-spins are considered nearly free particles in the background of
the up-spin vacuum. When one takes any one particle (= “magnon”) with momentum pk
around the chain, the standard phase factor ei pk L of a would-be free particle gets modified
by strictly pairwise (= “factorized scattering”) collisions with all other particles carrying
momentum pj, modifying the phase with a two-body S-matrix element S(pk, pj): Please
take another look at (2.3). This idea works beautifully for AdS/CFT, and leads to the so-
called asymptotic Bethe ansatz, see [21] and [22], as well as the detailed discussion, using
both coordinate and algebraic Bethe ansatz formalism, in the Ph.D. thesis of Marius de
Leeuw [23]. The way it works is that one just assumes the existence of an integrable
all-loop Hamiltonian, without actually knowing it exactly, and then fixes all S-matrix
elements by symmetry, as well as further considerations such as crossing invariance. Note
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that “ansatz” is now used in a slightly different fashion. The new principle is to “make
a guess for the solution, check self-consistency, and hope that it works”. And it actually
only works up to the already mentioned wrapping interactions. The way around it are
the somewhat empirical and arcane techniques discussed in [20] by Romuald Janik, [24]
by Volodya Kazakov and Kolja Gromov, and [25] by Zoltan Bajnok of this collection.
However, according to the thinking of this author, the following question remains open:
Is there a non-asymptotic, exact Bethe ansatz for the AdS/CFT system?

5 Bethe Equations without Ansatz: Q-Operator

Somewhat ironically, this author wrote this review on the Bethe ansatz technique even
though he no longer believes it to be the most elegant and powerful technique to solve
a given quantum integrable model. Certain deformations of the XXX chain exist, where
the matrix elements of the Lax operator are replaced by functions periodic (trigonometric
XXZ, or 6-vertex model) model or double-periodic (elliptic XYZ, or 8-vertex model) in
the spectral parameter.10 The XYZ model was first solved in the early seventies by
Baxter, introducing what is now known as the Q-operator. The limit of his construction
back to the XXX case is very subtle. In fact, the Q-operator for the XXX chain with
compact spin-1

2
representation (our illustrative example of this review) was only explicitly

constructed very recently in [26]. The main difference to Bethe’s approach is that no
ansatz is required to solve the model. To conclude this review, let us. therefore, just hint
at the elegant and powerful way to derive the Bethe equations (1.26) using this method.
Here the starting point is neither the Hamiltonian (1.1) as for the coordinate Bethe
ansatz nor the Lax operator (3.1) for the algebraic Bethe ansatz, but the “generating
objects” are two novel Lax-operators

L−l (u) =

(
1 a†−
i a− u+ i a†−a−

)
l

, and L+
l (u) =

(
u− i a†+a+ i a†+
−a+ 1

)
l

, (5.1)

which also satisfy various Yang-Baxter equations. Here the 2 × 2 matrices act on some
spin chain site l, the operators a±, a†± are however not su(2) Lie-algebra generators, but

harmonic oscillator operators: [a±, a
†
±] = 1. Then one may prove that, in a sense made

precise in [26], Faddeev’s Lax operator in (3.1) factors into La,l(u) ∼ L−l (u) L+
l (u), where

now the auxiliary space a is given by the tensor product F+ × F− of the two copies of
harmonic oscillators. The Baxter operators are then constructed in analogy with the
transfer matrix operator of (3.3),(3.2) as the trace in these Fock spaces of a monodromy
matrix built from (5.1) (with h± = a†±a±)

Q±(u) ≡ e±
φ
2
u

TrF±(e−i φ h±)
TrF±

(
e−i φ h± L±L(u)⊗ · · · ⊗ L±1 (u)

)
. (5.2)

They are operators on the spin chain space (1.7). To illustrate it let us return once more
to the discussion of the L = 2 chain of Section 1. It is easy to use (5.2) with (5.1) to

10To date these do not seem to play a major role in some AdS/CFT setting.
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compute, say, Q−(u;φ) in the spin chain basis (1.8):

e−
φ
2
u


1 0 0 0

0 u+ 1
2

cot φ
2

1
2

cot φ
2

+ i
2

0

0 1
2

cot φ
2
− i

2
u+ 1

2
cot φ

2
0

0 0 0 u2 + u cot φ
2

+ 1

2 sin2 φ
2

− 1
4

 (5.3)

Diagonalizing this operator by going to the basis (1.24), we find

e−
φ
2
u


1 0 0 0

0 u+ 1
2

cot φ
4

0 0

0 0 u2 + u cot φ
2

+ 1

2 sin2 φ
2

− 1
4

0

0 0 0 u− 1
2

tan φ
4

 (5.4)

We see that the eigenvalues Q−(u) of the Q−-operators take the form “exponential times
polynomial”, and the same is true for Q+(u):

Q−(u) = e−
φ
2
u

M∏
k=1

(u− uk), Q+(u) = e+φ
2
u

L−M∏
k=1

(u− uk). (5.5)

The roots of the polynomials are precisely the ones we found in the course of the discus-
sion of the L = 2 solutions of the twisted Bethe equations! See (1.26) and the discussion
just below. And indeed, using the two Q-operators it is easy to solve the XXX model in
an entirely algebraic fashion, as one may derive the following operator equations:

2 i sin
φ

2
uL = Q+(u+

i

2
) Q−(u− i

2
)−Q+(u− i

2
) Q−(u+

i

2
), (5.6)

2 i sin
φ

2
T(u) = Q+(u+ i) Q−(u− i)−Q+(u− i) Q−(u+ i). (5.7)

It is straightforward to prove (no ansatz here!) that the eigenvalues of the Q±-operators
must always be of the form (5.5). Then it is an easy exercise to derive the Bethe equations
(1.26) from (5.6). Furthermore, the transfer matrix and, therefore, through (3.10) the
Hamiltonian of the Heisenberg chain, follow from (5.7). Nice, no?

This entirely algebraic methodology generalizes to spin chains with su(n) [27] as well
as su(n|m) symmetry [28], thereby bypassing the rather tedious nested Bethe ansatz
technique. It will be interesting to see how to describe the eigenstates in this language.
In any case I hope the method will also lift to the full AdS/CFT system.
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Chapter III.2: Exact world-sheet S-matrix

1 Introduction

S-matrices are quantum mechanical probability amplitudes between incoming and out-
going on-shell particle states. Exact factorized S-matrices have played a key role in
the development of integrable models [1]. Indeed, starting from an exact S-matrix, it
is in principle possible to compute the asymptotic spectrum, finite-size effects (Lüscher
corrections, thermodynamic Bethe ansatz), form factors, and correlation functions non-
perturbatively.

As reviewed in many articles in this volume, planar four-dimensional N = 4 su-
persymmetric Yang-Mills (SYM) theory and its holographic dual, type IIB superstring
theory on AdS5× S5, are believed to be quantum integrable. The world-sheet and spin-
chain S-matrix have been derived based on an su(2|2)2 symmetry in [2]- [9] and will be
reviewed here. This S-matrix has been confirmed by various checks. One of these checks
is that the all-loop asymptotic Bethe ansatz equations (BAEs) [10] can be derived from
the exact factorized S-matrix using either nested Bethe ansatz or algebraic Bethe ansatz
methods [3, 4, 11, 12]. As a warm up, we first review the computation of the one-loop
S-matrix in the su(2) and su(3) sectors, based on a direct coordinate Bethe ansatz, using
integrable spin-chain Hamiltonians whose eigenvalues are the anomalous dimensions of
scalar operators in planar N = 4 SYM. Using the S-matrices, we show how the bound-
state spectrum can be constructed. Finally, we show how imposing periodicity on the
asymptotic multiparticle wavefunction leads to the asymptotic Bethe equations, which
can be used to determine the asymptotic multiparticle spectrum.

The outline of this chapter is as follows. In Sec. 2 we review the derivation of the
exact N = 4 SYM S-matrix, first by coordinate Bethe ansatz for one-loop order, and
then by utilizing su(2|2) symmetry for all-loop order. We also discuss the spectrum of
bound states. In Sec. 3 we review the derivation of the asymptotic Bethe equations, first
for the su(2) and su(3) sectors, and then for the full theory.

2 Exact S-matrix

2.1 Coordinate Bethe ansatz

For the planar N = 4 SYM theory, we are interested in SYM composite operators,

Tr [O1O2 · · · OL] , Oi ∈ {DnΦ , DnΨ , DnF} , (2.1)

where all operators are at the same spacetime point. It is useful to associate the com-
posite operators with state vectors of a quantum spin chain. The BPS operator Tr[ZL],
where Z is one of the scalars Φ, is the vacuum state |0〉. This choice of vacuum breaks
the global psu(2, 2|4) symmetry down to su(2|2) ⊗ su(2|2). Other composite operators
which are obtained by replacing some Z’s with certain other SYM fields (“impurities”)
are mapped to excited states over the vacuum:

|
1
↓
Z · · ·Z

x1
↓
χ Z · · ·Z

x2
↓
χ′ Z · · ·Z

xM
↓
χ′′ Z · · ·

L
↓
Z〉 ≡ Tr

[
Zx1−1χZx2−x1−1χ′ · · ·χ′′ · · ·

]
, (2.2)
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where

χ, χ′, χ′′, . . . ∈ {Φaȧ ,Ψȧα , Ψ̄aα̇ , Dαα̇Z} , a, ȧ = 1, 2, α, α̇ = 3, 4 . (2.3)

All other orientations for the operators Oi should be regarded as multiple excitations
χ coincident at a single site.1 Due to the cyclic property of the trace, the state (2.2)
should be invariant under a uniform translation xk → xk + 1. These excitation states
belong to a bifundamental representation of a centrally extended su(2|2)L ⊗ su(2|2)R,
which should also be a symmetry of the S-matrix. The same structure can be discovered
on the string world-sheet action in the light-cone gauge [13,14].

For the S-matrix, we focus on a particular class of states, namely asymptotic states,
where the distances between the impurities χ, χ′, . . ., are very large:

1� x1 � x2 � · · · � xM � L→∞. (2.4)

The S-matrices are defined as amplitudes between two such asymptotic states.
To illustrate this, we derive the two-particle S-matrix directly from the spin chain

using coordinate Bethe ansatz. For simplicity, we will first consider composite operators
in the su(2) sector where the impurities are a complex scalar field X.

The one-loop anomalous dimensions of the su(2) sector are given by the Hamiltonian
of the spin-1/2 ferromagnetic su(2)-invariant (“XXX”) Heisenberg quantum spin-chain
model [15]

Γ =
λ

8π2
H , H =

L∑
l=1

(1− Pl,l+1) , (2.5)

where λ = g2
YMN is the ’t Hooft coupling, and P is the permutation operator on C2⊗C2.

We also need to impose a periodic boundary condition by identifying L+ 1 ≡ 1.
It is obvious that the vacuum state |0〉 is an eigenstate of H with zero energy. Since

[H ,Sz] = 0, the energy eigenstates can be classified according to the number of impurities
(“magnons”). One-particle excited states with momentum p are given by2

|ψ(p)〉 =
L∑
x=1

eipx|
1
↓
Z · · ·

x
↓
X · · ·

L
↓
Z〉. (2.6)

One can easily check that (2.6) is an eigenstate of H with eigenvalue E = ε(p), where

ε(p) = 4 sin2(p/2) . (2.7)

1For example, DΦ is a superposition of Φ and DZ. More precisely, the excitations are Z 7→ DZ and
Z 7→ Φ; combining these, one obtains Z 7→ DZ 7→ DΦ, or equivalently Z 7→ Φ 7→ DΦ.

2The invariance of states by a shift of one site (noted earlier) implies that the total momentum should
vanish. Therefore, a one-particle state with nonvanishing momentum is not allowed in a strict sense.
The one- or two-particle states which we consider here can be thought of as part of an infinitely long
chain where these particles are asymptotically separated from other particles.
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Two-particle eigenstate can be written as

|ψ(p1, p2)〉 = AXX(12)|X(p1)X(p2)〉+ AXX(21)|X(p2)X(p1)〉, (2.8)

|X(pi)X(pj)〉 =
∑
x1<x2

ei(pix1+pjx2)|
1
↓
Z · · ·

x1
↓
X · · ·

x2
↓
X · · ·

L
↓
Z〉. (2.9)

Now we impose that these states satisfy

H|ψ〉 = E(p1, p2)|ψ〉 (2.10)

and find that

E = ε(p1) + ε(p2) , (2.11)

where ε(p) is given by (2.7). This leads to the X −X scattering amplitude given by

AXX(21) = S(p2 , p1)AXX(12) , (2.12)

S(p2 , p1) =
u2 − u1 + i

u2 − u1 − i
, (2.13)

where uj = u(pj) and

u(p) =
1

2
cot(p/2) . (2.14)

We now consider the more complicated case where there are two different types of
complex scalar fields, namely, X and Y . This is the so-called su(3) sector, which is closed
only at one loop. The (su(3)-invariant) Hamiltonian is again given by (2.5), except now
P is the permutation operator on C3⊗C3. The two-particle eigenstates with one particle
of each type are of the form

|ψ〉 = AXY (12)|X(p1)Y (p2)〉+ AXY (21)|X(p2)Y (p1)〉
+ AY X(12)|Y (p1)X(p2)〉+ AY X(21)|Y (p2)X(p1)〉, (2.15)

|φ1(pi)φ2(pj)〉 =
∑
x1<x2

ei(pix1+pjx2) |
1
↓
Z · · ·

x1
↓
φ1 · · ·

x2
↓
φ2 · · ·

L
↓
Z〉. (2.16)

Applying the Hamiltonian on |ψ〉 and imposing the condition (2.10), one finds that the
amplitudes should be related by (see e.g. [16])(

AXY (21)
AY X(21)

)
=

(
R(p2 , p1) T (p2 , p1)
T (p2 , p1) R(p2 , p1)

)(
AXY (12)
AY X(12)

)
, (2.17)

where the transmission and reflection amplitudes are given by

T (p2 , p1) =
u2 − u1

u2 − u1 − i
, R(p2 , p1) =

i

u2 − u1 − i
, (2.18)
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respectively. Combining Eqs.(2.13) and (2.17), one can construct an su(2)-invariant
S-matrix which connects two amplitudes related by momentum exchange as follows:

AXX(21)
AXY (21)
AY X(21)
AY Y (21)

 = S ·


AXX(12)
AY X(12)
AXY (12)
AY Y (12)

 =


S

T R
R T

S




AXX(12)
AY X(12)
AXY (12)
AY Y (12)

 . (2.19)

At higher loops, the su(2) sector remains closed, but the Hamiltonian becomes longer
ranged. Integrability persists, but only in a perturbative sense [17]. Correspondingly, one
must introduce a perturbative asymptotic Bethe ansatz, and in particular, an asymptotic
S-matrix [2, 18]. That is, in contrast to the one-loop case (XXX model) where the S-
matrix is “local,” for higher loops the S-matrix is only asymptotic: it applies only to
in-going and out-going particles which are widely separated.

2.2 Yang-Baxter equation and ZF algebra

It is not practical to extend the above approach to all loops and to all sectors of planar
N = 4 SYM. Fortunately, there is an alternative approach – based on symmetry – to
derive an exact asymptotic S-matrix which is valid for any value of ‘t Hooft coupling
constant. To this end, it is convenient to introduce Zamolodchikov-Faddeev (ZF) oper-
ators [1, 19] to define particle states. Using the ZF operators one can reformulate the
derivation of the S-matrix into an algebraic problem. In Eq.(2.16), we have introduced
an asymptotic two-particle state as a superposition of plane waves. Now we express these
states in terms of creation (ZF) operators acting on the vacuum state as follows:

|φ1(pi)φ2(pj)〉 ≡ A†φ1
(pi)A

†
φ2

(pj)|0〉. (2.20)

As can be noticed in (2.1), the ZF operators corresponding to the elementary fields of
N = 4 SYM can be denoted by A†

ii̇
, where the index i = (a, α) = 1, 2, 3, 4 and similarly

for i̇. A very remarkable feature of the AdS/CFT S-matrix is that it is factorized into a
tensor product of two identical S-matrices, one acting on the index i and the other on i̇:

S = S ⊗ Ṡ . (2.21)

A natural way to describe the factorized S-matrix is to introduce “quark” ZF operators
A†i and identify A†

ii̇
with the tensor product of the quark ZF operators by

A†
ii̇
(p) = A†i (p)⊗ A

†
i̇
(p). (2.22)

By the factorization property, it is enough now to consider only A†i sector for our discus-
sion.

The bulk S-matrix elements Si
′j′

i j (p1, p2) define the ZF algebra relation

A†i (p1)A†j(p2) = Si
′j′

i j (p1, p2)A†j′(p2)A†i′(p1) , (2.23)
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where summation over repeated indices is always understood. It is convenient to arrange
these matrix elements into a 16× 16 matrix S as follows,

S = Si
′j′

i j ei i′ ⊗ ej j′ , (2.24)

where eij is the usual elementary 4 × 4 matrix whose (i, j) matrix element is 1, and all
others are zero.

As is well known [1], starting from A†i (p1)A†j(p2)A†k(p3), one can arrive at linear

combinations of A†k′′(p3)A†j′′(p2)A†i′′(p1) by applying the relation (2.23) three times, in
two different ways. The consistency condition is the Yang-Baxter equation,

S12(p1, p2)S13(p1, p3)S23(p2, p3) = S23(p2, p3)S13(p1, p3)S12(p1, p2) . (2.25)

We use the standard convention S12 = S ⊗ I, S23 = I⊗ S, and S13 = P12 S23P12, where
P12 = P ⊗ I, P = ei j ⊗ ej i is the permutation matrix, and I is the four-dimensional
identity matrix. The ZF algebra (2.23) also implies the bulk unitarity equation

S12(p1, p2)S21(p2, p1) = I , (2.26)

where S21 = P12 S12P12.
Solving the Yang-Baxter equation can be complicated. Fortunately, as we shall see

below, su(2|2) symmetry suffices to determine the AdS/CFT S-matrix (in the funda-
mental representation) – there is no need to solve the Yang-Baxter equation, as it is
automatically satisfied.

2.3 Centrally extended su(2|2)

The centrally extended su(2|2) algebra consists of the rotation generators L b
a , R β

α , the
supersymmetry generators Q a

α , Q†αa , and the central elements C ,C† ,H. 3 Latin in-
dices a , b , . . . take values {1 , 2}, while Greek indices α , β , . . . take values {3 , 4}. These
generators have the following nontrivial commutation relations [3, 4, 9][

L b
a , Jc

]
= δbcJa −

1

2
δbaJc ,

[
R β
α , Jγ

]
= δβγJα −

1

2
δβαJγ ,[

L b
a , Jc

]
= −δcaJb +

1

2
δbaJc ,

[
R β
α , Jγ

]
= −δγαJβ +

1

2
δβαJγ ,{

Q a
α ,Q b

β

}
= εαβε

abC ,
{
Q†αa ,Q†βb

}
= εαβεabC† ,{

Q a
α ,Q

†β
b

}
= δabR β

α + δβαL a
b +

1

2
δab δ

β
αH , (2.27)

where Ji (Ji) denotes any lower (upper) index of a generator, respectively.

3The central charge H is identified as the world-sheet Hamiltonian. The additional central charges
C and C†, which are necessary for having momentum-dependent representations with the appropriate
energy, also appear in the off-shell symmetry algebra of the gauge-fixed sigma model [14].
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The action of the bosonic generators on the ZF operators is given by[
L b
a , A

†
c(p)

]
= (δbcδ

d
a −

1

2
δbaδ

d
c )A

†
d(p) ,

[
L b
a , A

†
γ(p)

]
= 0 ,[

R β
α , A†γ(p)

]
= (δβγ δ

δ
α −

1

2
δβαδ

δ
γ)A

†
δ(p) ,

[
R β
α , A†c(p)

]
= 0 . (2.28)

The operator relations for supersymmetry generators 4

Q a
α A

†
b(p) = e−ip/2

[
a(p)δabA

†
α(p) + A†b(p)Q

a
α

]
,

Q a
α A

†
β(p) = e−ip/2

[
b(p)εαβε

abA†b(p)− A
†
β(p)Q a

α

]
,

Q†αa A†b(p) = eip/2
[
c(p)εabε

αβA†β(p) + A†b(p)Q
†α
a

]
,

Q†αa A†β(p) = eip/2
[
d(p)δαβA

†
a(p)− A

†
β(p)Q†αa

]
, (2.29)

and the central charges

CA†i (p) = e−ip
[
a(p)b(p)A†i (p) + A†i (p)C

]
,

C†A†i (p) = eip
[
c(p)d(p)A†i (p) + A†i (p)C†

]
,

HA†i (p) = [a(p)d(p) + b(p)c(p)]A†i (p) + A†i (p)H , (2.30)

can be used to act with the generators on multiparticle states. The ZF operators form
a representation of the symmetry algebra provided ad − bc = 1. The representation is
also unitary provided d = a∗ , c = b∗. Acting with C on both sides of Eq.(2.23) applied
to the vacuum state, one can deduce the further constraint

e−ip1a(p1)b(p1) + e−i(p1+p2)a(p2)b(p2) = e−ip2a(p2)b(p2) + e−i(p1+p2)a(p1)b(p1) ,

(2.31)

which leads to the relation a(p)b(p) = ig(eip − 1), where g is a constant. It follows that
the parameters can be chosen as follows [3, 9, 20]

a =
√
gη , b =

√
g
i

η

(
x+

x−
− 1

)
, c = −√g η

x+
, d =

√
g
x+

iη

(
1− x−

x+

)
, (2.32)

where

x+ +
1

x+
− x− − 1

x−
=
i

g
,

x+

x−
= eip , η = eip/4

√
i(x− − x+) . (2.33)

Hence, for a one-particle state,

H = −ig
(
x+ − 1

x+
− x− +

1

x−

)
=

√
1 + 16g2 sin2 p

2
. (2.34)

4Such momentum-dependent braiding relations, which are typical for nonlocal (fractional-spin) in-
tegrals of motion, have long been used to determine S-matrices in certain integrable models, see
e.g. [21–23].
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The anomalous dimension H − 1 matches with the weak-coupling result given by (2.5)
and (2.7), provided we make the identification g =

√
λ/(4π). That is, the symmetry

determines the exact dispersion relation, except for the dependence on the coupling
constant. See also [24].

The S-matrix can be determined (up to a phase) by demanding that it commute with
the symmetry generators. That is, starting from JA†i (p1)A†j(p2)|0〉 where J is a symmetry
generator, and assuming that J annihilates the vacuum state, one can arrive at linear
combinations of A†j′(p2)A†i′(p1)|0〉 in two different ways, by applying the ZF relation
(2.23) and the symmetry relations (2.28), (2.29) in different orders. The consistency
condition is a system of linear equations for the S-matrix elements. The result for the
nonzero matrix elements Si

′j′

i j (p1, p2) is [3, 9]

Sa aa a = A , Sαααα = D ,

Sa ba b =
1

2
(A−B) , Sb aa b =

1

2
(A+B) ,

Sαβαβ =
1

2
(D − E) , Sβ ααβ =

1

2
(D + E) ,

Sαβa b = −1

2
εabε

αβ C , Sa bαβ = −1

2
εabεαβ F ,

Saαaα = G , Sαaaα = H , Saααa = K , Sαaαa = L , (2.35)

where a , b ∈ {1 , 2} with a 6= b; α , β ∈ {3 , 4} with α 6= β; and

A = S0
x−2 − x+

1

x+
2 − x−1

η1η2

η̃1η̃2

,

B = −S0

[
x−2 − x+

1

x+
2 − x−1

+ 2
(x−1 − x+

1 )(x−2 − x+
2 )(x−2 + x+

1 )

(x−1 − x+
2 )(x−1 x

−
2 − x+

1 x
+
2 )

]
η1η2

η̃1η̃2

,

C = S0
2ix−1 x

−
2 (x+

1 − x+
2 )η1η2

x+
1 x

+
2 (x−1 − x+

2 )(1− x−1 x−2 )
, D = −S0 ,

E = S0

[
1− 2

(x−1 − x+
1 )(x−2 − x+

2 )(x−1 + x+
2 )

(x−1 − x+
2 )(x−1 x

−
2 − x+

1 x
+
2 )

]
,

F = S0
2i(x−1 − x+

1 )(x−2 − x+
2 )(x+

1 − x+
2 )

(x−1 − x+
2 )(1− x−1 x−2 )η̃1η̃2

,

G = S0
(x−2 − x−1 )

(x+
2 − x−1 )

η1

η̃1

, H = S0
(x+

2 − x−2 )

(x−1 − x+
2 )

η1

η̃2

,

K = S0
(x+

1 − x−1 )

(x−1 − x+
2 )

η2

η̃1

, L = S0
(x+

1 − x+
2 )

(x−1 − x+
2 )

η2

η̃2

, (2.36)

where x±i = x±(pi) and

η1 = η(p1)eip2/2 , η2 = η(p2) , η̃1 = η(p1) , η̃2 = η(p2)eip1/2 , (2.37)

where η(p) is given in (2.33). This S-matrix satisfies the standard Yang-Baxter equation
(2.25). It also satisfies the unitarity equation (2.26), provided that the scalar factor
obeys

S0(p1, p2)S0(p2, p1) = 1 . (2.38)
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In order to determine S0, one should impose on the full S-matrix (2.21) crossing sym-
metry and other physical requirements, which will be explained in the next chapter of
this volume [25]. The final result is given by

S0(p1, p2)2 =
x−1 − x+

2

x+
1 − x−2

1− 1
x+

1 x
−
2

1− 1
x−1 x

+
2

σ(p1, p2)2, (2.39)

where the dressing factor σ(p1, p2) is called the BES/BHL phase factor [7, 8].
We remark that the above S-matrix is in fact in the “string frame” (or “basis”) [9].

Starting from the spin chain one obtains the S-matrix instead in the “spin-chain frame,”
where (2.37) is replaced by

η1 = η(p1) , η2 = η(p2) , η̃1 = η(p1) , η̃2 = η(p2) . (2.40)

The S-matrix in the spin-chain frame satisfies a “twisted” version of the Yang-Baxter
equation, rather than (2.25).

We also remark that the su(2|2) S-matrix is closely related [4, 11] to Shastry’s R-
matrix [26, 27] for the Hubbard model.

2.4 Bound states

So far we have considered two-particle asymptotic scattering states. The two particles
carrying real momenta can be widely separated. Another interesting case occurs when
the two particles are closely localized and behave as a single particle. This kind of
localized state is the bound state [28,29].

As a first example, let us consider again the su(2) sector at one loop. In terms of

x =
x1 + x2

2
, r = x2 − x1, p1,2 =

p

2
± k, (2.41)

we can reexpress the two-particle state (2.8) as

|ψ〉 =
∑
x, r

eipx
(
AXX(12)e−ikr + AXX(21)eikr

) r

|Z · · ·
︷ ︸︸ ︷
XZ · · ·ZX · · ·Z〉 . (2.42)

Notice that r > 0 by definition. To have a localized wave, the amplitude should decay
exponentially as the distance r increases. This can be satisfied if we take k = iq (q > 0)
and AXX(12) = 0. From Eq.(2.12) this leads to a condition that S(p2, p1) should have
a pole. In other words, a simple pole of the S-matrix corresponds to a bound state. In
terms of u-variables, this condition is satisfied by u2,1 = u±i/2 as one can see from (2.13).
This is an example of a so-called string solution, of size 2. Following a similar procedure,
one can find that the higher bound-state poles of the S-matrices can be obtained when
the particles carry momenta

u
(n)
j = u+ i

2j − n− 1

2
, j = 1, . . . , n. (2.43)
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This is a string of size n. The energy of this particle can be obtained from (2.7)

εn(u) =
n

u2 + n2/4
. (2.44)

Now consider the more complicated case of the su(3) sector, for which the two-particle
eigenstates are given by (2.15) and (2.16). By the same argument as above, the localized
state is possible when u2−u1 = i. This leads to AXY (12) = AY X(12) = 0 from (2.17) and
AXY (21) = AY X(21) because the residues of T and R in (2.18) are the same. Therefore,
the localized state can be written as

|ψ〉 ∼
∑
x, r

eipxeikr

[ r

|Z · · ·
︷ ︸︸ ︷
XZ · · ·ZY · · ·Z〉 +

r

|Z · · ·
︷ ︸︸ ︷
Y Z · · ·ZX · · ·Z〉

]
, (2.45)

where X and Y appear symmetrically.
The bound states for generic value of ‘t Hooft coupling constant can be constructed

in a similar way. Combining two factors of the amplitude A (2.36) with (2.39), the
S-matrix of the su(2) sector (in the spin-chain frame) is given by

S(p1, p2) =
x+

1 − x−2
x−1 − x+

2

1− 1
x+

1 x
−
2

1− 1
x−1 x

+
2

σ(p1, p2)2 . (2.46)

This amplitude has two simple poles at x−1 = x+
2 and x−1 = 1/x+

2 . Let us consider first
the former case for general higher-order bound states where simple poles appear

x−1 = x+
2 , x−2 = x+

3 , · · · , x−n−1 = x+
n . (2.47)

With these bound-state conditions, one can easily show that the momentum (p) and
energy (H) are given by

X+

X−
= eip, X+ +

1

X+
−X− − 1

X−
=
in

g
(2.48)

H = −ig
(
X+ − 1

X+
−X− +

1

X−

)
=

√
n2 + 16g2 sin2 p

2
, (2.49)

and satisfy the BPS (shortening) condition in (2.48) if we identify

X− ≡ x−n , and X+ ≡ x+
1 . (2.50)

The other pole at x−1 = 1/x+
2 cannot satisfy this condition and leads to non-BPS states.

The situation for the full su(2|2) S-matrix is more complicated even though the
locations of poles are the same as in the su(2) sector. The M -particle bound states
belong to an atypical totally symmetric representation of the centrally extended su(2|2)
algebra. This representation has dimension 2M |2M and can be realized on the graded
vector space where the basis is given by

• M + 1 bosonic states: symmetric in ai: |ea1···aM 〉, where ai = 1, 2 are bosonic
indices.
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• M−1 bosonic states: symmetric in ai: |ea1···aM−2α1α2〉, where αi = 3, 4 are fermionic
indices.

• 2M fermionic states: symmetric in ai: |ea1···aM−1α〉, where α = 3, 4.

An efficient realization of this representation is to introduce [20] a vector space of analytic
functions of two bosonic variables wa and two fermionic variables θα. For example, the
8-dimensional states for M = 2 can be given by

|e1〉 =
w1w1√

2
, |e2〉 = w1w2 , |e3〉 =

w2w2√
2
, |e4〉 = θ3θ4 ,

|e5〉 = w1θ3 , |e6〉 = w1θ4 , |e7〉 = w2θ3 , |e8〉 = w2θ4 . (2.51)

The su(2|2) generators can be represented by differential operators on this vector space
as follows:

L b
a = wa

∂

∂wb
− 1

2
δbawc

∂

∂wc
, R β

α = θα
∂

∂θβ
− 1

2
δβαθγ

∂

∂θγ
,

Q a
α = a θα

∂

∂wa
+ b εabεαβwb

∂

∂θβ
, Q†αa = dwa

∂

∂θα
+ c εabε

αβθβ
∂

∂wb
,

C = ab

(
wa

∂

∂wa
+ θα

∂

∂θα

)
, C† = cd

(
wa

∂

∂wa
+ θα

∂

∂θα

)
,

H = (ad+ bc)

(
wa

∂

∂wa
+ θα

∂

∂θα

)
. (2.52)

From this, it is straightforward to evaluate how the generators act on the bound states.
In contrast with the case of the fundamental representation reviewed in the previous

subsection, the su(2|2) symmetry is not enough to determine the bound-state S-matrix
completely. A very important observation is that the fundamental bulk S-matrix (2.35)
has a remarkable Yangian symmetry Y (su(2|2)) [30,31] which can be used to completely
determine the two-particle [20,32] and general l-particle bound state bulk S-matrices [33].
It is fortunate that such a general way of generating higher-dimensional S-matrices has
been found, since the fusion procedure does not seem to work for AdS/CFT S-matrices
[20].

3 Asymptotic Bethe equations

For a system of N free particles on a ring of length L, the quantized momenta, and there-
fore the exact spectrum, are trivially determined. For particles which are not free but
instead have integrable interactions, the problem of determining the spectrum is much
more difficult, but nevertheless is still tractable. Indeed, if one knows the (asymptotic)
S-matrix which satisfies the Yang-Baxter equations, then in principle it is possible to
derive a set of (asymptotic) Bethe equations which determine the (asymptotic) quantized
momenta, and therefore, the (asymptotic) multiparticle spectrum. These (asymptotic)
Bethe equations are obtained by imposing periodicity on the (asymptotic) multiparticle
wavefunction. In the AdS/CFT case, this task is technically difficult due to the ma-
trix structure of the S-matrix and the complicated functional dependence of its matrix
elements. Before addressing this problem, it is helpful to consider some simpler examples.

217



Chapter III.2: Exact world-sheet S-matrix

3.1 The S-matrix is a phase

As a first warm-up exercise, let us consider the simple case of a two-body (asymptotic)
S-matrix which is a phase rather than a matrix.5 An example is the magnon-magnon S-
matrix in the su(2) sector at one loop, which is given by (2.13), (2.14). The ZF operator
A†(p) does not have an internal index, and satisfies (cf., (2.23))

A†(p1)A†(p2) = S(p1, p2)A†(p2)A†(p1) . (3.1)

Integrability of the model implies that the multiparticle wavefunction is of the Bethe
type. That is, the (asymptotic) eigenstates can be expressed as

|ψ〉 =
∑

1≤xQ1
�...�xQN≤L

Ψ(Q)(x1, . . . , xN)|
1
↓
Z · · ·

xQ1
↓
X · · ·

xQN
↓
X · · ·

L
↓
Z〉 , (3.2)

where the (asymptotic) N -particle wavefunction in the sector Q = (Q1, . . . , QN) such
that xQ1 � . . .� xQN is given by

Ψ(Q)(x1, . . . , xN) =
∑
P

AP eipP ·xQ . (3.3)

The sum is over all permutations of P = (P1, . . . , PN), and pP ·xQ =
∑N

k=1 pPkxQk . Also,
the coordinate-independent amplitudes AP are related to each other according to

AP ∼ A†(pP1) . . . A†(pPN ) . (3.4)

For example, for N = 2, the wavefunction in the sector x1 � x2 is given by

Ψ(12)(x1, x2) = A12ei(p1x1+p2x2) + A21ei(p2x1+p1x2) , x1 � x2 . (3.5)

Since

A21 ∼ A†(p2)A†(p1) = S(p2, p1)A†(p1)A†(p2) ∼ S(p2, p1)A12 , (3.6)

we recover the previous results (2.8), (2.9), (2.12) upon identifying

AXX(12) = A12 , AXX(21) = A21 . (3.7)

We consider a system of N widely-separated particles on a ring of length L. Period-
icity of the wavefunction Ψ(x1, . . . , xN) in (say) the first coordinate,

Ψ(1, x2, . . . , xN) = Ψ(L+ 1, x2, . . . , xN) , (3.8)

implies a relationship between the wavefunctions in the sectors x1 � . . . � xN and
x2 � . . .� xN � x1:

Ψ(1...N)(1, x2, . . . , xN) = Ψ(2...N1)(L+ 1, x2, . . . , xN) . (3.9)

5In this case, the Yang-Baxter equations are trivially satisfied by the S-matrix.

218



Chapter III.2: Exact world-sheet S-matrix

According to (3.3), the wavefunctions in these two sectors are given by

Ψ(1...N)(1, x2, . . . , xN) = A1...Nei(p1+p2x2+...+pNxN ) + . . . ,

Ψ(2...N1)(L+ 1, x2, . . . , xN) = A2...N1ei(p1L+p1+p2x2+...+pNxN ) + . . . , (3.10)

where we have displayed only the terms which depend on the particular combination
p2x2 + . . .+ pNxN . In view of the periodicity condition (3.9), the coefficients A1...N and
A2...N1 in (3.10) must be related as follows

A1...N = A2...N1eip1L . (3.11)

There is another relation between the coefficients A1...N and A2...N1 which follows from
(3.4). Indeed, it is easy to see that

A1...N ∼ A†(p1)A†(p2) . . . A†(pN)

=
N∏
j=2

S(p1, pj)A
†(p2) . . . A†(pN)A†(p1) ∼

N∏
j=2

S(p1, pj)A
2...N1 , (3.12)

where we have used (3.1) to move A†(p1) to the right successively past all the other ZF
operators. The two relations (3.11) and (3.12) imply that

N∏
j=2

S(p1, pj) = eip1L . (3.13)

Examining the terms in the ellipsis in (3.10) similarly leads to the (asymptotic) Bethe
equations for all the momenta,

N∏
j=1
j 6=k

S(pk, pj) = eipkL , k = 1, . . . , N . (3.14)

For a “local” S-matrix such as the one for the spin-1/2 ferromagnetic Heisenberg chain,
these equations are exact for finite L; at least in principle one can solve these equations
for the momenta and therefore compute the exact finite-L spectrum,

P =
N∑
k=1

pk , E =
N∑
k=1

ε(pk) , (3.15)

where ε(p) is the one-particle dispersion relation (see, e.g. (2.7)). For an asymptotic
S-matrix such as the one for AdS/CFT, the asymptotic Bethe equations can be used to
determine the spectrum only asymptotically. 6

6Nevertheless, it is possible to obtain at least a part of the exact spectrum by other means [34].
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3.2 The S-matrix is a 4× 4 matrix

As a second warm-up exercise, we consider a solution of the Yang-Baxter equations which
is a 4× 4 matrix. For simplicity, we further restrict the S-matrix to be su(2)-invariant.
Hence, we take

Sj
′k′

jk (p1, p2) =
1

u1 − u2 − i

[
(u1 − u2)δj

′

j δ
k′

k + iδk
′

j δ
j′

k

]
, (3.16)

where again uj = u(pj) and u(p) is given by (2.14). This is in fact the magnon-magnon
S-matrix in the su(3) sector which we discussed earlier (2.19). The ZF operator now has
an internal index which can take the values 1 and 2, and satisfies (2.23). As we shall see,
the analysis is similar to the one in Sec. 3.1. The new feature is the internal symmetry,
which is handled neatly by introducing the transfer matrix (3.25).

The (asymptotic) eigenstates can now be expressed as

|ψ〉 =
∑

1≤xQ1
�...�xQN≤L

2∑
i1,...,iN=1

Ψ
(Q)
i1...iN

(x1, . . . , xN)|
1
↓
Z · · ·

xQ1
↓
φi1 · · ·

xQN
↓
φiN · · ·

L
↓
Z〉 , (3.17)

where the (asymptotic) N -particle wavefunction in the sector Q = (Q1, . . . , QN) is given
by 7

Ψ
(Q)
i1...iN

(x1, . . . , xN) =
∑
P

A
P |Q
i1...iN

eipP ·xQ (3.18)

and

A
P |Q
i1...iN

∼ A†iQ1
(pP1) . . . A†iQN

(pPN ) , (3.19)

cf. (3.2)-(3.4). For N = 2 in the sector x1 � x2, upon identifying

Aφiφj(12) = A
12|12
ij , Aφiφj(21) = A

21|12
ij (3.20)

where φ1 = X,φ2 = Y , we recover the previous results (2.15)-(2.19). 8

Proceeding as before, we see that the periodicity of the wavefunction in the first
coordinate,

Ψi1...iN (1, x2, . . . , xN) = Ψi1...iN (L+ 1, x2, . . . , xN) (3.21)

7The original papers include [35]- [38]. Here we follow the appendix in [39].
8For example,

AXY (21) = A
21|12
12 ∼ A†1(p2)A†2(p1) = S12

12A
†
2(p1)A†1(p2) + S21

12A
†
1(p1)A†2(p2)

∼ S12
12A

12|12
21 + S21

12A
12|12
12 = TAY X(12) +RAXY (12) ,

which is in agreement with (2.17). Here the arguments (p2, p1) of all the S-matrix elements have been
suppressed for brevity.
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implies a relationship between the wavefunctions in the sectors x1 � . . . � xN and
x2 � . . .� xN � x1:

Ψ
(1...N)
i1...iN

(1, x2, . . . , xN) = Ψ
(2...N1)
i1...iN

(L+ 1, x2, . . . , xN) . (3.22)

This leads to the following relationship between coefficients

A
1...N |1...N
i1...iN

= A
2...N1|2...N1
i1...iN

eip1L . (3.23)

We now proceed to generate from (3.19) another relation between these two coefficients.
Using (2.23) to move A†i1(p1) to the right successively past all the other ZF operators,
we obtain

A
1...N |1...N
i1...iN

∼ A†i1(p1)A†i2(p2) . . . A†iN (pN)

= S
a2i′2
i1i2

(p1, p2)S
a3i′3
a2i3

(p1, p3) . . . S
i′1i
′
N

aN−1iN
(p1, pN)A†i′2

(p2) . . . A†i′N
(pN)A†i′1

(p1)

∼ S
a2i′2
i1i2

(p1, p2)S
a3i′3
a2i3

(p1, p3) . . . S
i′1i
′
N

aN−1iN
(p1, pN)A

2...N1|2...N1

i′1...i
′
N

. (3.24)

It is very convenient to introduce the so-called (inhomogeneous) transfer matrix

t
i′1...i

′
N

i1...iN
(p; p1, . . . , pN) ≡ S

a1i′1
aN i1

(p, p1)S
a2i′2
a1i2

(p, p2) . . . S
aN i
′
N

aN−1iN
(p, pN) . (3.25)

Its value at p = p1 is proportional to the coefficient of A
2...N1|2...N1

i′1...i
′
N

in (3.24),

t
i′1...i

′
N

i1...iN
(p1; p1, . . . , pN) = −Sa2i′2

i1i2
(p1, p2)S

a3i′3
a2i3

(p1, p3) . . . S
i′1i
′
N

aN−1iN
(p1, pN) , (3.26)

since Si
′j′

ij (p, p) = −δj
′

i δ
i′
j , as one can see from (3.16).

We demand that A
2...N1|2...N1

i′1...i
′
N

be an eigenvector of the transfer matrix, 9

t
i′1...i

′
N

i1...iN
(p; p1, . . . , pN)A

2...N1|2...N1

i′1...i
′
N

= Λ(p; p1, . . . , pN)A
2...N1|2...N1
i1...iN

, (3.27)

where Λ(p; p1, . . . , pN) is the corresponding eigenvalue. It follows from Eqs. (3.23),
(3.24), (3.26), (3.27) that

Λ(p1; p1, . . . , pN) = −eip1L ; (3.28)

and more generally

Λ(pk; p1, . . . , pN) = −eipkL , k = 1, . . . , N . (3.29)

To summarize so far: imposing periodic boundary conditions on the multiparticle
wavefunction has led to the important relations (3.29). However, in order to obtain

9This is necessary in order to be able to satisfy (3.23). We note that the transfer matrix has the
commutativity property

[t(p; p1, . . . , pN ) , t(p′; p1, . . . , pN )] = 0

by virtue of the fact that the S-matrix satisfies the Yang-Baxter equation. (See, eg. [40]- [42].) Hence,
the corresponding eigenvectors do not depend on the value of p.
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more explicit equations for the momenta, we need the eigenvalues Λ(p; p1, . . . , pN) of the
transfer matrix (3.25). For the case of the S-matrix (3.16), the result is well known [40]-
[42],

Λ(p; p1, . . . , pN) =
1∏N

l=1(u− ul − i)

{
N∏
l=1

(u− ul + i)
m∏
l=1

(
u− λl − i

2

u− λl + i
2

)

+
N∏
l=1

(u− ul)
m∏
l=1

(
u− λl + 3i

2

u− λl + i
2

)}
, (3.30)

where the “auxiliary” Bethe roots λ1, . . . , λm satisfy the Bethe ansatz equations

N∏
l=1

λk − ul + i
2

λk − ul − i
2

=
m∏
j=1
j 6=k

λk − λj + i

λk − λj − i
, k = 1, . . . ,m . (3.31)

Finally, substituting the result (3.30) into (3.29), we obtain

N∏
l=1

uk − ul + i

uk − ul − i

m∏
l=1

uk − λl − i
2

uk − λl + i
2

= −eipkL , k = 1, . . . , N . (3.32)

The coupled set of equations (3.31) and (3.32) are the sought-after (asymptotic) Bethe
equations for a system of N particles on a ring of length L with the two-particle (asymp-
totic) S-matrix (3.16).

3.3 AdS/CFT

We are finally ready to address the AdS/CFT case, albeit only sketchily. The arguments
of Sec. 3.2 leading to (3.29) carry through essentially unchanged.10 The difficult step is
determining the eigenvalues of the transfer matrix. Whereas for the 4×4 S-matrix (3.16)
the result (3.30) is easily obtained by algebraic Bethe ansatz, for the larger AdS/CFT
S-matrix (2.35),(2.36) a more general procedure (namely, nested algebraic Bethe ansatz)
is required [11]. Alternatively, the result can be obtained by nested coordinate Bethe
ansatz [3,12] or by analytic Bethe ansatz [4]. In this way, one can derive the AdS5/CFT4

asymptotic Bethe equations which were first conjectured in [10]. In terms of the compact
notation introduced in [43], these equations are given by

U0 = 1, Uj(xj,k)
7∏

j′=1

Kj′∏
k′=1

(j′,k′)6=(j,k)

uj,k − uj′,k′ + i
2
Mj,j′

uj,k − uj′,k′ − i
2
Mj,j′

= 1, j = 1, . . . , 7, (3.33)

10It is convenient to work in a graded formalism, where certain minus signs appear. [11]
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n n n n n n n�@ �@ �@ �@− + −

Figure 1: Dynkin diagram of su(2, 2|4).

where uj,k = g(xj,k + 1/xj,k), uj,k± i/2 = g(x±j,k + 1/x±j,k), and Mj,j′ is the Cartan matrix
specified by Figure 1. Explicitly,

M =



1
1 −2 1

1 −1
−1 2 −1

−1 1
1 −2 1

1


, (3.34)

where matrix elements which are zero are left empty. Also,

U0 =

K4∏
k=1

x+
4,k

x−4,k
, U2 = U6 = 1 , U1(x) = U−1

3 (x) = U−1
5 (x) = U7(x) =

K4∏
k=1

Saux(x4,k, x)

(3.35)

and

U4(x) = Us(x)

(
x−

x+

)L K1∏
k=1

S−1
aux(x, x1,k)

K3∏
k=1

Saux(x, x3,k)

K5∏
k=1

Saux(x, x5,k)

K7∏
k=1

S−1
aux(x, x7,k).

(3.36)
Moreover,

Saux(x1, x2) =
1− 1/x+

1 x2

1− 1/x−1 x2

, Us(x) =

K4∏
k=1

σ(x, x4,k)
2 , (3.37)

where σ is the dressing phase [8, 25]. The anomalous dimensions of a state is given by

Γ = 2ig

K4∑
k=1

(
1

x+
4,k

− 1

x−4,k

)
. (3.38)

For further important details such as the restrictions on the excitation numbersK1, . . . , K7,
the so-called dynamical transformations relating roots of type 1 and type 3 (and similarly,
roots of type 5 and type 7), and the weak-coupling limit, the reader should consult [10,43].

Similarly, starting from the AdS4/CFT3 S-matrix [44], one can derive the corre-
sponding asymptotic Bethe equations which were first conjectured in [45].

4 Concluding Remarks

The all-loop AdS5/CFT4 S-matrix has further important applications. In particular, it
is used for computing wrapping corrections via the Lüscher formula (reviewed in [34])
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and finite-size effects via thermodynamic Bethe ansatz (reviewed in [46]). A certain
Drinfeld twist of this S-matrix, together with c-number diagonal twists of the boundary
conditions, lead [47] to the deformed Bethe equations of Beisert and Roiban [43,48].

The su(2|2) S-matrix of AdS5/CFT4 also plays an important role in determining
the S-matrix of AdS4/CFT3 [44] (see also [49]). Indeed, the scattering matrices for
the two types of particles (“solitons” and “antisolitons”) again have the same su(2|2)
matrix structure; the main difference with respect to the AdS5/CFT4 case is in the scalar
factors, which satisfy new crossing relations. As already noted, this S-matrix leads to
the all-loop BAEs conjectured in [45].
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Chapter III.3: The dressing factor

1 Introduction

The two-body S-matrix is the main figure in the solution of 1+1 dimensional integrable
theories. In principle, given this object there is a more or less well defined route to
compute the asymptotic and even the finite-size spectrum of the theory.

Typically, particles have polarizations and therefore the S-matrix has a nontrivial ma-
trix structure. The various ratios of the S-matrix elements give us the relative weights
of different scattering processes in the same theory. These ratios are mostly kinematic
and highly constrained by the symmetries of the system. For integrable models, symme-
try together with the condition of factorized scattering is usually enough to constraint
completely the matrix structure of the S-matrix up to an overall scalar factor called
dressing factor. This factor contains much more dynamical information and is therefore
considerably harder to derive. Usually, to find the correct dressing factor, one needs to
consider unitarity and crossing equations supplemented by the knowledge of the exact
bound state spectrum.

In this review we will study the dressing factor for a very interesting integrable model
which appears in the spectrum problem of planar AdS/CFT [1,2].

We start by considering (section 2) a warm-up toy model, the O(4) sigma model,
which will be quite instructive. Then we move to the AdS/CFT system (sections 3
and 4). Our logical flow will be roughly the opposite of the chronological one. We will
start by solving directly the crossing relation in section 3. Then, in section 4, we will
consider several rewritings and expansions of the dressing factor, including the Beisert-
Eden-Staudacher solution [3,4] and several weak and strong coupling expansions. Along
the way we will describe analytical properties and remarkable checks of the AdS/CFT
dressing factor which established its correctness beyond reasonable doubt. In section 5
we present some concluding remarks.

2 Dressing factor in the O(4) sigma model

The O(4) sigma model in two dimensions is an integrable relativistic model where par-
ticles have energy and momentum given by

ε(θ) = m cosh(πθ) , p(θ) = m sinh(πθ) , (2.1)

where θ is the so called rapidity. Lorentz boosts amount to simple translations in θ.
Hence, the O(4) Lorentz invariant two-body S-matrix must be a function of the difference
of rapidities θ = θ1 − θ2 of the two particles being scattered, Ŝ2→2(θ1, θ2) = Ŝ(θ). The
hat emphasizes that this object is a matrix since the scattered particles have isotopic
degrees of freedom. Since the model is integrable the matrix structure of the S-matrix
can be fixed from the symmetry of the problem together with the Yang-Baxter triangular
relation [5]. One finds[

Ŝ(θ)
]jl
hk

= σ2(θ)

(
iθ

(θ − i)2
δhkδjl +

θ

θ − i
δhjδlk −

i

θ − i
δhlδjk

)
. (2.2)
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Figure 1: Scattering of a physical particle (solid line) with a composite of
particle/antiparticle of zero total zero charges (dashed line) should be inconse-
quential [6]. This picture translates into formula (2.4).

The overall dressing factor σ2(θ) is however left undetermined since it drops out of Yang-
Baxter. This function is constrained by imposing extra physical conditions: crossing
symmetry and unitarity. Let us adapt a nice argument by Beisert [6] to derive the
implications of crossing symmetry. We construct a composite singlet state with one
particle and one antiparticle,

|1〉 ∝
4∑

h=1

|{h, θ}, {h, θ − i}〉 . (2.3)

The second particle has the same color as the first particle and the opposite energy and
momenta since θ → θ − i flips these two quantities. The singlet state (2.3) is therefore
a spurious state which has zero color, momentum and energy. Physically we think of it
as a virtual pair of particle and anti-particle created created by a vacuum fluctuation.
Scattering of a physical particle through this bound state should be inessential, see figure
1. Algebraically, the condition depicted in this figure translates into

4∑
h=1

4∑
k=1

[
Ŝ(θ)

]km
jh

[
Ŝ(θ − i)

]j′m′
kh

= δj
′

j δmm′ . (2.4)

This condition then implies σ2(θ)σ2(θ − i) θ2/(θ + i)2 = 1 or

σ(θ + i/2)σ(θ − i/2) =
θ − i/2
θ + i/2

. (2.5)

This is the crossing relation [5]. We will now provide two derivations of the so-called
minimal solution to the equation (2.5).

First derivation

We start by taking the logarithm and derivative of the crossing relation (2.5):

K+ +K− =
1

2πi

(
1

θ − i/2
− 1

θ + i/2

)
, (2.6)

231



Chapter III.3: The dressing factor

where K ≡ 1
2πi

d
dθ

log σ(θ) and f± = f(θ ± i/2). Next we go to Fourier space,

F(K±)(ω) =

∞∫
−∞

dθ eiθωK(θ ± i/2) = e±ω/2
∞±i/2∫

−∞±i/2

dθ eiθωK(θ) . (2.7)

At this point we need some physical input about the particle content of the O(4) sigma
model [5]. Since there are no bound states, σ(θ) should not have poles in the strip
−1/2 < Im(θ) < 1/2. Unitarity Ŝ(θ)Ŝ(−θ) = I yields σ2(θ)σ2(−θ) = 1 which implies
the absence of zeros in the same strip. The absence of poles and zeros in this strip is
often called the minimality condition.

Assuming this condition to hold we can solve (2.5) uniquely. Indeed, since K(θ) has
no singularities in the strip −1/2 < Im(θ) < 1/2 we can deform the integral contour
(2.7) back to the real axis and conclude that F(K±)(ω) = e±ω/2F(K)(ω). The Fourier
transform of (2.6) then yields

F(K)(ω) =
e−|ω|/2

2 cosh(ω/2)
. (2.8)

The Kernel K(θ) is now trivially computed as

K(θ) = F−1

[
e−|ω|/2

2 cosh(ω/2)

]
=

1

2πi

d

dθ
log

[
1

i

Γ
(

1− θ
2i

)
Γ
(

1
2

+ θ
2i

)
Γ
(
1 + θ

2i

)
Γ
(

1
2
− θ

2i

) ] . (2.9)

The quantity inside the logarithm can then be identified with the dressing factor σ(θ).
To fix the constant of integration we imposed the condition

σ2(0) = −1 . (2.10)

This constraint simply states that there cannot be two identical particles in the theory,
which is indeed the case for the O(4) sigma model.

Second derivation

Let us redo the above derivation avoiding passing to Fourier space. The argumentation
now will be admittedly more involved but it is also the most useful for the analogy
with solving the AdS/CFT crossing equation. First, the crossing equation (2.5) can be
re-written as

σD+D−1

= θ−(D−D−1) , (2.11)

where D = e
i
2
∂θ is the shift operator, Df(θ) ≡ f(θ+ i/2), and fO[D] ≡ exp (O[D] log f) .

Formally we might be tempted to solve (2.11) as

σ(θ) = θf [D] where f [D] = −D −D
−1

D +D−1
. (2.12)
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However, we have to interpret this expression with care. E.g. if we naively expand
f [D] = 1+2

∑∞
n=1(−1)nD2n we see that σ2(0) = 0. Similarly, if we expand this operator

at large D as f [D] = −1− 2
∑∞

n=1(−1)nD−2n we get 1/σ2(0) = 0. In both cases we face
an obvious contradiction with the minimality condition. The only possible interpretation
of (2.12) which is consistent with the minimality condition and (2.10) is

f [D] =
D−2

1 +D−2
− D2

1 +D2
≡

∞∑
n=1

(−1)nD2n −
∞∑
n=1

(−1)nD−2n , (2.13)

so that

σ(θ) = exp

(
∞∑
n=1

(−1)nD2n log(θ)−
∞∑
n=1

(−1)nD−2n log(θ)

)
(2.14)

= creg

∞∏
n=0

(θ + 2ni)(θ − (2n+ 1)i)

(θ − 2ni)(θ + (2n+ 1)i)
= −creg

Γ
(

1− θ
2i

)
Γ
(

1
2

+ θ
2i

)
Γ
(
1 + θ

2i

)
Γ
(

1
2
− θ

2i

) .
The sums in the exponent in (2.14) are divergent and therefore need to be regularized.
The simplest way to do regularization is by computing the derivative of these sums and
then integrating back. This procedure introduces an unknown constant of integration:
creg. Using (2.10) we fix it to creg = i. We recover precisely what we derived before in
(2.9).

This derivation of the dressing factor is almost the same as the first one. Indeed, in
both cases, to obtain regular expressions we need to take a derivative of the logarithm
of the crossing equation. More importantly, the shift operator D = e

i
2
∂θ is Fourier

transformed to F(D) = e−
i
2
ω. However, one advantage of using the second derivation is

that (2.14) explicitly highlights the analytic structure of the solution, in particular by
looking at its zeros and poles we immediately recognize the ratio of gamma functions.
In the case of the AdS/CFT, when the analytical structure is more involved, use of shift
operators instead of their Fourier transforms is even more preferable.

Let us comment on a trivial feature of the above derivations. The (logarithm of the)
dressing factor is singular for θ = ±i. This means that for practical purposes, it was a
good idea to shift from the original functional equation σ(θ)σ(θ− i) = . . . to the relation
(2.5) of the form σ(θ + i/2)σ(θ − i/2) = . . . . It avoids the burden of carrying around
several i0’s in the above derivations.

3 Crossing equation

The AdS/CFT system is considerably more complicated than the O(4) sigma model
described above. However many features have a clear analogue in both models. The
energy and momenta of the particle excitations, which are also called magnons, are now
given by [7,8, 6]

eip =
x+

x−
, E = ig

(
x− − 1

x−
− x+ +

1

x+

)
, (3.1)
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where x± ≡ x(u ± i/2), u/g ≡ x(u) + 1/x(u) and g ≡
√
λ/4π. The variable u is the

Bethe rapidity and is the direct analogue of θ in the O(4) sigma model; x(u) is the
so called Zhukovsky variable. Unless otherwise stated, we choose the branch of the
Zhukovsky variables such that |x±(u)| > 1. This is the so called physical region, the one
with a good g → 0 limit. We represent the cuts of the functions x±(u) as uniting the
corresponding branch-points horizontally in the complex u plane, see figure 2.

The two-body scattering matrix of the AdS/CFT system, Ŝ = Ŝ0 × σ−2, depends
on the rapidities of the particles being scattered and on the ’t Hooft coupling. As in
the previous example, we have a matrix part Ŝ0 which can be fixed by symmetry and
Yang-Baxter – see review [2] and references therein – and a scalar dressing factor σ2

which is the main focus of this review.
To avoid possible ambiguities let us mention that we use a definition of σ such

that the Beisert-Staudacher Bethe equations [9, 6] in the SU(2) sector read eipkL =∏
j 6=k

uk−uj+i
uk−uj−i

σ(uk, uj)
2.

In contradistinction with the O(4) sigma model, the AdS/CFT integrable system
does have infinitely many bound states. The n-th bound state is a composite state of n
elementary magnons with rapidities [10]

u+ ij , with j = −n− 1

2
, . . . ,

n− 1

2
, (3.2)

separated by i and with real part u. The energy and momentum of the bound state are
the sum of energies and momenta of the individual constituents with the rapidities (3.2).
The result is again (3.1) but with x± replaced by x (u± in/2). The existence of bound
states is reflected in a simple pole of the scattering matrix at the point u = v − i. By
convention, this pole is included in Ŝ0. Hence σ2(u, v) should be regular at this point.

As usual in integrable models, the most powerful tool to fix σ2(u, v) is by using
crossing symmetry. The AdS/CFT generalized crossing equation was first proposed by
Janik [11] and is presented in (3.4) below. As discussed in section 2, one can motivate this
relation by finding a singlet particle/antiparticle state |1〉 with zero charges and imposing
trivial scattering of this object with physical particles [6]. Yet another derivation of
crossing is [12].

To be able to discuss the crossing equation we need to explain what the particle →
antiparticle transformation is for the AdS/CFT system. This transformation should be
understood as the following monodromy in u. We start with some x± at real u. The
energy and momentum following from (3.1) are then real. Next, we take u into the
complex plane: first we cross the cut of x+(u) (in the lower half plane), then the cut of
x−(u) (in the upper half plane) and finally we come back to the original value of u, see
figure 2.1 Of course, since we crossed cuts we are now at some other sheet; to stress the
difference let us denote the point on the different sheet by u. Since we crossed the cuts
of x± we have x±(u) = 1/x±(u) and therefore E(u), p(u) = −E(u),−p(u) as expected

1Another interesting transformation can be considered when we only cross the x− cut. If we now
compute the energy and momenta from (3.1) at real u we see that they are purely imaginary. This is
the so called mirror kinematics where we should identify pmirror = iE and Emirror = ip, see [13,14] and
review [15] for more details.
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Figure 2: Analytical continuation contours used in the crossing equation. The
horizontal segments corresponds to the choice of branch-cuts for x±(u) = x(u±
i/2) such that |x(u)| > 1. The upper (lower) cut is the cut of x− (x+).

for a particle to antiparticle transformation. In sum, we have,

x±antiparticle =
1

x±particle
. (3.3)

Note however that it is important to specify the path γ under which x± → 1/x± to
properly define this transformation. The crossing relation then reads

σ(u, v)σγ(u, v) =
1− 1

x+y+

1− x−

y−

1− x−

y+

1− 1
x+y−

, (3.4)

where σγ(u, v) means the analytical continuation of σ(u, v) in the u variable over the
contour γ. We will use x± ≡ x±(u) and y± ≡ x±(v) in this review.

Assumptions on the analytical structure

The crossing equation (3.4) admits infinitely many solutions. To single out the correct
one we need additional physically motivated constraints on the analytical structure of
the dressing factor. This is the analogue of the minimality condition for the O(4) case
discussed in section 2.

1. Bound states and simple poles/zeros. The position of simple poles in the S-
matrix should correctly reproduce the structure of bound states. The only bound
states in the AdS/CFT system are the (3.2) described above. These states are
already accounted for by the simple pole of Ŝ0. We therefore require that σ2(u, v)
does not have simple poles. Unitarity then excludes simple zeros as well.2

2. Poles/zeros of higher degree. An exceptional feature of 1 + 1d theories is
that the S-matrix can contain poles of higher degree associated with multiparticle
exchanges. In [16] Dorey, Hofman, and Maldacena showed that the exchange of
pairs of composite states should lead to double poles in the AdS/CFT scattering

2In the O(4) case we only required the absence of poles and zeros in the physical strip due to the
periodicity properties of p as a function of θ. In the AdS/CFT case there is no such periodicity and we
should require the absence of poles everywhere.
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matrix at u− v = im for integer m 3. Since the matrix factor Ŝ0 does not contain
such double poles we should allow for their presence in the dressing factor. These
should be, however, the only poles of σ2(u, v). Using unitarity, we see that the
zeros of σ2(u, v) are double zeros located at u−v = −im. These double poles (and
zeros) are called DHM poles (and zeros). Note that DHM poles will inevitably
appear in the solution of crossing. Therefore we can reformulate our requirement
as a demand to pick up solution with the simplest possible pole/zero structure.

3. Branch points. In the O(4) sigma model, the S-matrix, when thought of as a
function of the kinematic invariants, has branch cut singularities at particle creation
thresholds. The rapidity θ uniformizes the S-matrix rendering it meromorphic. In
the AdS/CFT system we are not able to introduce such uniformizing variable.
The best we can do is to require that the structure of branch points is as simple as
possible: only the branch points which are explicitly required by crossing equations
are allowed in σ(u, v). We will see that this criterium leads to infinitely many
square-root branch points at the points u = ±2g ± in for half-integer n, i.e. when
x(u∓ in) = ±1.

4. χ-decomposition The dressing factor σ(u, v) = eiθ(u,v) can be decomposed as

θ(u, v) = χ(x+, y−)− χ(x−, y−)− χ(x+, y+) + χ(x−, y+), (3.5)

where χ(x, y) is antisymmetric, χ(x, y) = −χ(y, x), and θ(u, v) is the phase shift.
This form is the most general expression we should expect for long-range integrable
spin chains [18]. Hence, from the N = 4 point of view it is perfectly justified. More
precisely this form is a direct consequence of the decomposition of θ(u, v) in terms
of higher conserved charges (4.2) which will be reviewed in more detail in section
4. The higher charge decomposition property was realized in [17, 18], while the
representation (3.5) appeared in [41]. Further evidence for this decomposition
comes from considering the scattering of bound-states, see point 6 below.

5. Asymptotics at infinity. As x→∞ we expect χ(x, y) to approach some constant
value. Since infinite x corresponds to zero momenta this will ensure that σ2(p =
0, p′)→ 1, i.e. particles scatter trivially with zero momentum particles. This should
be imposed since excitations with zero momenta correspond to global symmetry
transformations of the state and should therefore have an irrelevant effect.

6. Analyticity of χ(x, y) in the physical domain |x| > 1. In points 2 and 3
above we anticipated the existence of DHM poles and of square root singularities at
u = v+ in and u = ±2g± in respectively. So, what we want to argue in this point
is that these singularities should not be present in the physical sheet |x(u)| > 1.
This is the trickiest point and requires a somehow more involved argument. The
basic idea is that if these singularities would be present for |x| > 1 then they would
lead to unphysical singularities in the description of the scattering of bound states.

3The possible values of m are in general restricted depending on what Riemann sheets of σ(u, v) we
are located [16]. We do not need this restriction; it will naturally come out.
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To show this we have to consider the phase shift when scattering a n-th with a
m-th bound state with real rapidities u and v. The total phase shift is the sum
of the phase shifts acquired by each of the n constituents of the first bound state
when scattered through each of the m constituents of the second bound state. I.e.

θn,m(u, v) =
∑n−1

2

j=−n−1
2

∑m−1
2

k=−m−1
2

θ(u+ i j, u+ i k). Using (3.5) we simplify this sum

to [19]4

θn,m(u, v) = χ(x(u+ in/2), x(v + im/2))− χ(x(u− in/2), x(v + im/2))

−χ(x(u+ in/2), x(v − im/2)) + χ(x(u− in/2), x(v − im/2)).

(3.6)

The scattering matrix Ŝ(u, v) should be analytic for real u and v provided we are
in the physical domain |x(u± in/2)| > 1. If the square root cuts or the DHM poles
were present in the physical region of χ(x, y) they would clearly lead to singularities
in the real axis for some n-th bound states (of even n). Hence they must be absent.

Solution

In this derivation we follow [20] closely. The crossing relation (3.4) is valid on the
infinite genus Riemman surface [4] where u lives. Instead of evaluating it at a real u in
the physical sheet where |x±(u)| > 1 let us cross the cut of x−(u) and return back to the
real u axis. This means that we should flip x− → 1/x− in the right hand side of (3.4)
which becomes5

σγ−(u, v)σγ+(u, v) =
1− 1

x+y+

1− 1
x−y−

1− 1
x−y+

1− 1
x+y−

, (3.7)

where σγ±(u, v) is the analytical continuation of σ(u, v) through the u contour which
crosses the cut of x± so that x± → 1/x± respectively, see figure 2. Of course, the contour
γ described above (3.4) is nothing but γ = γ+ + (γ−)

−1
. Next we notice that σγ− =

σ1(x+,v)
σ1(1/x−,v)

and σγ+ = σ1(1/x+,v)
σ1(x−,v)

where σ1(x, v) ≡ eiχ(x,y−)−iχ(x,y+), see decomoposition (3.5).
By plugging these expressions into the crossing relations we get

σ1(x+, v)σ1(1/x+, v)

σ1(x−, v)σ1(1/x−, v)
=

1− 1
x+y+

1− 1
x−y−

1− 1
x−y+

1− 1
x+y−

. (3.8)

As in the O(4) sigma model, it is useful to manipulate expressions by using the shift

operator D = e
i
2
∂u . The shorthand notation for (3.8) reads

(σ1(x, v)σ1(1/x, v))D−D
−1

=

(
x− 1

y+

x− 1
y−

)D+D−1

. (3.9)

4The nice fusion properties of the dressing factor can be seen as further evidence in favor of the
composition (3.5)

5This more symmetric form of crossing is the analogue of (2.5) where we evaluate the dressing factors
at θ ± i/2, see comment at the end of section 2. Similarly to what happens in the O(4) model, the
derivation also simplifies when we consider this more symmetric form.
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The use of shift operators in the AdS/CFT system is potentially dangerous due to the
presence of the branch points so let us analyse expression (3.9) with care. The right
hand side of (3.9) is uniquely defined in the region |Re(u)| > 2g if we use the physical
choice of cuts for x(u), see figure 2. The reason is that if |Re(u)| > 2g we never cross
the cuts of x+(u) or x−(u). Interestingly, the left hand side of (3.9) is not ambiguous
at all in the whole strip |Im(u)| < 1/2, and in particular on the real axis. Indeed, when
we cross the cut of x(u), the two terms in the product σ1(x, v)σ1(1/x, v) become just
exchanged, so this product does not have the cut of x(u).6 We conclude that it is safe to
use the shift operator for the expression (3.9) at least in the intersection of two domains
|Re(u)| > 2g and |Im(u)| < 1/2. We therefore consider (3.9) in this intersection, solve
it, and then analytically continue the solution everywhere.

Formally we can solve (3.9) by7

σ1(x, v)σ1(1/x, v) =

(
x− 1

y+

x− 1
y−

)f [D]

, (3.10)

where

f [D] =
D +D−1

D −D−1
. (3.11)

However, to interpret this expression we must give a meaning to this operator.8 For
example, a naive expansion in powers of D or 1/D leads to f [D] = −1 + O(D) or
f [D] = +1 + O(1/D) respectively. Both expansions must be discarded, because of
the ∓1 terms: the presence of such terms would mean that σ1(x, v)σ1(1/x, v) has the
branch-cuts of x(u), however this should not be the case as explained above. The proper
interpretation of f [D] which leads to a function σ1(x, v)σ1(1/x, v) without a branch cut
for u ∈ [−2g, 2g] is given by9

f [D] =
D−2

1−D−2
− D2

1−D2
≡

∞∑
n=1

D−2n −
∞∑
n=1

D2n . (3.12)

The reason is of course the absence of D0 terms in this expansion. Plugging the definition

6Of course, this product might still have cuts of x(u+ in) with nonzero integer n and this is why we
restrict ourselves to the strip |Im(u)| < 1/2 to be on the safe side.

7A priori we could imagine multiplying the right hand side of (3.10) by a zero mode of D−D−1, i.e.
a function g(u) periodic in u with period i. Such functions must however always have poles or zeros. As
explained in the previous section, the only allowed poles (zeros) are the DHM poles (zeros). Suppose
that g(u) contains any of DHM poles. Then by periodicity it contains poles at u = iZ. But due to
unitarity it contains also zeroes in the same positions. Hence g(u) is a constant which can be set to 1
due to (3.5). Hence (3.10).

8This can be almost xeroxed from the discussion of the dressing factor in the O(4) sigma model in
section 2 where we needed to regularize a very similar expression, see (2.14).

9Strictly speaking, the expression (3.10) with f [D] given by (3.12) still needs to be regularized to
have a precise meaning. For instance, instead of f [D] we might consider ∂2

uf [D] and then integrate back.
However, the terms that depend on the regularization are canceled out when computing the dressing
factor σ(u, v) because of the anti-symmetrization (3.5) over the several χ factors.
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of σ1(x, v) in terms of χ(x, y) in (3.10) we see that it can be further factorized into

eiχ(x,y)+iχ(1/x,y) =

(
x− 1

y√
x

)−f [D]

. (3.13)

The factor 1/
√
x is irrelevant for σ1 but we insert it to ensure the antisymmetry of χ(x, y)

with respect to the interchange x↔ y. A direct calculation yields10

eiχ(x,y)+iχ(1/x,y)+iχ(x,1/y)+iχ(1/x,1/y) = (u− v)−f [D] =
Γ(1 + iu− iv)

Γ(1− iu+ iv)
. (3.14)

Now, if we take u on top of the cut of x(u) we have x(u−i0) = 1/x(u+i0). Similarly for v.
Hence, with an harmless abuse of notation, we can think of (3.14) as a Riemann-Hilbert
problem:

χ(u+i0, v+i0)+χ(u−i0, v+i0)+χ(u+i0, v−i0)+χ(u−i0, v−i0) =
1

i
log

Γ(1 + iu− iv)

Γ(1− iu+ iv)
. (3.15)

Needless to say, Riemann-Hilbert problems are much simpler than generic functional
equations – such as the original crossing equation – and can be solved by standard
methods. In our case the solution is given by

χ(x, y) =
1

i
Ku ? Kv ? log

Γ(1 + iu− iv)

Γ(1− iu+ iv)
, (3.16)

with the kernel K defined as11

Ku ? F ≡
2g+i0∫

−2g+i0

dw

2πi

x(u)− 1
x(u)

x(w)− 1
x(w)

1

w − u
F (w) . (3.17)

The kernel is engineered to satisfy the following equation12:

(Ku ? F )(u+ i0) + (Ku ? F )(u− i0) = F (u) , |u| < 2g. (3.18)

The solution (3.16) was chosen among the other possible solutions by the requirement
that χ(x, y) should be analytic for |x| > 1 and χ(x, y)→ const as x→∞. The expression
(3.16) can be rewritten in the form proposed in [16] if we rewrite the action of the kernels
as an integral in the Zhukovsky plane,

(Ku ? F )(u) =

∫
|z|=1

	
dz

2πi

1

x− z
F (g (z + 1/z))− 1

g

2g+i0∫
−2g+i0

dv

2πi

1

x(v)− 1
x(v)

F (v) , (3.19)

10the logarithm of the right hand side is antisymmetric with respect to u↔ v as it should.
11Note that x(u)−1/x(u) = g−1

√
u2 − 4g2, so Ku is the typical kernel used to solve Riemann-Hilbert

problems of the form (3.18).
12This kernel coincides, after an analytical transformation [21], with the inverse Fourier transform of

the sum K0 + K1 of the magic kernels in [3]. The relevance of Riemann-Hilbert problem for Ku was
recognized in [21].
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Figure 3: Analytical structure of eiχ(x,y) as a function of u.

and notice that the second term does not contribute to the dressing phase once we
anti-symmetrize in (3.5). Dropping it, we obtain the DHM representation

χ(x, y) = −i
∫
|z|=1

	
dz

2πi

∫
|z′|=1

	
dz′

2πi

1

x− z
1

y − z′
log

Γ[1 + ig(z + 1
z
− z′ − 1

z′
)]

Γ[1− ig(z + 1
z
− z′ − 1

z′
)]
. (3.20)

Analytical structure at finite coupling

To investigate the analytical structure of χ(x(u), x(v)) as a function of u we will use
(3.12) to write13:

iχ(x(u), x(v)) =
∑
n6=0

sign(n)Ku ? D
2nKu ? log(u− v) (3.21)

which is valid in the physical domain |x(u)| > 1. To go to |x(u)| < 1 we must cross the
cut u ∈ [−2g, 2g]. Using (3.18) to go through this cut, we obtain

χ(x(u), x(v))= i
∑
n6=0

sign(n)Ku?D
2nKu?log(u−v)−i

∑
n6=0

sign(n)D2nKu?log(u−v). (3.22)

Since the only cut we crossed was the cut of x(u), this expression is valid in the domain
where |x(u)| < 1 while |x[u+in]| > 1 for n 6= 0. By crossing the cut of x(u) we moved into
a different Riemann sheet. On this new sheet χ(x(u), x(v)) has all the cuts of x(u+ in)
for n ∈ Z as depicted in figure 3. We could now decide to go through one of the new
cuts, e.g. |x(u+ im)| = 1 with m 6= 0. This will bring us to a third Riemann sheet which
is now defined by |x(u)| < 1 and |x(u + im)| < 1 with all other |x(u + in)| > 1. When
going through the cut of |x[u+ im] we pick an extra contribution from the second term
in (3.22) so that

iχ(x(u), x(v))=−
∑
n6=0

sign(n) Ku ? D
2nKu ? log(u− v) +

∑
n6=0,m

sign(n)D2nKu ? log(u− v)

− sign(m) D2mKu ? log(u− v) + sign(m) log(u− v + im). (3.23)

When constructing σ2 the last term leads to double poles or double zeros (depending on
the sign of m). These are precisely the DHM poles/zeros mentioned above. This is a
very nontrivial finite coupling check of the dressing factor.

13The sharp reader will have noticed that Kv was replaced by Ku. Such replacements are allowed since
the difference between both expressions cancels out in the anti-symmetrization (3.5). The (derivative of
the logarithm of the) representation (3.21) for the dressing phase was proposed in [22].
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4 Useful representations and expansions

A particularly useful alternative way of expressing χ(x, y) is through its large x and y
expansion,

χ(x, y) = −
∞∑

r,s=1

cr,s(g)

xrys
, (4.1)

where cr,s = −cs,r are a set of functions of the ’t Hooft coupling only. For the dressing
factor this translates into an expansion in terms of magnon higher conserved charges:

1

i
log σ(u, v) =

∞∑
r,s=1

cr,s(g) qr+1(u) qs+1(v) , qr(u) ≡ 1

(x+)r−1 −
1

(x−)r−1 . (4.2)

The higher conserved charges qr(u) were initially written in [8] and the expansion (4.2)
was proposed in [17] (up to minor modifications). This proposal found further support
in [18] where Beisert and Klose argued that generic gl(r) symmetric long-ranged inte-
grable spin chain models give rise to (4.2).14 Expanding (3.20) at large x and y and
parameterizing z, z′ = eφ, eφ

′
, we find

cr,s(g) = i

2π∫
0

dφ

2π

2π∫
0

dφ′

2π
exp (irφ+ isφ′) log

Γ[1 + 2ig(cosφ− cosφ′)]

Γ[1− 2ig(cosφ− cosφ′)]
. (4.3)

The logarithm of gamma functions in this expression has an integral representation

as −2i Im
∫∞

0
dt
t

[
e2igt(cosφ−cosφ′)−1

et−1
− 2ig (cosφ− cosφ′) e−t

]
. Only the exponential term

survives after the φ and φ′ integration. Furthermore, these angular integrals yield integral
representations of Bessel functions. Hence,

cr,s(g) = 2 sin
(π

2
(r − s)

) ∞∫
0

dt
Jr(2gt)Js(2gt)

t(et − 1)
. (4.4)

Our logical flow was pretty much the exact opposite of the chronological one. The
dressing factor was first guessed by Beisert-Eden-Staudacher [3] in the form (4.1),(4.4)
based on the string analysis of Beisert-Hernandez-Lopez [4] and on trancendentality
considerations [24]. Dorey-Hofman-Maldacena [16] derived (4.3) from (4.4) and resumed
(4.1) to derive the integral representation (3.20). Only later the dressing factor was
shown to satisfy the crossing equation in [25] and explicitly derived in [20].

Weak coupling expansion

The constants cr,s(g) admit a convergent weak coupling expansion as

cr,s(g) =
∞∑
n=0

c(n)
r,s g

r+s+2n (4.5)

14For more recent discussions of general integrable long range Hamiltonians see [23].
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where [3]

c(n)
r,s = 2 (−1)n sin

(π
2

(r − s)
) (2n+ r + s− 1)!(2n+ r + s)!

n!(n+ r)!(n+ s)!(n+ r + s)!
ζ(2n+ r + s) . (4.6)

The convergence radius of this expansion is gc = 1/4, see figure 4. A simple explanation
for this radius of convergence is that at g = i/4 the branch points of the dressing factor
collide in pairs. As one can see from (4.6), the constants cr,s(g) behave at weak coupling
as

cr,s(g) = O(gr+s). (4.7)

This was predicted in [18] as the generic behavior of the constants cr,s(g) for spin chain
arising from perturbative computations in gauge theories in the planar limit. It is there-
fore a very important check of the solution (3.20).

The leading weak coupling term is c1,2 = −c2,1 = −2g3ζ(3). For rapidities u, v = O(1)
it leads to

σ2(u, v) = 1 + 256 ζ(3)g6 (u− v)(4uv − 1)

(1 + 4u2)2(1 + 4v2)2
+O(g8) . (4.8)

This means that the effect of the dressing factor only affects the rapidities of the particles
at order g6. The energy of a multi-particle state is given by a sum of dispersion relations∑

j ε(uj) where ε(uj) = O(g2) which means that the dressing factor only affect the

anomalous dimensions of single trace operators at order g8, i.e. at 4 loops! It is therefore
no surprise that it was originally thought that such factor was absent all together [8].

The cusp anomalous dimension15, for example, can be computed using the dressing
factor derived above [26,3]. One finds

f(g) = 8g2 − 8π2

3
g4 +

88π4

45
g2 −

(
315π6

584
+ 64ζ(3)2

)
g8

+

(
28384π8

14175
+

128π2ζ(3)2

3
+ 1280ζ(3)ζ(5)

)
g10 − . . . . (4.9)

This expansion deserves a couple of comments. First notice that the degree of transcen-
dentally of each term is correlated to the corresponding order of perturbation theory.
This is in perfect agreement with the Kotikov-Lipatov transcendentality conjecture [24].
The zeta functions in (4.6) are precisely of the required degree not to spoil this nice prop-
erty! Second, if we were to compute the cusp anomalous dimension using σ2(u, v) = 1,
we would find exactly the same result (4.9) with the replacement ζ(2n+ 1)→ iζ(2n+ 1)!

Quite mysteriously, the constants c
(n)
r,s are uniquely fixed to (4.6) provided (a) we as-

sume (4.7) and (b) require that the presence of the dressing factor simply amounts to
ζ(2n+1)→ iζ(2n+1) in the cusp anomalous dimension computed without any dressing
factor.

15Operators of the form Tr
(
ZDSZ

)
+permutations have an anomalous dimension ∆(S, g) ' f(g) logS

at large S. The cusp anomalous dimension is f(g)/2.
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Figure 4: Left: c1,2(g) as given by (4.3) or (4.4) can be evaluated for any
g: thick line. The weak coupling Taylor expansion (4.5) has a finite radius of
convergence. The several thin lines plotted in this figure are several truncations
of this expansion (from 1 to 20 terms); the more terms are included the most
they approach the real curve for g < 1/4, the radius of convergence. Right:
c1,2(g) (blue line) compared with its strong coupling expansion (dotted orange
lines). 1 is the AFS result, 2 is AFS plus HL, 3 already includes the two loop
correction and 4 contains the first four non-trivial terms. We see that the fit
with four terms is perfect even for relatively small g! This fast convergency was
also observed in numerical computations of dimensions, see e.g. [27].

The cusp anomalous dimension turns out to be a very important quantity in the study
of gluon scattering amplitudes in N = 4 SYM [28]. It governs the IR divergent part of
these amplitudes. The cusp anomalous dimension has been computed analytically up to
three loops [29] and numerically at four loops [30]. Thus the first line in (4.9) can be
checked: it matches precisely the perturbative calculations!

Let us mention two more remarkable weak coupling checks of the dressing factor. At
weak coupling it is convenient to think of operators

O(x) = Tr (Z . . . ZXZ . . . ZΨZ . . . ZDZ . . . Z) (x) + permutations (4.10)

as spin excitations X,Ψ, D, . . . around a ferromagnetic spin chain vacuum TrZL. In this
language the anomalous dimension matrix can be thought of as a spin chain Hamiltonian
[31]. At four loops we have a Hamiltonian of range four explicitly computed in [32]. At
this loop order some coefficients of this Hamiltonian get ζ(3) factors. These lead precisely
to the dressing factor (4.8)!

Other impressive weak coupling checks concerns the computation of the anomalous
dimension of short operators such as the Konishi operator. At four loops the range
of interaction of the Hamiltonian is as large as the operator itself and the scattering
picture breaks down [33]. Still, using the Luscher formalism, this correction can be
computed [34]. This prediction was checked against a tour de force computation [35]
and agreement was found. Other remarkable four and five loop checks concern the
behavior of general twist two operators as predicted from the AdS/CFT system with the
predictions of BFKL, see reviews [36] and [34] for details.
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Strong coupling

The dressing factor can also be expanded at strong coupling. However, contrary to the
expansion at weak coupling which was convergent, at strong coupling the expansion is
merely asymptotic, albeit Borel summable. We have cr,s(g) =

∑∞
n=0 d

(n)
r,s g1−n where [4]

d (n)
r,s =

ζ(n) ((−1)r+s − 1) Γ
(

1
2
(n− r + s− 1)

)
Γ
(

1
2
(n+ r + s− 3)

)
2(−2π)nΓ(n− 1)Γ

(
1
2
(−n− r + s+ 3)

)
Γ
(

1
2
(−n+ r + s+ 1)

) . (4.11)

The leading order coefficients at strong coupling are given by

d (0)
r,s =

δs,r−1 − δs,r+1

s r
, d (1)

r,s =
(−1)r+s − 1

π

1

r2 − s2
. (4.12)

The simplest way to compute the leading order expression for the dressing factor at
strong coupling is to resum (4.1) with cr,s(g) ' g d

(0)
r,s . The result is

χ(0)(x, y) = (x+ 1/x− y − 1/y) log (1− 1/xy)− 1/x+ 1/y . (4.13)

The last two terms in (4.13) cancel out when constructing the dressing factor as in (3.5)
while the first term yields

σ(u, v) '
1− 1

x−y+

1− 1
x+y−

(
1− 1

x−y−

1− 1
x−y+

1− 1
x+y+

1− 1
x+y−

)i(v−u)

. (4.14)

This is the so called AFS dressing factor. It was engineered by Arutyunov, Frolov, and
Staudacher [17] to match the strong coupling Bethe Ansatz equations with the KMMZ
integral equations [37] describing classical string solutions. Historically, this work was
the first solid indication that σ2(u, v) 6= 1.

To compute the subleading term at strong coupling, and also the next-to-subleading
etc, it is convenient to use the DHM representation (3.20) and

1

i
log

Γ(1 + ix)

Γ(1− ix)
= −x log(x/e)2 − π

2
sign (x) +

∞∑
n>0, odd

2ζ(−n)

n

1

xn
(4.15)

which is valid for real x. When using this expansion in (3.20) we see that the first term
yields the AFS dressing factor (4.14). The second term, gives us the leading quantum
correction, known as the Hernandez-Lopez phase [40]. The sum in (4.15) yields all other
subleading quantum corrections.

Let us now discuss the leading quantum correction. The sign term in (4.15) simply
constrains the limits of integration in (3.20). This leads to

χ(1)(x, y) =
1

4π

1∫
−1

dz′

y − z′

z′∫
1/z′

dz

x− z
− (x↔ y) , (4.16)

which can be directly computed in terms of dilogarithms. In this way we obtain the
resummation of (4.8) using d

(1)
r,s , performed in [41], see also [4]. The Hernandez-Lopez
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phase is a 1-loop effect in the world-sheet strong coupling expansion and can be derived
using only (quasi) classical considerations [42]. This was done in [43,40] using particularly
simple circular string solutions [43], checked to be consistent with more complicated
solutions in [44], and derived in full generality in [39] using the algebraic curve method
[45].

It is fun to notice that the leading and subleading strong coupling terms in the
expansion of χ(x, y) are by far the hardest to compute. All other subleading corrections
come from using the last sum in (4.15) in (3.20). They lead to rational integrands in z
and z′ so that the integrals can be trivially computed by residues.

Another curious feature of the AdS/CFT dressing factor is the following: the strong

and weak coupling coefficients (4.6) and (4.11) are related by [3] c
(n)
r,s = d

(−2n−r−s+1)
r,s .

This relation is further discussed in [46].
We end this section with the discussion of some other strong coupling checks of the

dressing factor. Explicit perturbative computations of the full S-matrix Ŝ were done up
to 2 loops [47] in the near-flat space limit [48]. Finite size corrections around the giant-
magnon solutions were performed and probe the dressing factor to all loop orders [34]
The strong coupling asymptotic expansion of the cusp anomalous dimension was found
analytically at any loop order [50, 21]. The two loop coefficient was checked through
a direct string computation [51]. The reproduction of the O(6) sigma model [52] from
the BES/FRS equation [55] in the Alday-Maldacena limit [56], see also [53, 54]. This
probes the dressing phase at all-loop order. The match of the generalized scaling function
computed at one [49] and two [57] loops with a direct string theory prediction at one [58]
and two [59] loops. This is a very nontrivial check since it amounts to matching a non-
trivial functional dependence. Last three checks emerged from the exhaustive study of
anomalous dimensions for twist operators. For more references and a review of twist
operators see [36].

5 Concluding remarks

The dressing factor of the AdS/CFT system is a remarkable object with a very non-trivial
dependence on the momenta of the scattered particles and on the ’t Hooft coupling. It has
been impressively scrutinized with remarkable success. Still, there are some challenges
to be addressed.

Perhaps the most obvious one is the lack of an independent derivation of the dressing
factor purely from gauge theory, without recurring to AdS/CFT. The most significant
advantage of the string language is the existence of the notion of Wick rotation which
allows us to argue in favor of the crossing relation [11, 6, 12]. On the gauge side the
situation is much worse since there is no known meaning for the cross channel at all.
This lack of interpretation on the gauge side is present also in the computation of the
spectrum at finite volume. The finite volume computation is based on the Wick rotation
trick of Zamolodchikov [60] which was implemented for the AdS/CFT case in [13, 14].
There is no interpretation of the Wick rotation from the gauge theory side, and therefore
there is no derivation of the Y -system [61, 15] which does not rely on the light-cone
world-sheet description.
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Another interesting puzzle concerns the involved structure of the dressing factor.
It motivates us to search for an underlying simpler system. For instance, the O(4)
sigma model dressing factor can be interpreted as an effective interaction between spin
wave excitations in a very simple antiferromagnet [62]. There has been some interesting
progress in this direction in the AdS/CFT context [38]. The difference in signs in the
denominators of (2.13) and (3.12) might be telling us to look for noncompact spin chains.
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Chapter III.4: Twist states and the cusp anomalous dimension

1 Introduction

One of the best investigated quantities in the subject of integrability in the context of the
AdS/CFT correspondence is the anomalous dimension of twist operators1. The reasons
for this are numerous and range from the interest in these operators due to the role
they play in deep inelastic scattering in QCD to the fact that their anomalous dimension
provides a quantity ideal for studying the AdS/CFT correspondence, a quantity that
interpolate between the weak and strong coupling regimes of the theory.

The construction of the asymptotic Bethe equations that determine the spectrum
of planar N = 4 supersymmetric Yang-Mills theory was based on and inspired by a
number of conjectures. The two major ones are the complete, all-loop, integrability
of the model and the AdS/CFT correspondence itself. Given the conjectures at the
basis of the asymptotic construction it is absolutely necessary to put it to as many tests
as possible and for this suitable quantities, amenable for studies, are needed. Twist
operators constitute such quantities and played a major role in the developments of the
asymptotic system and were also important for understanding its inadequacies. It is now
beyond any doubt that the asymptotic equations do not provide the final answer to the
spectral problem in the planar limit. A system taking finite size effects into account is
being constructed and also for tests of this system twist operators have played and can
be expected to play an important role, see [1, 2] for reviews.

The operators in question appear in a wide range of contexts, see also the review [3].
Their anomalous dimensions can be computed from considerations of Wilson loops, gluon
scattering amplitudes and they, as mentioned, play an important role in QCD and deep
inelastic scattering. Naturally this is a great advantage since this allows for many cross-
checks. Furthermore, providing all loop expressions for the scaling dimensions of the
operators is not only important to AdS/CFT and the studies of integrability but also
for making progress in these other areas.

The simplest representatives of twist operators in N = 4 SYM are operators in
the sl(2) subsector, constructed from complex scalar fields, Z, and covariant light-cone
derivatives, D,

O(x) = Tr(DMZL) + . . . (1.1)

The abbreviation denotes all possible ways in which the derivatives are distributed on
the scalar fields. The length or the twist of the operator is denoted by L and M is the
number of covariant derivatives or the Lorentz spin.

The asymptotic Bethe equations were derived by assuming all loop integrability and
imposing PSU(2, 2|4) symmetry on the internal S-matrix of the theory, see [4, 5] for a
review. This fixes the S-matrix and the Bethe equations up to an overall phase [6]. In
analogy with relativistic models the phase obeys crossing symmetry [7], this symmetry
however does not completely constrain the phase. The condition of crossing symmetry
has to be supplemented by information on the analytical properties of the phase. A

1This name might be slightly misleading. The twist of an operator is defined as its scaling dimension
minus its Lorentz spin. Hence one could refer to any local operator with a definite value of the twist as
a twist operator. We will make it explicit below which operators we are considering. In the literature
these kind of operators are also referred to as Wilson operators.
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proposal for the dressing phase was made based upon the structural properties of the
anomalous dimensions of twist operators in the limit of large spin, M [8,9]. An important
clue was provided by the impressive direct field theory computation of the same object
to four loops [10,11] which allowed to test the proposed Bethe equations and the dressing
phase. Later it was demonstrated that the conjectured phase also constitutes a minimal
solution to the crossing equations [12].

In the limit of large spin the anomalous dimension of the operators exhibits logarith-
mic, Sudakov, scaling [13,14] and all the coupling constant dependence is collected in the
so called scaling function. The scaling function was also obtained from considerations
of light like Wilson loops with a cusp [15,16], both at weak and strong coupling [17,18],
and is therefore also termed the cusp anomalous dimension.

Twist operators in the large spin limit have a universal behavior, their minimal
anomalous dimension does not depend on the length of the operator [16, 33, 8]. It was
therefore conjectured that this quantity was not affected by finite-size/wrapping effects
(see [19] for a review) and consequently the asymptotic Bethe equations can be used to
compute it to any loop order. This is also in line with the identification with cusped
Wilson loops which independently implies no wrapping corrections. This allows for the
construction of an all loop integral equation [8,9] which, if solved, provides the anomalous
dimension as a function of the coupling constant, a quantity that smoothly interpolates
between weak and strong coupling. Needless to say such a quantity is of great importance
for a better understanding of the AdS/CFT correspondence.

The string duals of twist two operators are folded strings with spin S on AdS3. The
string sigma model allows for a semiclassical expansion and the energy of the string
states can be obtained to leading orders in the sigma model loop expansion, see the
discussion in [20] and [21]. The spin S is taken large and identified with M and for the
dual operators this provides a prediction of their scaling dimension at strong coupling.
The agreement between the string energy [22–24] and the anomalous dimensions of the
dual operators found by solving the Bethe equations at strong coupling [25–32] provided
a remarkable check of the equations as well as the AdS/CFT correspondence.

Here we will review the developments that led to an integral equation determining
the all loop expressions for the scaling dimensions of twist operators in the limit of large
Lorentz spin. We will then solve this equation at weak, strong and intermediate values of
the coupling constant and relate the results obtained to other, completely independent,
computations of the same object. We will further review the anomalous dimensions for
finite values of the Lorentz spin as well as their subleading corrections in the large spin
expansion and the structural properties of the weak and strong coupling expansions.

2 The asymptotic Bethe ansatz for sl(2) twist oper-

ators

The twist operators (1.1) belong to the sl(2) subsector, a closed subsector of the theory.
In the spin chain picture, using Tr(ZL) as the reference state the covariant derivatives
are interpreted as excitations on this vacuum. Any number of excitations M is hence
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allowed and this number may exceed the length of the operator. The Bethe equations
which determine the asymptotic spectrum of anomalous dimensions in the sl(2) sector
are then written, in terms of the rapidities or Bethe roots ui, as [4, 5](

x+
k

x−k

)L
=

M∏
j=1

uk − uj − i
uk − uj + i

(
1− g2/x+

k x
−
j

1− g2/x−k x
+
j

)2

e2iθ(uk,uj) (2.1)

where g2 = λ
16π2 , λ is the ’t Hooft coupling, u = x(u) + g2

x(u)
and x±(u) = x(u ± i/2).

Solving the Bethe equations together with the cyclicity constraint
∏L

j=1

x+
j

x−j
= 1 for the

rapidities the anomalous dimension can be computed using

γ(g) = 2g2E = 2g2
∑
j

(
i

x+
j

− i

x−j

)
. (2.2)

Here E denotes the energy of the corresponding spin state. The explicit form of the
dressing phase, θ(u, v), can be found in [9, 5]. At leading order in the weak coupling
expansion (2.1) and (2.2) give the spectrum of the non-compact XXX−1/2 spin chain
with nearest neighbor interactions. In this sector all the Bethe roots are real. In order
to study the limit when M →∞ it is useful to first consider the leading order equations,
determining the anomalous dimension to one-loop, on the form

− iL log
uk + i/2

uk − i/2
= 2πnk − i

M∑
j 6=k

log
uk − uj − i
uk − uj + i

. (2.3)

Here nk reflects the choice of branch of the logarithm. This choice specifies the state
in the spectrum. For generic values of L the states occupy a band [33, 14, 34] and we
will here make the choice to study the lowest state in the band by setting nk = sign(uk)
and consider configurations where the roots are distributed symmetrically around the
origin2. For L = 2 there is only one state.

In the limit the roots accumulate on a smooth contour with endpoints ±b and the
discrete roots in (2.3) can be replaced by the continuum parameter u. Introducing the
rescaled roots ū = u/M , the one-loop density ρ0(u) = 1

M

∑
j δ(u − uj) and the rescaled

density ρ̄0(ū) = 1
M

∑
j δ(ū−

uj
M

) with support on the interval [−b, b] the leading equation
can be written as

0 = 2πsign(ū)− 2−
∫ b

−b

ρ̄0(ū′)dū′

ū− ū′
. (2.4)

2For twist L ≥ 3 it is possible to construct several operators with the same L and M with different
anomalous dimensions. The anomalous dimensions can be labeled by an additional quantum number,

l, as γ
(l)
L,M and represents the eigenvalues of the mixing matrix associated with the dilatation operator.

They can be ordered as γ
(0)
M,L < γ

(1)
M,L < . . . and are smooth functions of M . We refer to γ

(0)
M,L as the

lowest state in the band and the others as excited states. The different states are distinguished in the
Bethe ansatz by their different the mode numbers. See the references above for a detailed discussion.
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The integral with a bar in the above equation is used to denote the principal value
integral. A solution is found by standard methods using the inverse Hilbert transform [8]

ρ̄0(ū) =
1

π
log

1 +
√

1− ū2/b2

1−
√

1− ū2/b2
. (2.5)

This result was initially obtained by an alternative method in [35]. The normalization
of the density, ∫ b

−b
ρ̄0(ū)dū = 1, (2.6)

determines the endpoints to ±b = ±1/2. The one-loop anomalous dimension in the large
M limit is hence

γ0 =
2g2

M

∫ 1/2

−1/2

ρ̄0(ū)dū

ū2 + 1/4M2
= 4g2 log

√
1 + 1/M2 + 1√
1 + 1/M2 − 1

= 8g2 logM +O(M0). (2.7)

Having solved the one-loop problem we proceed to all loops. Taking the logarithm of
both sides of the equation (2.1) and multiplying by i we write

2L arctan(2uk) + iL log
1 + g2/(x−k )2

1 + g2/(x+
k )2

= 2πñk − 2

M/2∑
j=−M/2
j 6=k

arctan(uk − uj)

+2i

M/2∑
j=−M/2

log
1− g2/x+

k x
−
j

1− g2/x−k x
+
j

− 2

M/2∑
j=−M/2

θ(uk, uj), k = ±1, ±2, . . . ,±M
2

(2.8)

where the shifted mode numbers are

ñk =
L− 3

2
sign(k) + k =

L− 2

2
sign(k) + k′, k′ = ±1

2
,±3

2
, . . . ,±M−1

2
. (2.9)

It is convenient to use shifted mode numbers, as opposed to the mode numbers we used
at one-loop, as in the limit when M is taken to infinity x = k′/M becomes a continuous
variable and the density can be obtained from ρ(u) = dx

du
. Note however that this is just

a trick used to get the equations on a convenient form, the state and mode numbers
specified are identical to the one-loop case studied above. Differentiating we find the
leading continuum equation

0 = 2πρ(u)− 2

∫ M/2

−M/2

ρ(u′)du′

(u− u′)2 + 1
+ 2i

∫ M/2

−M/2

du′ρ(u′)
d

du
log

1− g2/x+(u)x−(u′)

1− g2/x−(u)x+(u′)

− 2

∫ M/2

−M/2

d

du
θ(u, u′)ρ(u′)du′. (2.10)

To this leading order all dependence on the twist L is removed. Twist dependence will
however enter as the first subleading corrections are included. By a numerical analysis of
this equation [8] one finds that the density with the one-loop part subtracted is localised
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close to the origin. Splitting the density ρ(u) = ρ0(u) + σ(u) the limits of integration
in all integrals containing σ(u) can therefore be extended to ±∞ as the limit M → ∞
is taken. The integrals containing ρ0(u) can then be explicitly evaluated using (2.5).
Finally rescaling σ(u) → − γ0

2M
σ(u) this leads to the following equation for the Fourier-

Laplace transform3, σ̂(t) = e−t/2
∫∞
−∞ du e

−ituσ(u),

σ̂(t) =
t

et − 1

(
K(2gt, 0)− 4g2

∫ ∞
0

K(2gt, 2gt′)σ̂(t′)

)
. (2.11)

The kernel in (2.11) is given by

K(t, t′) = K0(t, t′) +K1(t, t′) +Kd(t, t
′)

K0(t, t′) =
tJ1(t)J0(t′)− t′J0(t)J1(t′)

t2 − t′2
=

2

tt′

∞∑
n=1

(2n− 1)J2n−1(t)J2n−1(t′)

K1(t, t′) =
t′J1(t)J0(t′)− tJ0(t)J1(t′)

t2 − t′2
=

2

tt′

∞∑
n=1

2nJ2n(t)J2n(t′)

Kd(t, t
′) = 8g2

∫ ∞
0

dt′′K1(t, 2gt′′)
t′′

et′′ − 1
K0(2gt′′, t′), (2.12)

where the kernel Kd(t, t
′) has its origin in the dressing phase. From (2.2) we find that it

is possible to rewrite the anomalous dimension in terms of the density at zero,

γ(g) = 16g2σ(0) logM = f(g) logM. (2.13)

The function f(g) is the so called scaling function. We note here that the higher loop
density, σ(u), also gives the one-loop anomalous dimension. Computing the anomalous
dimension in this way, as opposed to directly from (2.2), requires information about the
density to one loop order higher than the desired anomalous dimension.

The leading integral equation for the density (2.11) is independent of the twist of
the operator or the length of the corresponding spin chain. The derivation above is
based on the asymptotic Bethe ansatz which is expected to break down at order g2L

due to wrapping effects. For twist two operators the asymptotic equations are, due to
superconformal invariance, valid to O(g6) [6] 4 . The fact that the result is independent
of the twist lead to the conjecture that the anomalous dimension is universal and that
wrapping plays no role for these operators to the leading order in the large spin expansion
[8].

In the approach to the study of twist operators discussed above an operator con-
structed solely from scalar fields was identified with the ground state of the spin chain.
The covariant derivatives were viewed as excitations on the chain and we had to solve
the Bethe equations for a large number of excitations to be able to describe the states of
interest. There is another possible description of the operators that is somewhat more

3 For details on the Fourier-Laplace transforms see [8].
4States in the same supersymmetry multiplet have the same anomalous dimension. In the same

multiplet as the operators (1.1) with L = 2 there are also length four operators and therefore wrapping
is delayed.
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natural in this context. It is possible to let the derivatives act as an effective ground
state and instead view the scalar fields as excitations. This reduces the complexity of
the problem as in this case the twist two operators can be described by considering the
scattering of only 2 excitations, termed holes [14, 36]. In this description the one-loop
anomalous dimension for twist L is written as

γ0

g2
= 4γEL+ 2

L∑
j=1

(
ψ(1/2 + iu

(j)
h ) + ψ(1/2− iu(j)

h )
)

+ 2

∫ ∞
−∞

dv

π
i
d2

dv2

(
log

Γ(1/2 + iv)

Γ(1/2− iv)

)
Im log

[
1 + (−1)δeiZ(v+i0)

]
(2.14)

where δ = L + M mod 2 and Z(u) denotes the counting function which in turn is
determined by a non-linear integral equation. This kind of equations are often referred
to as Destri-de Vega equations or, simply, non-linear integral equations, NLIE, and
have been discussed in numerous publications, see [37] for a pedagogical introduction
and further references. The counting function determines the rapidities of the holes as
well as of the Bethe roots. In the limit of large M one immediately finds two large
holes with uh → ±M/

√
2 and in addition it is possible to show that the non-linear

term in (2.14) go as 4 log 2 + O(( logM
M

)2), see [36] for details. The leading anomalous
dimension (2.7) is therefore immediately obtained. This analysis extends to include all
higher loops and it is also possible to treat general values of the twist. To leading order
in the large M expansion one finds this way the same integral equation as in (2.11).
Making use of this method it is however straightforward to continue the expansion and
include also subleading corrections, for general L this allows for a the construction of an
integral equation for terms proportional to M0 [36,38,39] and all corrections of the form
1/(logM)k, with k any integer ≥ 1 [40]. For general L the anomalous dimension has the
structure

γL(g,M) = f(g) (logM + γE + (L− 2) log 2) +BL(g) +
∞∑
k=1

C
(k)
L (g)

(logM)k
. . . (2.15)

For L = 2, 3 one can continue the expansion up to O(( logM
M

)2) where the non-linear terms
start contributing. For L = 2 the result is

γ2(g,M) = f(g)

(
logM + γE +

f(g)

2

logM + γE
M

+
1 +B2(g)

2M

)
+B2(g) +O(( logM

M
)2).

(2.16)
The advantage of this method is that it is completely straightforward. No splitting of
densities or input from numerics, as was used to derive (2.11) from (2.10), was needed.
On the other hand one here faces the difficulty of treating the non-linear term.

3 Weak coupling expansion

The evaluation of the scaling function at weak coupling constitutes an important test of
the conjectured asymptotic all loop Bethe equations. This very same function appears
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in scattering amplitudes, in light-like Wilson loops with a cusp and is part of a direct
Feynman-diagram evaluation of the corresponding QCD result. For this reason there are
several ways to compute the quantity and predictions for what the Bethe equations, if
correct, should give.

The integral equation (2.11) is a Fredholm equation of the second type and easily
expanded to many loop orders at weak coupling,

f(g) = 8g2 − 8π2

3
g4 +

88π4

45
g6 − 16

(
73

630
π6 + 4ζ(3)2

)
g8 + . . . (3.1)

This expansion, to any loop order, shows an important structure. Assigning the degree
of transcendentality k to ζ(k) and πk we find that the l-loop term has degree of tran-
scendentality 2l−2 5. This is a manifestation of the maximal transcendentality principle
conjectured in [41]. This principle states that the N = 4 result can be extracted from the
corresponding QCD result by removing all terms that are not of maximal transcenden-
tality. Using this conjecture it was possible to extend the one-loop result, first computed
in [42], to two loops by extracting the scaling function from the QCD result [43], obtained
by a direct field theory calculation. Further the three loop result was obtained in [44]
using the computation of the QCD splitting functions in [45].

This prediction was confirmed using the fact that the scaling function determines
the leading 1/ε2 pole of the logarithm of gluon amplitudes computed using dimensional
regularisation in 4− 2ε dimensions. The two and three loop planar four point amplitude
in N = 4 SYM was computed in [10]. Through an impressive effort that computation
was also extended to four loops [11].

The anomalous dimension of light-like Wilson loops with a cusp is identified with
the anomalous dimension of twist operators and also provide the first orders in the weak
coupling expansion [15,16].

Up to three loops the result (3.1) is not sensitive to the dressing phase, to be able to
fix the dressing phase the knowledge of the four loop scaling function therefore played a
major role [8,11,9]. The scaling dimension, computed from the Bethe equations with the
correct dressing phase, is in full agreement with the results of the completely indepen-
dent calculations mentioned above, providing highly non-trivial evidence that the Bethe
equations and the assumptions made to derive them are indeed correct.

In fact the three-loop result extracted from the QCD field theory computation is
exact in M and naturally expressed in terms of harmonic sums

γ(M) = 8g2 S1 − 16g4
(
S3 + S−3 − 2S−2,1 + 2S1

(
S2 + S−2

))
−64g6

(
2S−3 S2 − S5 − 2S−2 S3 − 3S−5 + 24S−2,1,1,1 + 6

(
S−4,1 + S−3,2 + S−2,3

)
−12

(
S−3,1,1 + S−2,1,2 + S−2,2,1

)
−
(
S2 + 2S2

1

)(
3S−3 + S3 − 2S−2,1

)
−S1

(
8S−4 + S2

−24S2 S−2 + 2S2
2 + 3S4 − 12S−3,1 − 10S−2,2 + 16S−2,1,1

))
, (3.2)

5The transcendentality of a product is given by the sum of the transcendentalities of the factors.
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where

Sa =
M∑
m=1

(sign(a))m

ma
, Sa1,a2,a3,··· =

M∑
m=1

(sign(a1))m

ma1
Sa2,a3,···(m) . (3.3)

For properties of the generalised harmonic sums see for example [46]. The transcen-
dentality principle for the expression exact in M states that the degrees of the sums,
|a1|+ |a2|+ |a3|+ . . . , should add up to 2l − 1 at l loops.

The exact expressions (3.2) can also be obtained from the Bethe ansatz. One way to
obtain such expressions is to numerically solve the Bethe equations for different values
of M and then fit the obtained result to a linear combination of harmonic sums and
products of harmonic sums that obeys the transcendentality principle [47–51]. While
there are additional properties that allows to restrict the number of terms in such a
ansatz, see [47–51] for more details, the number of terms to be fitted against and the
complexity of the result still increase rapidly with the loop order. This method has
allowed for the construction of the anomalous dimension for any M for twist two and
three operators up to 5 loops, we refer to the mentioned papers for explicit expressions
for the anomalous dimensions as the expressions grow rapidly in length and fill pages.
There are also some results for operators with higher twist [52].

Another complementary approach has been to study the so called Baxter equation.
This equation is formulated in terms of the Baxter function, Q(u) =

∏M
j=1(u− uj), and

the transfer matrix eigenvalue, t(u), and reads for the sl(2) sector at one loop

t(u)Q(u) = (u+ i/2)LQ(u+ i) + (u− i/2)LQ(u− i), (3.4)

t(u) = 2uL + qL−2u
L−2 + · · ·+ q0, (3.5)

where qL−2 = −(M + L/2)(M + L/2 + 1) − L/4. The remaining qr, r = 0, . . . , L − 3
specify the state. For L = 2 there is only one state and this equation can be identified
with the equation for Wilson or Hahn polynomials and is hence solved by [35,8]

Q(u) = 4F3

(
−M

2
, M+1

2
, 1

2
+ iu, 1

2
− iu; 1, 1, 1

2
; 1
)

= 3F2

(
−M,M + 1, 1

2
− iu; 1, 1; 1

)
.

(3.6)
The one-loop anomalous dimension is given by

γ(g,M) = 2g2 d

du
(i logQ(u+ i/2))

∣∣∣∣
u=0

= 8g2S1(M) (3.7)

which at large M reduces to (2.13). The analogous result for the ground state with L = 3
was found in [53].

The all loop sl(2) Baxter equation was derived in a series of papers [54] and this
construction made it possible to develop methods for finding higher loop solutions exact
in the spin M . By a deformation of the one-loop solution the result for L = 2, 3 was
found to three loops [55] and later extended to four loops [56].

The construction of these results exact in spin allowed for another important check
of the Bethe equations. The asymptotic equations are supposed to break down due to
wrapping effects. As the interaction range is growing with the order in the loop expansion
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this happens soon enough for short operators as twist two and three. Nevertheless there
are indications that terms up to the order O(( logM

M
)2) in the large spin expansion are free

from corrections. To investigate the supposed breakdown of the Bethe ansatz prediction
at higher loop orders the studies of high energy scattering amplitudes in N = 4 provides
important insights. The Balitsky-Fadin-Kuraev-Lipatov (BFKL) equation describes the
high energy scattering both in QCD and in N = 4 and provides the relation between the
anomalous dimension and the spin M near the point M = −1 [57, 41]. With the spin
M = −1 + ω, and ω taken small, the one-loop relation for twist 2 operators reads

− ω

4g2
= ψ

(
−γ

2

)
+ ψ

(
1 + γ

2

)
− 2ψ(1), (3.8)

Expanding the ψ-functions in power series and then inverting the series we find

γ = 2

(
−4g2

ω

)
− 4ζ(3)

(
−4g2

ω

)4

+O
(
g12
)
. (3.9)

Hence the one-loop BFKL equation provides an all-loop prediction for the leading singu-
larities as ω → 0. The 5-loop result for general values of the spin can now be analytically
continued to M = −1 + ω and expanded for ω � 1, the result is

γ = 2

(
−4g2

ω

)
− 2

(−4g2)
4

ω7
+ 2

(−4g2)
5

ω9
+O

(
g12
)
. (3.10)

This clearly shows that the Bethe ansatz prediction breaks down at four loops, as was
indeed expected from general considerations. It is also possible to check that the results
are free from wrapping up to O(( logM

M
)2), for L = 2 to four loops this has been demon-

strated explicitly [58,59] and for 5-loops this is very likely to hold [51]. Similar arguments
can also be made for L = 3 [50]. Furthermore the BFKL equation has been proposed
to two-loop order which by the same arguments as above provides an all-loop prediction
for the next to leading singularity, also this prediction disagrees with the result from the
Bethe ansatz [48,51]. Including wrapping corrections restores this agreement, see [1] for
a review.

The exact expressions in terms of harmonic sums as well as the integral equations for
further subleading terms in the large M expansion show yet another interesting feature.
Continuing the expansion beyond the leading order one finds that the perturbative ex-
pressions can be organised as in (2.16) 6. The structure observed in the expansion is due
to a property referred to as reciprocity or parity preservation [60–62], see also [63] for
a recent review. The twist operators (1.1) can be classified using representations of the
collinear SL(2,R) subgroup of the conformal group SO(2, 4) [64, 3]. This suggests the
conformal spin, m = M + L/2 + γ(M), as a natural parameter for the expansion and
that the anomalous dimension can be written as

γ(M,L) = f(M + γ(M,L), L). (3.11)

6A similar structure is also present for L > 2 and for the further terms in the large M expansion.
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Reciprocity states that the function f(M) can be expanded in terms of the quadratic
Casimir of the collinear group, J2 = (M + L/2)(M + L/2− 1)

f(M) =
∞∑
n=0

fn(log J)

J2n
. (3.12)

This is fully consistent with the relations between the coefficients in (2.16) and implies
relations between further terms in the expansion and hence reduces the number of un-
known functions appearing in the expansion, roughly by a factor of two.

Reciprocity also restricts the expressions exact in M which naturally is helpful for
finding them, it can be used to restrict the ansatz in terms of harmonic sums [65,50,56,51].
An interesting thing to note however is that the perturbative expressions found respects
reciprocity both when wrapping interactions are included as well as when they are not
[59].

Reciprocity in this context is based on an earlier idea that appeared in the context
of deep inelastic scattering in QCD, the Gribov-Lipatov one-loop reciprocity [66]. That
idea states that the splitting functions P (x), related to the twist 2 anomalous dimensions
in QCD by Mellin transformation, obeys the relation P (x) = −xP (1/x). This leads to
relations between coefficients in the large M expansion of the anomalous dimension as
were first observed in [45,67], the so called MVV relations, and extended to higher orders
in the expansion in [61].

A complete understanding of the origin of the observed reciprocity property is lacking.
It is not a unique feature of N = 4 SYM, not tied to integrability or even to the planar
limit. Indeed it holds in QCD in sectors where integrability is not present and for an
arbitrary number of colors [61]. In N = 4 reciprocity is a feature of other known minimal
anomalous dimensions of twist operators [68,49,69,65] while broken for higher states in
the band [34, 70]. Further it was also observed in N = 6 Chern-Simons theory [70], see
also the review [71].

4 Strong coupling expansion

With the equation (2.11) we have the first explicit realisation of a quantity important for
the AdS/CFT correspondence that can be computed for all values of the coupling con-
stant. Considering the dual string states we can therefore put both the Bethe equations
and the correspondence itself to a test. Studying the dual string states, folded strings
with one large angular momentum S on AdS3, the string energy could be computed to
first orders in the strong coupling expansion [22, 17, 23, 70, 24] (see also [20, 21]), this
provides the prediction for the scaling function

f(g) = 4g − 3 log 2

π
− K

4π2

1

g
+ . . . , (4.1)

where K is Catalan’s constant. It is thus desirable to solve (2.11) at strong coupling.
This however turned out to be a lot harder than first expected. The integral equation was
shown to reproduce the first two orders in the strong coupling expansion numerically with
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high accuracy [72]. Despite this a straightforward expansion gives only the leading term
in (4.1) analytically, already the first subleading term could not be obtained analytically
this way. With considerable effort the first subleading term was reproduced by solving
the Bethe equations [30, 73], however this was done by first expanding the equations
at strong coupling and then taking the large spin limit and hence not by solving the
integral equation (2.11). This approach can not easily be continued to include higher
orders in the expansion. Some important progress towards solving the integral equation,
analytical as well as numerical, was made in [26, 27, 74, 28] and the final solution was
then presented in [29] and further discussed in [31,32].

In order to solve (2.11) at strong coupling it proved useful to split the density as

et − 1

t
σ̂(t) =

γ+(2gt)

2gt
+
γ−(2gt)

2gt
(4.2)

and expand the even and odd part in Neumann series [26,29]

γ+(t) =
∞∑
k=1

(−1)k+12k J2k(t)γ2k

γ−(t) =
∞∑
k=1

(−1)k+1(2k − 1)J2k−1(t)γ2k−1. (4.3)

Applying the density split (4.2) in (2.11) the equation can be decomposed into an even
and an odd part [74, 75,29]. Introducing a further change of variables,

Γ(t) =

(
1 + i coth

t

4g

)
γ(t) (4.4)

where Γ(t) = Γ+(t) + iΓ−(t) and γ(t) = γ+(t) + iγ−(t), it is possible to collect all
dependence on the coupling constant in Γ±(t) and (2.11) is rewritten as the system∫ ∞

0

dt

t
(Γ+(t) + Γ−(t)) J2n(t) = 0∫ ∞

0

dt

t
(Γ−(t)− Γ+(t)) J2n−1(t) = δn,1. (4.5)

The coupling constant dependence of the functions Γ±(t) is determined by requiring the
correct analyticity properties of the functions, which follows from (4.4) and (4.3). (4.4)
can be rewritten and expanded as [32]

Γ(it) =
sin( t

4g
+ π

4
)

sin( t
4g

) sin(π
4
)
γ(it) = γ(it)

√
2
∞∏

k=−∞

t− 4πg(k − 1/4)

t− 4πgk
. (4.6)

From this one can conclude [31,32] that Γ(it) has an infinite set of zeros and poles given
by

tzero = 4πg(l − 1/4), l ∈ Z (4.7)

tpole = 4πgl′, l′ ∈ Z, l′ 6= 0. (4.8)
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To construct the general solution to the integral equations we will consider the inverse
Fourier transform of Γ(t), Γ(u) =

∫∞
−∞

dt
2π
eiutΓ(t). From (4.6) follows

Γ(u) =

∫ ∞
−∞

dt

2π
eiut

sinh( t
4g

+ iπ
4
)

sin( t
4g

) sin(π
4
)
γ(t). (4.9)

This integral can be computed by deforming the contour, picking up the residues of the
poles along the imaginary axis.This can however only be done if the integrand vanishes
at infinity. Since γ(t) admits a Neumann expansion we can conclude that γ(u) = 0 for
u2 > 1, using the property of the Bessel functions that

∫∞
−∞

dt
2π
eiutJn(t) = 0 for u2 > 1.

This means that γ(t) ∼ e|t| for large complex t as |t| → ∞ and hence the above integral
can be computed by deforming the contour when u2 > 1, the result is

Γ(u) = θ(u− 1)
∞∑
n=1

c+(n, g)e−4πng(u−1) + θ(−u− 1)
∞∑
n=1

c−(n, g)e−4πng(−u−1) (4.10)

where c±(n, g) = ∓4gγ(±4πign)e−4πng. To find Γ(u) for −1 ≤ u ≤ 1 we will make an
attempt to solve the equations (4.5). Before doing that we note that the infinite system
in (4.5) can be rewritten as two equations with an additional arbitrary parameter φ by
applying the relation derived from the Jacobi-Anger identity,

eit sinφ =
2

cosφ

∞∑
n=1

(
J2n−1(t)

t
(2n− 1) cos((2n− 1)φ) + iJ2n(t)

t
2n sin(2nφ)

)
. (4.11)

Using the notation u = sinφ we find for −1 ≤ u ≤ 1∫ ∞
0

dt
(
eituΓ−(t)− e−ituΓ+(t)

)
= 2. (4.12)

In terms of Γ(u) this equation can be expressed as

Γ(u) +
1

π
−
∫ 1

−1

dv
Γ(v)

v − u
= Φ(u) (4.13)

Φ(u) = − 1

π

(
2 +

∫ −1

−∞
dv

Γ(v)

v − u
+

∫ ∞
1

dv
Γ(v)

v − u

)
. (4.14)

In Φ(u) one can use the solution (4.10) and solving the above equation renders a solution
in terms of c±(n, g), valid in the interval −1 ≤ u ≤ 1. Since this solution together with
(4.10) determines the function Γ(u) for all values of u it is now finally possible to go back
to the Fourier transform and find an expression for Γ(it), we refer to [32] for details.

The general solution is expressed in terms of the functions of the coupling constant
c±(n, g). These are completely determined by requiring the correct analyticity properties
of the function Γ(it), requiring that the function has zeros according to (4.7) we find the
so called quantisation conditions.
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These conditions determine c±(n, g) and the solution for all values of the coupling
constant. Expanding the quantization condition at strong coupling one finds, to leading
orders,

c+(n, g) = (8πgn)1/4 2Γ(n+ 1/4)

Γ(n+ 1)Γ2(1/4)

(
1− 1

g

(
3 log 2

4
+

3

32n
+ . . .

))
(4.15)

c−(n, g) = (8πgn)1/4 Γ(n+ 3/4)

2Γ(n+ 1)Γ2(3/4)

(
1 +

1

g

(
3 log 2

4
+

5

32n
+ . . .

))
. (4.16)

Finally the scaling function is written in terms of c±(n, g) and from this the strong
coupling expansion (4.1) follows.

It is also possible to continue this expansion to many more orders in the coupling con-
stant [29] (see also [76] for a Mathematica code that generates the expansion). The first
orders above are the ones that have been checked against the semiclassical quantisation
of the string sigma model, comparison of further terms remains a challenge.

Solving the integral equation for subleading corrections in the large spin expansion
at strong coupling turns out to be straightforward once the analysis for the leading
term is completed. It is possible to write the first subleading terms in terms of the
leading solution. The coefficients c±(n, g) determine the anomalous dimension to order
O( 1

(logM)k
), k → ∞ for general values of L and up to order O(( logM

M
)2) for L = 2, 3. It

is interesting to note that when evaluating the subleading terms at strong coupling one
finds that the expansion reorganises in terms of the parameter M/g [39]. This is fully
consistent with the computation done in string theory where S/g is kept fixed expanding
for large g and then subsequently taken large. For twist two the string result [77] is
reproduced from the Bethe ansatz, since the computation is done by resumming all
orders in the weak coupling expansion this gives a strong indication that wrapping plays
no role for these first orders in the large M expansion.

As for the weak coupling expansion reciprocity is suggested to hold for the all loop
anomalous dimension. The energy of the dual string solutions exhibits the same structure
as the anomalous dimensions (2.16) and reciprocity is verified at strong coupling [61,77,
24]. Indeed this is also confirmed by the structure obtained by solving the integral
equations that follow from the asymptotic Bethe equations up to O(( logM

M
)2) [39].

Thanks to the method developed to treat the strong coupling expansion of the BES
equation also other closely related integral equations, corresponding to operators be-
longing to other larger sectors of the theory, could be solved [78] and the anomalous
dimensions matched to the corresponding string states [20]. This was possible because
the kernels coincided with the BES kernel. In sectors where that is not the case the
strong coupling solutions of integral equations derived from the Bethe equations remain
a challenge [79].

5 Non-perturbative corrections and intermediate val-

ues of the coupling constant

The quantization condition as well as the expression for the scaling function in terms of
the functions c±(n, g) are valid for all values of the coupling constant. The equations
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do not admit a solution on a closed form for arbitrary coupling but numerically it is
however possible to find a solution for any value of the coupling constant which indeed
demonstrates a smoothly interpolating scaling function [29,80,32]. The strong coupling
expansion in (4.1) defines an symptotic series and is non-Borel summable. The reason
for this is that when expanding the quantization conditions at strong coupling we have
not taken non-perturbative corrections into account. Using the construction in the pre-
vious section and expanding the quantisation conditions, retaining the non-perturbative
corrections, it is found to leading orders [32]

f(g) = 4g− 3 log 2

π
− K

4π2g
+O(1/g2)− 2Λ2

π2

(
1 +

3− 6 log 2

16πg
+O(1/g2)

)
+O(Λ4) (5.1)

where

Λ2 = σ
1√
2πg

e−2πgΓ(3
4
)

Γ(5
4
)

(5.2)

defines the non-perturbative scale. The non-perturbative corrections can be organised
in terms of the mass of the O(6)-model

mO(6) =
4
√

2

πσ
Λ2

(
1 +

3− 6 log 2

16πg
+O(1/g2)

)
+O(Λ4). (5.3)

Note that the series in 1/g in (5.1) is not Borel summable. It is only the series in 1/g
together with the expansion in Λ2 that is Borel summable. The complex parameter σ
appearing in the expansion is determined by the way the series in 1/g is regularised,
alternatively on the renormalisation scheme used in the O(6)-model.

The cusp anomalous dimension appears also in the leading order of the large M
expansion of twist operators with L = j logM , where j is some finite number. The
leading order is governed by the the so called generalised scaling function of which the
scaling function constitutes a part [14, 81,36,82,83],

γ(g, j,M) = (f(g) + ε(g, j)) logM. (5.4)

The function ε(g, j) denotes the twist dependent part of the generalised scaling function.
The string duals are folded strings spinning with one angular momentum, S identified
with M , in AdS5 and one angular momentum, J ∝ logS identified with L, on S5.
The energy of the string solutions was obtained directly from the string sigma model
to two-loops in the sigma model loop expansion, see [84] and references therein. The
string sigma model with J ∼ logS, S and g taken large reduces to the O(6) model [81].
This corresponds to a low energy limit in which only the massless excitations around
the classical solution remain. These massless fields describe the O(6) model and as a
result the sigma model can be completely solved in this limit. The limit can also be
considered from the gauge theory side using the asymptotic Bethe equations [36] where
the relation to the sigma model was explicitly demonstrated in [82] and further studied
in [85, 83, 86]. The generalised scaling function is hence associated with the free energy
of the O(6)-sigma model, a quantity that receives non-perturbative corrections in terms
of the mass scale of the sigma model mO(6).
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In [32] it was demonstrated that the non-perturbative scale appearing in the strong
coupling expansion of the scaling function is related to the non-perturbative scale, the
mass gap, in the O(6)-model. In fact the mass scale that can be identified in f(g) is
identical to mO(6) to all orders in the strong coupling expansion.
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Chapter III.5: Lüscher corrections

1 Introduction

For many integrable systems the main question that one is interested in is the under-
standing of the energy spectrum for the system of a given size L. The size of the system
in question may be discrete, like the number of sites of a spin chain or other kind of lattice
system, or continuous, like the circumference of a cylinder on which a given integrable
field theory is defined.

The first answer to this question for a wide variety of integrable systems is generically
given in terms of Bethe equations. These are equations for a set of (complex) numbers
pi of the form

1 = eipjL
N∏

k:k 6=j

S(pj, pk) (1.1)

Once a solution {pj}j=1..N is found, the energy is obtained through an additive formula

E =
N∑
j=1

E(pj) (1.2)

where E(p) and S(p, p′) are (known) functions characterizing the given integrable system.
In practice, for generic integrable systems, these equations become the more complicated
nested Bethe equations, with a system of equations instead of (1.1), with additional
auxillary unknowns appearing in (1.1) but not in the energy formula (1.2). All this is
described in detail in two other chapters of this review [1].

Bethe equations of the type described above appear both in the case of discrete
integrable spin chains and continuous two-dimensional integrable quantum field theories.
Moreover they also appear as equations for the anomalous dimensions of single trace
operators in the N = 4 four-dimensional SYM theory and in various other contexts.

Now comes the fundamental difference between the various classes of integrable sys-
tems. For integrable spin chains, like the Heisenberg XXX, XXZ etc. models, the Bethe
ansatz equations are exact and the energies given by (1.2) are the exact eigenvalues of
the spin chain hamiltonian. On the other hand, for two-dimensional integrable quantum
field theories, the answer provided by (1.1) and (1.2) is only valid for asymptotically
large sizes of the cylinder L. There are corrections which arise due to the quantum field
theoretical nature of the system, namely virtual particles circulating around the cylinder
and their interaction with the physical particles forming a given energy state. For a single
particle in a relativistic QFT, Lüscher derived formulas [2] for the leading corrections.
The goal of this chapter is to review the subsequent generalizations and applications of
Lüscher corrections within the AdS/CFT correspondence. Let us note in passing that
there may be also some intermediate cases like the Hubbard model as considered in [3],
where the situation is not so clear.

Once one goes beyond these leading corrections by say decreasing the size of the
system, one has to include the effects of multiple virtual corrections which becomes
quite complicated, and have never been attempted so far. Fortunately, for integrable
quantum field theories, there exists a technique of Thermodynamic Bethe Ansatz —
TBA [4] (and/or Noninear Integral Equations — NLIE [5]), which allows for finding the
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Figure 1: Spacetime interpretation of Lüscher’s formulas — µ-term (left) and
F-term (right).

exact energy spectrum and thus effectively resumming all these virtual corrections. This
is, however, technically very involved, so even for the cases where it is known, Lüscher
corrections remain an efficient calculational tool. These exact treatments are described
in the chapters [6] and [7] of this review.

As a final note, let us mention that for anomalous dimensions in the N = 4 SYM
theory, the Bethe equations break down due to so-called wrapping interactions. This
will be discussed in more detail in section 3 (see also the chapter [8]). Since according to
the AdS/CFT correspondence anomalous dimensions are exactly equal to the energies
of string states in AdS5 × S5, which are just the energy levels of the two-dimensional
integrable worldsheet quantum field theory, this violation of Bethe ansatz equations is
in fact quite natural and can be quantitatively described using the formalism of Lüscher
corrections for two dimensional QFT.

The plan of this chapter is as follows. First, after introducing Lüscher’s original for-
mulas, we will describe the various derivations of (generalized versions of) these formulas
– a diagrammatic one, through a large volume expansion of TBA equations and through
a Poisson resummation of quadratic fluctuations. Then we will review recent applications
of generalized Lüscher corrections within the context of the AdS/CFT correspondence.

2 Lüscher formulas

Lüscher derived universal formulas for the leading large L mass shift (w.r.t. the particle
mass in infinite volume) of a single particle state when the theory is put on a cylinder
of size L. The universality means that the value of the leading correction is determined
completely by the infinite volume S-matrix of the theory. This relation does not depend
on integrability at all, and is even valid for arbitrary QFT’s in higher number of dimen-
sions, however it is most useful for two dimensional integrable field theories for which we
very often know the exact analytical expression for the S-matrix.
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The leading mass correction is given as a sum of two terms – the F-term

∆mF (L) = −m
∫ ∞
−∞

dθ

2π
e−mL cosh θ cosh θ

∑
b

(
Sabab

(
θ + i

π

2

)
− 1
)

(2.1)

and the µ-term

∆mµ(L) = −
√

3

2
m
∑
b,c

Mabc(−i) resθ=2πi/3 S
ab
ab(θ) · e−

√
3

2
mL (2.2)

quoted here, for simplicity, for a two dimensional theory with particles of the same
mass [9]. Sabab(θ) is the (infinite volume) S-matrix element, and Mabc = 1 if c is a
bound state of a and b and zero otherwise. These two terms have a distinct spacetime
interpretation depicted in Figure 1. The F-term corresponds to the interaction of the
physical particle with a virtual particle circulating around the cylinder, while the µ-term
corresponds to the splitting of the particle into two others which will then recombine
after circulating around the cylinder.

In order to apply the above formulas to the case of the worldsheet QFT of the
superstring in AdS5×S5 (in generalized light cone gauge – see [10] for a detailed review),
one has to generalize Lüscher’s original formulas in two directions.

Firstly, the worldsheet QFT is not relativistic. The dispersion relation for elementary
excitations is

E(p) =

√
1 + 16g2 sin2 p

2
(2.3)

and moreover, there is no analog of a Lorentz symmetry, which brings about the fact
that the S-matrix is a nontrivial function of two independent momenta instead of just the
rapidity difference θ ≡ θ1− θ2 as in the case of relativistic theories. Secondly, due to the
level matching condition of the string, the physical states, corresponding to operators in
N = 4 SYM, have vanishing total momentum (or a multiple of 2π). Since single particle
states with p = 0 are protected by supersymmetry, all states interesting from the point
of view of gauge theory are neccessarily multiparticle states.

Consequently, one has to generalize Lüscher corrections to theories with quite generic
dispersion relations and also to multiparticle states.

We will describe these generalizations at the same time showing how Lüscher correc-
tions can be derived in many different and apparently unrelated ways.

2.1 Diagrammatic derivation

The diagrammatic derivation was the original one used by Lüscher in [2]. Its advantage
is that it is the most general, does not assume integrability and is even valid in any
number of dimensions. Its drawback, however, is that it is very difficult to generalize to
multiparticle states or higher orders. On the other hand it is easy to extend to theories
with generic dispersion relations which was done in [11]. We will present a sketch of this
derivation here applicable to a theory with the dispertion relation

E2 = ε2(p) (2.4)
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Figure 2: The graphs giving a leading fi nite size correction to the self energy:
a) Iabc, b) Jabc, c) Kab. The fi lled circles are the vertex functions Γ , empty
circles represent the 2-point Green’s function. The letter L represents the factor
of e − iq

1L and the letters in italics label the type of particles.

which encompasses both the relativistic dispersion relation ε2(p) = m2 + p2, as well as
the AdS one ε2(p) = 1 + 16g2 sin2 p/2.

The starting point is the observation that the dispersion relation is encoded, as the
mass shell condition, in the pole structure of the Green’s function. Hence to fi nd the
leading large L corrections, one has to evaluate how the Green’s function is modifi ed at
fi nite volume. It is convenient to translate the problem into a modifi cation of the 1PI
(1-particle irreducible) self energy defi ned by

G(p) − 1 = ε2
E + ε2(p) − Σ L(p) (2.5)

The renormalization scheme is fi xed by requiring that the self energy and its fi rst deriva-
tives vanish on-shell (at infi nite volume). The shift of the energy, following from (2.5)
becomes

δ εL = − 1

2ε(p)
Σ L(p) (2.6)

The propagator in a theory at fi xed circumference can be obtained from the infi nite
volume one through averaging over translations x → x + nL. In momentum space this
will correspond to distributing factors of einp

1L over all lines. In the next step, we assume,
following [2,9], that the dominant corrections at large L will be those graphs which have
only a single such factor with n = ± 1. Picking n = − 1 for defi niteness, any such graph
belongs to one of the three classes shown in Figure 2. Thus

Σ L =
1

2

(∑
bc

Iabc +
∑
bc

Jabc +
∑
b

Kab

)
(2.7)

Now, one has to shift the contour of integration over the loop spatial momentum into
the complex plane. Due to the exponent e− ip

1L, the integral over the shifted contour
will be negligible and the main contribution will come from crossing a pole of a Green’s
function in one of the graphs of Figure 2. This is the crucial point for arriving at
Lüscher’s corrections. Taking the residue eff ectively puts the line in question on-shell,
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thus reducing the two dimensional loop integral to a single dimensional one. It is very
convenient to eliminate the spatial momentum using the mass shell condition, and leave
the last integral over Euclidean energy which we denote by q. The on-shell condition
becomes

q2 + ε(p1)2 = 0 (2.8)

which in the case of the AdS5 × S5 superstring theory leads to

p1 = −i2 arcsinh

√
1 + q2

4g
(2.9)

Plugging this back into the exponential factor e−ip
1L leads to the term which governs the

overall magnitude of the Lüscher correction

e−ip
1L = e−L·ETBA(q) = e−L·2 arcsinh

√
1+q2

4g (2.10)

We will analyze the physical meaning of this formula in section 3.
The mass shell condition has also another, equally important, consequence. Since

the line is on-shell, in the integrand we may cut it open thus effectively transforming the
graphs of the 2-point 1PI self energy into those of a 4-point forward Green’s function.
Keeping track of all the necessary factors gives

ΣL =

∫
dq

2π

i

ε2(p1)′
· e−L·ETBA(q) ·

∑
b

(−1)FbGabab(−p,−q, p, q) (2.11)

The p appearing in the argument of Gabab is the spatial momentum of the physical
particle, while q is the Euclidean energy of the virtual one. In the final step, one links
the 4-point forward Green’s function with the forward S-matrix element arriving at
Lüscher’s F-term formula generalized to a generic dispertion relation:

δεFa = −
∫ ∞
−∞

dq

2π

(
1− ε′(p)

ε′(q)

)
· e−iqsL ·

∑
b

(−1)Fb
(
Sbaba(q, p)− 1

)
(2.12)

with the same conventions for the arguments of ε′ and Sbaba as described below (2.11).
The µ-term arises in the process of shifting the contours by localizing on a residue
of the above formula. It is thus given just by the residue of (2.12). For further details
consult [11]. Let us mention that for relativistic theories one can perform a more detailed
analysis concerning the contribution of µ-terms [9]. In particular, µ-terms are expected
to contribute only if, in the spacetime diagram shown in Figure 1, both particles move
forward in time (i.e. have positive real part of the energy). This analysis has not been
done rigorously for the AdS5 × S5 case.

The diagrammatic derivation presented above is very general and does not require
integrability. Moreover the difference between a theory with diagonal and non-diagonal
scattering is quite trivial. One can go from the simpler case of a single particle species to
the most general case of nondiagonal scattering just by substituting the scalar S-matrix
by an appropriate supertrace of the nondiagonal S-matrix. Generalizing this property
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to multiparticle states leads to a simple shortcut for obtaining multiparticle Lüscher
corrections — one can first obtain the formulas for a simple theory with a single particle
in the spectrum, and then generalize to the generic case by trading the product of the
scalar S-matrices for a supertrace of the product of the nondiagonal ones. We will present
this derivation in the following section.

2.2 Multiparticle Lüscher corrections from TBA

In this section we will show how multiparticle Lüscher corrections arise from the Ther-
modynamic Bethe Ansatz. Here, we will be able to obtain these more powerful results
using significantly stronger assumptions. In particular we will assume that the theory in
question is integrable with diagonal scattering. Then, as explained above, we will use the
expected very universal dependence of Lüscher corrections on the S-matrix to conjecture
the general versions valid for any integrable theory with a nondiagonal S-matrix (for
which TBA equations are much more complicated).

As explained in [6], TBA equations are derived by trading the complicated problem of
finding the (ground state) energy of the theory at finite volume for the much simpler one
of computing a thermal partition function of the theory with space and time interchanged
through a double Wick rotation. In the latter case, since one is dealing with the theory
at almost infinite volume, Bethe ansatz is exact and can be used to evaluate the partition
function. Hence the energies and momenta in the following are those of the spacetime
interchanged one (aka mirror theory) related to the energy and momentum of the original
theory through

Ẽ = ip p̃ = iE (2.13)

The ground state TBA equation for the theory with a single type of particle takes the
form

ε(z) = LẼ(z) +

∫
dw

2πi
(∂w logS(w, z)) log

(
1 + e−ε(w)

)
(2.14)

and the ground state energy is obtained from the solution ε(z) through

E = −
∫

dz

2π
p̃′(z) log

(
1 + e−ε(z)

)
(2.15)

In order to describe excited states, one uses an analytical continuation trick due to
Dorey and Tateo [12] that essentially introduces additional source terms into (2.14).
These source terms are generated by singularities of the integrand 1 + e−ε(zi) = 0, which,
through integration by parts and an evaluation through residues give rise to additional
source terms on the r.h.s. of (2.14)

ε(z) = LẼ + logS(z1, z) + logS(z2, z) +

∫
dw

2πi
(∂w logS(w, z)) log

(
1 + e−ε(w)

)
(2.16)

and additional contributions to the energy

E = E(z1) + E(z2)−
∫

dz

2π
p̃′(z) log

(
1 + e−ε(z)

)
(2.17)
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where we quote the result with just two additional singularities.
It is quite nontrivial what kind of source terms to introduce for the theory at hand.

If a theory does not have bound states and µ-terms, the rule of thumb is that for each
physical particle a single source term has to be included (this happens in the case of e.g.
the sinh-Gordon model). On the other hand, for a theory with µ-terms, like the SLYM,
at least two source terms correspond to a single physical particle (see [12, 13]).

Now in order to obtain the Lüscher corrections, we have to perform a large volume
expansion of these equations. Solving (2.16) by iteration, neglecting the integral term
and inserting this approximation into the energy formula gives

E = E(z1) + E(z2)−
∫

dz

2π
p̃′e−LẼ(z) 1

S(z1, z)S(z2, z)

= E(z1) + E(z2)−
∫

dq

2π
e−LẼ(q)S(z, z1)S(z, z2) (2.18)

We recognize at once an integral of the F-term type (with q ≡ p̃) in addition to the
sum of energies of the individual particles. There is a subtlety here, namely one has to
dynamically impose the equations for the positions of the singularitites

1 + e−ε(zi) = 0 (2.19)

If we insert here the same approximation as we have just used in the formula for the
energy, we will recover the Bethe equations

eiLp1 = S(p1, p2) (2.20)

However, in Lüscher’s corrections we should keep all leading exponential terms. Therefore
for the quantization condition (2.19), we have to use also the first nontrivial iteration
of (2.16). This will give rise to modifications of the Bethe quantization conditions. The
quantization conditions ε(zi) = iπ becomes

0 = log{eiLp1S(z2, z1)}︸ ︷︷ ︸
BY1

+

∫
dw

2πi
(∂wS(w, z1))S(w, z2)e−LẼ(w)︸ ︷︷ ︸

Φ1

(2.21)

0 = log{eiLp2S(z1, z2)}︸ ︷︷ ︸
BY2

+

∫
dw

2πi
S(w, z1)(∂wS(w, z2))e−LẼ(w)︸ ︷︷ ︸

Φ2

(2.22)

Since the integrals are exponentially small we may solve these equations in terms of
corrections to the Asymptotic Bethe Ansatz (ABA) giving

∂BY1

∂p1

δp1 +
∂BY1

∂p2

δp2 + Φ1 = 0 (2.23)

∂BY2

∂p1

δp1 +
∂BY2

∂p2

δp2 + Φ2 = 0 (2.24)

The final formula for the energy thus takes the form

E = E(p1) + E(p2) + E ′(p1)δp1 + E ′(p2)δp2 −
∫

dq

2π
e−LẼS(z, z1)S(z, z2) (2.25)
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For nondiagonal scattering, we expect that the above formula will get modified just by
exchanging the products of scalar S-matrices by a supertrace of a product of real matrix
S-matrices. This generalization has been proposed in [30]. In the F-term integrand we
will thus get the transfer matrix (c.f. [7]) or more precisely its eigenvalue1

eiδ(p̃|p1,...,pN ) = (−1)F
[
Sa2a
a1a

(p̃, p1)Sa3a
a2a

(p̃, p2) . . . Sa1a
aNa

(p̃, pN)
]

(2.26)

where we also substituted the complex rapidities used earlier by more physical momenta.
The BY condition reads as

2nkπ = BYk(p1, . . . pn) + δΦk = pkL− i log

[∏
k 6=j

Saaaa(pk, pj)

]
+ δΦk (2.27)

with the correction to these equations given by

δΦk = −
∫ ∞
−∞

dp̃

2π
(−1)F

[
Sa2a
a1a

(p̃, p1) . . .
∂S

ak+1a
aka (p̃, pk)

∂p̃
. . . Sa1a

aNa
(p̃, pN)

]
e− ˜εa1 (p̃)L (2.28)

The final correction then reads as

E(L) =
∑
k

ε(pk)−
∑
j,k

dε(pk)

dpk

(
δBYk
δpj

)−1

δΦj

−
∫ ∞
−∞

dp̃

2π

∑
a1,...,aN

(−1)F
[
Sa2a
a1a

(p̃, p1)Sa3a
a2a

(p̃, p2) . . . Sa1a
aNa

(p, pN)
]
e− ˜εa1 (p̃)L (2.29)

For theories with µ-terms, we expect that the corresponding µ-terms will be obtained
by localizing the integrals on the poles of the S-matrix.

2.3 Poisson resummation of fluctuations

In this section we will present a simple, very physical, derivation of Lüscher’s F-term
formula from a summation over quadratic fluctuations. Although this approach requires
the most restrictive assumptions, it is quite intuitive and gives a new perspective on the
origin of Lüscher’s corrections.

For simplicity we will just present the derivation for a particle with vanishing momen-
tum, analogous to Lüscher’s original formulas. A more general case is treated2 in [14].

Consider a soliton at rest which is put on a very large cylinder, so large that we may
neglect the effect of the deformation of the solution. Now a small fluctuation very far from
the soliton will just be an excitation of the vacuum, so can be treated as another soliton3

(more precisely a single particle state). This small ‘fluctuation’ soliton will scatter on

1We present below the case when the physical particles forming the multiparticle state scatter between
themselves diagonally

2In ref. [14], a minus sign will have to be included in the second term in eq. (13) there.
3Here we use ‘soliton’ as a generic term which includes e.g. ‘breathers’ in the sine-Gordon model.
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the stationary one and will get a phase shift expressible in terms of the S-matrix (which
we assume here to be diagonal)

Sbaba(k, p) = eiδba(k,p) (2.30)

Due to the finite size of the cylinder, the momentum of the ‘fluctuation’ soliton will have
to be quantized giving

kn =
2πn

L
+
δb(kn)

L
(2.31)

We now have to perform a summation over the energies of the fluctuations

δεnaive =
1

2

∑
b

∞∑
n=−∞

(−1)Fb
(
ε(kn)− ε(k(0)

n )
)

(2.32)

where the energies of fluctuations around the vacuum (with k
(0)
n = 2πn/L) have been

subtracted out.
The key result of [14] is that Lüscher’s corrections are exactly the leading exponential

terms (m = ±1) in the Poisson resummation

∞∑
n=−∞

F

(
2πn

L

)
=

L

2π

∞∑
m=−∞

∫ +∞

−∞
F (t)e−imLtdt (2.33)

of (2.32). The relevant terms will be

δε =
L

4π
Re

∫ ∞
−∞

eiLt(ε(k(t))− ε(t))dt (2.34)

where k(t) = t + δ(k(t))/L is the quantization condition, the solution of which we do
not need explicitly. Now, after a sequence of integration by parts and a simple change
of variables (see [14] for details) we can rewrite (2.34) as

δε =
1

4πi
Re

∫ +∞

−∞
e−iLk(eiδ(k) − 1)ε′(k)dk =

1

4πi
Re

∫ +∞

−∞
e−iLk(Sbaba(k, p)− 1)ε′(k)dk

(2.35)
which is essentially Lüscher’s F-term but evaluated on the physical line. We should now
shift the contour to ensure that the exponent is strictly real and decreasing at infinity
giving rise to Lüscher’s corrections. Here the boundary terms require a case by case
analysis. Also µ-terms may be generated when in the process of shifting the contour we
would encounter bound state poles. The above derivation shows that evaluating Lüscher
F-term contributions is equivalent to computing directly 1-loop energy shifts around the
corresponding classical solution. Although one has to be careful in this interpretation
when one evaluates the phase shifts (2.30) exactly and not only semiclassically.
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3 Applications of generalized Lüscher’s corrections

in the AdS/CFT correspondence

In this section we will briefly review various applications of generalized Lüscher’s correc-
tions in the context of the integrable worldsheet QFT of the superstring in AdS5 × S5.
Due to the AdS/CFT correspondence, the energy levels of this theory (energies of string
states) are identified with the anomalous dimensions of the corresponding gauge theory
operators. In this way, the intrinsically two-dimensional methods may be applied to the
four-dimensional N = 4 SYM theory.

Before we review the obtained results let us first discuss the generic magnitude of
Lüscher corrections in this context.

As we saw from the derivations, the order of magnitude of the F-term formula is
essentially governed by the exponential factor [15]

e−LẼ(p̃) (3.1)

where Ẽ and p̃ ≡ q are the energy and momentum of a theory with a double Wick
rotation exchanging space and time – called ‘mirror theory’ [16]. For the case at hand
we have

e−L·2 arcsinh

√
Q2+q2

4g (3.2)

where Q = 1 corresponds to the fundamental particle (magnon) and Q > 1 labels the
bound states of the theory.

In the strong coupling limit, this expression becomes

e−Q
L
2g ∣∣Q=1

= e
− 2πL√

λ (3.3)

which is the typical finite size fluctuation effect observed for spinning strings [17]. We also
see that at strong coupling, the contribution of bound states is exponentially supressed,
so one can just consider the fundamental magnons circulating around the cylinder.

The µ-term, which arises from the F-term by taking residues also appears at strong
coupling. It’s magnitude at strong coupling for a single magnon can be estimated to be

e
− 2πJ√

λ sin
p
2 (3.4)

where p is the momentum of the physical magnon. We see that the exponential term
gives a stronger suppression than the F-term, however, the terms differ in the scaling of
the prefactor with the coupling. The F-term is associated with quantum effects, while
the µ-term appears already in the classical contrbution hence the F-term is supressed by
a factor of

√
λ w.r.t. the µ-term. Let us note that the link between µ-terms and classical

solutions is stil to a large extent not understood. We may get another qualitative estimate
from the formula (3.4) for classical finite-gap solutions which may be considered to arise
in the worldsheet theory as a state of very many particles, each of which will presumably
have a very small momentum. Then (3.4) suggests that the µ-term should be completely
negligible for such states.
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At weak coupling, we obtain a quite different formula

# g2L

(Q2 + q2)L
(3.5)

Firstly, we see that the effect of the virtual corrections only starts at a certain loop
order, from the point of view of gauge theory perturbative expansion. Up to this order
the Bethe equations are in fact exact. Such a behaviour is wholly due to the nonstan-
dard AdS dispersion relation (2.3). The loop order at which these corrections start to
contribute is related to the size of the gauge theory operator in question. This is very
good, as just at that order we expect a new class of Feynman graphs to appear in the
perturbative computation. These are the so-called ‘wrapping corrections’ and are given
by graphs where, in the computation of a two point function relevant for extracting
anomalous dimensions, at least one propagator crosses all vertical legs. From the very
start [18] (see also [19]), these graphs were expected not to be described by the Asymp-
totic Bethe Ansatz. Their identification with (possibly multiple) Lüscher corrections was
first proposed in [15].

Secondly, we see that at weak coupling, all bound states contribute at the same order.
This makes the computation of wrapping effects at weak coupling more complicated,
but at the same time more interesting, as they are sensitive to much finer details of the
worldsheet QFT than at strong coupling.

The corrections to Lüscher formulas are very difficult to quantify. Even in the rela-
tivistic case there are no formulas for the leading corrections. These would be multiple
wrapping graphs and hence a 0th order estimate of their relative magnitude would be
another exponential term. At strong coupling we would thus probably see a mixture of
the first double wrapping graphs for magnons with ordinary single wrapping graphs for
the first Q = 2 bound states. At weak coupling, the next wrapping correction would
generically have a relative magnitude of g2L although there might also be factors of g
coming from the prefactor which we do not control so the loop order for subleading
multiple wrapping corrections is not precisely determined.

Let us finish this section with a brief note on the elusive nature of µ-terms. Physical
arguments based on the relativistic spacetime picture of the µ-term diagram, amounting
to the requirement that the produced virtual particles propagate forward in time suggests
that at weak coupling µ-terms should not appear since the bound state is heavier than
the fundamental magnon. Explicit computations for the Konishi operator and twist-2
operators (see section 3.2 below) confirm this intuition. Yet, at strong coupling the µ-
term definitely contributes to the giant magnon finite size dispersion relation. It is still
not understood how and when does this occur, especially in terms of the proposed exact
TBA formulations.

3.1 Strong coupling results

An excitation of the worldsheet theory with momentum p ∼ O (1) has an energy which
scales as

√
λ characteristic of a classical string solution. Such a solution has been found

in [20] and is called the ‘giant magnon’. Subsequently, corrections to its energy were
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found when the excitation was considered on a cylinder of finite size J . The resulting
correction was evaluated from the deformed classical solution in [21] to be

δEstring = −
√
λ

π
· 4

e2
· sin3 p

2
· e
− 2πJ√

λ sin
p
2 ≡ −g · 16

e2
· sin3 p

2
· e
− 2
g sin

p
2
J

(3.6)

In [11], the above expression was recovered from Lüscher’s corrections. The exponential
term is different from the one appearing in the F-term formula however it turns out that
it is exactly the term appearing in the µ-term, when we find the residue of the F-term
expression at the bound state pole.

The prefactor comes from evaluating the residue of the (super)trace of the forward
S-matrix at the bound state pole. A very curious feature of the above expression is the
contribution of the dressing factor, which, at strong coupling, has an expansion (see [22])

σ2 = exp
(
g χAFS + χHL +

∞∑
n=2

1

gn−1
χn

)
(3.7)

Naively, one may expect that only the first two terms would give a contribution, however
it turns out that due to the special kinematics of the bound state pole, all χ2n contribute.
The evaluation of this contribution is quite nontrivial with a divergent series appearing,
which can be resummed using Borel resummation. The result exactly reproduces (3.6).

Among further developments, finite size contributions to dyonic giant magnons were
analyzed [23], quantum fluctuations were linked with the F-term [24,14], similar compu-
tations were also done for giant magnons and dyonic magnons in the ABJM theory [25].
In addition finite size corrections were evaluated for open strings (which corresponds to
Lüscher corrections in a boundary integrable field theory [26]) [27].

One can also analyze Lüscher corrections for classical spinning strings. There the
picture is quite different from the giant magnons. The spinning string solutions arise
as a superposition of very many excitations, all with very small momenta. So the µ-
term exponential factor will be very much supressed and the dominant correction will
arise from the F-term. The F-term integrand can be evaluated in terms of the transfer
matrix directly in terms of the Bethe root distributions describing the spinning string
in question. Alternatively, an analysis of these issues have been done from the algebraic
curve perspective in [28].

3.2 Weak coupling results

Lüscher’s corrections are particularly interesting when applied in the weak coupling
regime corresponding to perturbative gauge theory. There, they provide the only cal-
culational method to compute wrapping corrections apart from a direct perturbative
computation which usually is prohibitively complicated (see [8]). Calculations based on
generalized Lüscher’s corrections are typically much simpler and allow to obtain 4- and
5- loop gauge theory results which cannot be obtained using other means.

From a more theoretical perspective, the agreement of Lüscher corrections with per-
turbative gauge theory results is interesting as it gives a nontrivial quantitative test of
the AdS/CFT correspondence, as well as of our understanding of the fine details of the
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Figure 3: The single Lüscher graph entering the computation of the four loop
Konishi anomalous dimension.

worldsheet QFT of the AdS5×S5 superstring. Moreover, it is very interesting to realize
that the breakdown of the Asymptotic Bethe Ansatz for anomalous dimensions in the
four dimensional gauge theory occurs exactly in a way characteristic of a two dimensional
quantum field theory (and thus characteristic of string theory).

A natural testing ground for these methods is the Konishi operator tr Φ2
i (or equiv-

alently trXZXZ − trX2Z2, trDZDZ − trZD2Z), which is the shortest operator not
protected by supersymmetry.

From the string perspective, it corresponds to a two particle state in the worldsheet
QFT on a cylinder of size J = 2. Despite the fact that J is so small, we may expect to
get an exact answer from Lüscher corrections at least at 4- and 5- loop level due to the
estimate (3.5). Since at weak coupling all bound states contribute at the same order,
we have to perform a summation over all bound states and their polarization states and
use the bound state-fundamental magnon S-matrix. There is a further subtlety here,
which does not appear in relativistic systems. In the physical theory, the bound states
discovered in [29] are in the symmetric representation, while states in the antisymmetric
representation are unstable. On the other hand, in the mirror theory, the physical bound
states are in the antisymmetric representation [16], and in fact it is these antisymmetric
bound states which have to be taken into account when computing Lüscher’s corrections.

Performing the computation yields the result for the 4-loop wrapping correction to
the anomalous dimension of the Konishi operator [30]:

∆(8)
w = 324 + 864ζ(3)− 1440ζ(5) (3.8)

which is in exact agreement with direct perturbative computations using both supergraph
techniques [31] and component Feynman graphs [32]. The string computation is much
simpler as it involves evaluating just the single graph shown in Figure 3.

In another development, wrapping corrections for twist two operators

trZDMZ + permutations (3.9)

were computed. Here, the main motivation for performing this computation was the fact
there are stringent analytical constraints on the structure of the anomalous dimensions
∆(M) as a function of M . In fact the disagreement, at 4 loops, between the behaviour of
the Bethe Ansatz ∆(M) for M = −1 + ω and gauge theory constraints from the BFKL
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(Balitsky-Fadin-Kuraev-Lipatov) and NLO BFKL equations describing high energy scat-
tering in the Regge limit [33] were the first quantitative indication that the Asymptotic
Bethe Ansatz breaks down [34].

In [35], the anomalous dimensions of twist two operators were evaluated at 4 loop level
using Lüscher corrections for an M -particle state. The wrapping correction was found to
exactly compensate the mismatch between the Bethe Ansatz and BFKL expectations.

Subsequently, the leading wrapping corrections for the lowest lying twist-three oper-
ators were also determined from Lüscher corrections [36]. These occur at 5 loop level.
Another class of operators which was considered were single particle states [37] and the
Konishi operator [38] in the β deformed theory. These results agree with direct field
theoretical computations when avaiable [39].

In all the above computations of the leading wrapping corrections there were signifi-
cant simplifications. Firstly, the wrapping modifications of the Bethe Ansatz quantiza-
tion condition did not appear. Secondly, the dressing factor of the S-matrix also did not
contribute.

Once one moves to subleading perturbative wrapping order (5-loop for Konishi and
twist two, and 6-loop for twist three), both of these effects start to play a role. The
modification of the Bethe Ansatz quantization is particularly interesting, as it is only
in its derivation that the convolution terms in TBA equations contribute. In contrast
to the simple single component TBA equation presented here, the structure of the TBA
equations proposed for the AdS5 × S5 system is very complicated [40]. So Lüscher
corrections may be a nontrivial cross-check for these proposals. In addition, due to the
kinematics of the scattering between the physical particle and the mirror particle, it
turns out that already at 5 loops, an infinite set of coefficients of the BES/BHL dressing
phase contributes to the answer.

A key difficulty in performing such a computation is the possibility of testing the
answer. Fortunately we have at our disposal two independent consistency checks. Firstly,
at weak coupling we do not expect the appearance of µ-terms which implies that a sum
over residues of certain dynamical poles in the integrand has to cancel after summing
over all bound states. Secondly, the transcendental structure of the final answer should
be quite simple, while the subexpressions involve very complicated expressions which
should cancel out in the final answer. In addition, for the case of twist two operators,
one can use the numerous stringent constraints on the analytic structure comming from
BFKL, NLO BFKL, reciprocity etc.

In [41], the five loop wrapping correction to the Konishi anomalous dimension was
derived

∆(10)
w = −11340 + 2592ζ(3)− 5184ζ(3)2 − 11520ζ(5) + 30240ζ(7) (3.10)

while in [42] a tour-de-force computation was performed for twist two operators at five
loops. Subsequently twist three operators were also considered at subleading wrapping
order in [43].

Recently, the five loop result coming from Lüscher corrections was confirmed by
expanding the exact TBA equations at large volume first numerically [44], and then
analytically [45]. Finally, subsubleading (6-loop) wrapping corrections were considered
for single impurity operators in the β deformed theory [46].
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4 Summary and outlook

Lüscher’s corrections situate themselves in the middle ground between Bethe Ansatz and
a full fledged solution of two dimensional integrable quantum field theories in the guise of
Thermodynamic Bethe Ansatz or Nonlinear Integral Equations. They encode effects of
an explicitly quantum field theoretical nature, namely virtual corrections associated with
the topology of a cylinder. In this way Lüscher’s corrections may be seen to differentiate
between spin chain like systems, where the Bethe Ansatz is exact and quantum field
theories, for which the Bethe Ansatz is only a large volume approximation.

In this review, we have presented various ways of arriving at Lüscher’s corrections,
some of them more or less rigorous, others more conjectural. The fact that the methods
are quite different one from the other serves as an important cross check of these results.
It would be, however, quite interesting to extend some of these methods in various
directions e.g. the diagrammatic calculations to multiparticle states and subleading
wrapping. Recently, the multiparticle Lüscher corrections proposed in [30] were tested
in [47, 44, 45]. It would be interesting to obtain some kind of universal understanding
how the structure necessary for Lüscher corrections is encoded in the very complicated
nondiagonal TBA systems.

With respect to the concrete applications of Lüscher corrections in the AdS/CFT
correspondence there are still some loose ends like the rather mysterious formula for the
finite size corrections of the giant magnon in the β deformed theory [48]. Apart from that,
the agreement between the computations based on Lüscher corrections, which typically
involve a single graph, and the very complicated four loop gauge theory computations
involving hundreds or even many thousands of graphs suggests that there is some very
nontrivial hidden structure in the perturbative expansion. It would be very interesting
to understand whether it could be understood in any explicit way.
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Chapter III.6: Thermodynamic Bethe Ansatz

1 Introduction

Thermodynamic Bethe Ansatz (TBA) is a method to calculate exactly the groundstate
energy of an integrable quantum field theory in finite volume using its infinite volume
scattering data [1]1. The equations can be extended to excited states as well by analytical
continuation [3, 4].

The idea of the TBA is to exploit that the Euclidean partition function is dominated
for large imaginary times by the groundstate energy. Calculating the partition function
in the doubly Wick rotated (mirror) theory the imaginary time becomes the physical size
which is taken to be large. Since the large volume spectrum is under control, the partition
function can be evaluated in the saddle point approximation which results in nonlinear
integral equation for pseudo energies leading to an exact description of the ground state
energy. Excited states on the complex (volume/coupling) plane are connected to the
groundstate which enables one to derive nonlinear integral equations for excited states
as well.

We start in Section 2 with a toy model containing one single particle with AdS
dispersion relation and with scattering matrix which is not a function of the differences
of the momenta. Although this is a fictitious system it helps to introduce conceptual
notions and steps needed to explain the TBA which is, in analogy, used in Section 3
to present the results for planar AdS/CFT. Finally, we give a guide to the literature in
Section 4 and list some open problems.

2 The concept of TBA: a toy model

The application of the TBA method to solve completely the finite volume spectral prob-
lem is standard by now and follows the following steps. First the scattering theory has
to be solved in infinite volume by determining the scattering matrix from its generic
properties such as symmetry, unitarity, crossing relation. The poles of the scattering
matrix lying in the physical strip are related to bound-states. These bound-states have
to be mapped and their scattering matrices have to be determined from the constituents’
scattering matrices. Then in the second step these scattering matrices can be used to
describe the spectrum for large volume, which amounts to restrict the allowed particles’
momenta via phase shifts and periodicity, and use the dispersion relation to express the
energy in terms of the quantized momenta. This method sums up all power like correc-
tions in the inverse of the volume and provides an asymptotical spectrum. The very same
asymptotic description of the mirror theory is also needed as it can be used to calculate
the exponentially small finite energy corrections from the partition function. Evaluat-
ing the Euclidean partition function for large imaginary times (large mirror volumes) in
the saddle point approximation provides integral equations describing the ground state
energy exactly. Finally, these equations can be extended for excited states by analytical
continuation. Now let us see how these steps are elaborated in the simplest setting.

1The method has its origin in the work of Yang and Yang applied for spin chains and for the Bose
gas with δ interaction [2].
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Infinite volume characteristics of the model

We consider a toy model with one single particle type only. The dispersion relation is
supposed to be the same as in the AdS/CFT correspondence 2:

E(p) =

√
1 + 4g2 sin2 p

2

The sine function indicates lattice behavior and restricts the momentum as
p ∈ [−π, π]. The square root, however, has a relativistic origin. The theory is supposed
to be integrable, thus multiparticle scattering matrices factorize into two particle scat-
terings. As relativistic invariance is not supposed the two particle S-matrix can depend
separately on the two momenta S(p1, p2) and satisfies unitarity S(p1, p2)S(p2, p1) = 1
and crossing symmetry, which helps to fix it completely. We will not need its explicit
form, but will suppose that in the p1 = p2 = p particular case S(p, p) = −1.

Infinite volume characteristics of the mirror model

The Euclidean version of the model is defined by analytically continuing in the time
variable t = iy and considering space x and imaginary time y on an equal footing.
The Euclidean theory so obtained can be considered as an analytical continuation of
another theory, in which x serves as the analytically continued time x = iτ and y is the
space coordinate. The theory defined in terms of y, τ is called the mirror theory and
its dispersion relation can be obtained by the same analytical continuation E = ip̃ and
p = iẼ which results in

Ẽ(p̃) = 2arcsinh

(
1

2g

√
p̃2 + 1

)
Contrary to the original theory the mirror model is not of the lattice type as its momen-
tum can take any real value p̃ ∈ R. As the scattering matrix is related via the reduction
formula to the Euclidean correlator the mirror S-matrix is simply the analytical contin-
uation of the original scattering matrix: S(p̃1, p̃2).

Very large volume solution: asymptotic Bethe Ansatz for the model

Let us put N particles in a large volume L subject to periodic boundary condition.
Integrability ensures that the particle number is conserved and the particles’ momenta
are not changed in the consecutive scatterings. The leading effect of the finite volume is
the momentum quantization constraint:

1 = eipjL
N∏

k:k 6=j

S(pj, pk) (2.1)

which is called the Bethe Yang equation or asymptotic Bethe Ansatz (ABA) and follows
from the periodicity of the multiparticle wave function. Due to the sine function in the

2The string tension is related to the ’t Hooft coupling as 2πg =
√
λ
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dispersion relation and the periodicity of p consistency of (2.1) requires L to take integer
values only.

Bound-states of the theory are manifested in the ABA as complex string-like solutions.
Indeed, if the scattering matrix has a pole for =m(p) > 0, then complex p solutions are
also allowed in (2.1). If we take L very large with p1 ≈ p

2
+ iq then the rhs. of (2.1) would

go to ∞ which should be compensated by another complex momentum, p2 ≈ p
2
− iq say,

such that S(p1, p2) exhibits a pole. The two particles with momenta p1 and p2 form a
bound-state with momentum p = p1 + p2, energy E2(p) = E(p1) + E(p2) and scattering
matrix S21(p, pj) = S(p

2
+ iq, pj)S(p

2
− iq, pj). In general complex solutions built up

from more particles are also allowed and they usually form a string-like pattern. Their
dispersion relation and scattering matrices can be calculated by extending the method
above, which is called the S-matrix bootstrap.

Very large volume solution: ABA for the mirror model

In the mirror model the considerations go along the same line as in the original theory.
If we denote the mirror volume by R the ABA reads as

1 = eip̃jR
∏
k:k 6=j

S(p̃j, p̃k) (2.2)

Since S(p̃1, p̃2) lives in a different analytical domain than S(p1, p2) its pole structure can
be also different. If it exhibits poles also at the proper location the mirror theory has
also bound-states. Once bound-states exist we can calculate their dispersion relation
and scattering matrices from the bootstrap method. Suppose that the bound-states can
be labeled with some charge Q, they have energy ẼQ(p̃) and their scattering matrix is
SQjQk(p̃j, p̃k). The generic ABA valid for all the excitations (also for bound-states) will
be

1 = eip̃jR
∏
k:k 6=j

SQjQk(p̃j, p̃k) (2.3)

Once these equations are solved the energy of the multiparticle state is

Ẽ =
N∑
j=1

ẼQj(p̃j)

which describes the spectrum asymptotically for large volumes R.

Groundstate TBA equation from the partition function

Let us come back to the original model and see how the exact groundstate energy can
be determined in a finite volume L from the Euclidean partition function. We exploit
the fact that the imaginary time evolution for large times, R, is dominated by the lowest
energy state

lim
R→∞

Z(L,R) = lim
R→∞

Tr(e−RH(L)) = lim
R→∞

e−RE0(L) + . . .
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original model mirror model

(t, x) ≡ (y = it, x) (y, x = iτ) ≡ (τ, y)

L

t

x

e
−H(L)

R

.

y

τ

R

L

e
−H(R)

∼

(E,P ) ≡ (Py = iE, Px = P ) (Py = P̃ , Px = iẼ) ≡ (Ẽ, P̃ )

Table 1: The relation between the original and the mirror model.

where the ellipsis represents terms exponentially suppressed in R. The same partition
function can be determined alternatively, using the time evolution of the mirror theory
which is generated by the mirror Hamiltonian H̃:

Z(L,R) = Z̃(R,L) = Tr(e−LH̃(R)) =
∑
n

e−LẼn(R)

The relation between the original model and the mirror model is summarized in Table
1. In switching to the mirror model we ensure that the volume goes to infinity (and not
the imaginary time) where the spectrum is controlled by the ABA (2.3).

In the large R limit the sum in the partition function is dominated by finite density
particle states. Introducing the density of the particles (and bound-states) in momentum

space (ρQ(p̃) =
∆nQ
R∆p̃

) the energy can be expressed as

Ẽ[ρ] = R
∑
Q

ˆ
dp̃ ρQ(p̃) ẼQ(p̃) = R

∑
Q

ˆ
du ρQ(u) ẼQ(u)

where for later convenience we reparametrized the momentum as p̃(u), momentum inte-
grations go from −∞ to∞. The quantization condition comes from taking the logarithm
of the mirror ABA

p̃j(uj) +
∑
Q′

ˆ
du′(−i logSQjQ′(uj, u

′))ρQ′(u
′) = 2π

nj
R

(2.4)

where nj labels the quantized momentum p̃j whose charge is Qj. For a generic mul-
tiparticle state there are momenta p̃k which satisfy the same equation but which are
not excited, not present in the system. They are called holes and their densities in the
large volume limit is described by ρ̄Q. Clearly the densities of particles and holes are not
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independent they are connected by the thermodynamical limit of eq. (2.4) as

∂up̃− 2π(ρQ + ρ̄Q) = −
∑
Q′

ˆ
du′KQQ′ (u, u

′)ρQ′(u
′) =: −KQQ′ ? ρQ′ (2.5)

where the kernel is defined as

KQQ′ (u, u
′) = −i∂u logSQQ′(u, u

′)

The particle density itself does not characterize properly the states we sum over in the
partition function. Indeed in a given interval (u, u+du) the occupied RρQ(u)du particles

can be distributed
(
R(ρQ(u)+ρ̄Q(u))du

RρQ(u)du

)
different ways leading to an entropy factor in the

sum. Since in the large particle number limit the factorials can be approximated with
the Stirling formula the partition function will take the form

Z(L,R) =
∑
n

e−LẼn(R) =
∑
Q

ˆ
d[ρQ]e−LẼ[ρQ]+S[ρQ,ρ̄Q]

where the entropy factor is

S[ρQ, ρ̄Q] = R

ˆ
du [(ρQ + ρ̄Q) log(ρQ + ρ̄Q)− ρQ log ρQ − ρ̄Q log ρ̄Q]

One can slightly generalize the partition function by adding a chemical potential term
to the energy −LẼQ[ρQ]→ µQ[ρQ]− LẼQ[ρQ] where µQ[ρQ] = RµQ

∑
Q

´
du ρQ(u). For

fermions we take µQ = iπ , while for bosons µQ = 0. This extended partition function
can be evaluated in the saddle point approximation. Taking into account the relation
between δρQ and δρ̄Q originating from the variation of (2.5) we obtain the minimizing
equation in the so called pseudo energy εQ = log

ρ̄Q
ρQ

as

εQ(u)− LẼQ(u) + µQ = −
∑
Q′

ˆ
du′

2π
KQ′Q(u′, u) log(1 + e−εQ′ (u

′))

=: −(log(1 + e−εQ′ ) ? KQ′Q)(u)

Once the pseudo energies are determined the ground state energy in volume L can be
obtained as

E0(L) = −
∑
Q

ˆ
du

2π
(∂up̃) log(1 + e−εQ(u)) (2.6)

The nonlinear integral equation which determines the pseudo energies is called the ther-
modynamic Bethe Ansatz (TBA) equation. Although it is not possible to solve it in
general it provides an implicit exact description of the groundstate energy. This implicit
solution is a starting point of a systematic large and small volume expansion and can be
used to derive either functional relations for the pseudo energies or TBA equations for
excited states by analytical continuation.
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Excited states by analytical continuation

Here we start with bosonic theories without bound-states and suppose that by analyti-
cally continuing in some parameter (say in the volume) we can reach all excited states.
The way how excited states appear can be understood by analyzing the energy expression
(2.6) integrated by parts

E =

ˆ
du

2π
p̃(u)∂u log(1 + e−ε(u))

Let us suppose that in the analytical continuation singularities of type 1 + e−ε(ui) = 0
appear. When we deform the contour their residue contributions give rise to

E =
∑
i

E(ui)−
ˆ

du

2π
∂up̃(u) log(1 + e−ε(u))

where we took into account the relation between the energy and the mirror momentum
E(uj) = ip̃(uj). Taking the same analytical continuation in the equation for the pseudo
energy we obtain

ε(u) = LẼ(u) +
∑
i

logS(ui, u)−
ˆ
dw

2π
K(w, u) log(1 + e−ε(w))

Solving these equations iteratively for large L we can recognize that the 1 + e−ε(ui) = 0
equations, which determine the positions of the singularities, coincide at leading order
with the ABA equations (2.1). The subleading order calculation provides a universal
formula for the leading finite size correction of multiparticle energy levels [5]. Alterna-
tively for doing the analytical continuation one can think of the final result as choosing
a different integration contour which surrounds the 1 + e−ε(ui) = 0 singularities, and
when we take the integration contour back to the real axis we pick up the above residue
contributions.

Finally we note that if we have more species (labeled by Q) with diagonal scatterings
(like in the previous subsection) then a singularity in 1 + e−εQi (ui) = 0 results in the
equations

εQ(u) = LẼQ(u) +
∑
i

logSQiQ(ui, u)− (log(1 + e−εQ′ ) ? KQ′Q)(u)

whose solutions εQ(u) and {ui} have to be plugged into the energy formula

E =
∑
i

EQi(ui)−
∑
Q

ˆ
du

2π
∂up̃Q(u) log(1 + e−εQ(u))

One has to be careful with such an analytical continuation in the presence of bound-
states. Bound-states require pole singularities of the scattering matrices which usually
cross the integration contour in the analytical continuation and result in extra source
terms. See the Lee-Yang model in the relativistic case [3, 4] for example.
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3 TBA for planar AdS/CFT

In this section we push forward the TBA program for planar AdS/CFT. The main
difference compared to the previous discussion lies in the nondiagonal nature of the
scattering matrix. There is a way, however, how we can profit from the previous diagonal
results: the nondiagonal nature of any theory can be encoded into a diagonal theory but
with auxiliary degrees of freedom. These auxiliary excitations do not contribute to the
energy merely modifies the allowed momenta. Let us now follow the steps of Section 2.

3.1 Infinite volume characteristics of the model

The symmetry algebra of the theory has a factorized form: su(2|2)⊗ su(2|2). The fun-
damental particle called magnon transforms in the bifundamental representation whose
S-matrix has the structure

S11(p1, p2) = S(p1, p2)Ŝ11(p1, p2)⊗ Ŝ11(p1, p2) (3.1)

where the matrix part Ŝ is fixed from its covariance under one copy of su(2|2) up to a
scalar factor, which is determined from unitarity and crossing symmetry. The scatter-
ing matrix has simple poles corresponding to bound-states. There is an infinite tower
of bound-states labeled by a positive integer charge Q. They transform under the ten-
sor product of the atypical totally symmetric representations of the algebra and have
dispersion relation

EQ(p) =

√
Q2 + 4g2 sin2 p

2

3.2 Infinite volume characteristics of the mirror model

As the mirror model is derived from the same Euclidean theory the fundamental particles’
scattering matrix is the analytical continuation of the scattering matrix (3.1). We are
in a different analytical domain, however, and here different poles correspond to bound-
states. These bound-states are also labeled by the charge Q but they transform under
the atypical totally antisymmetric representations and have dispersion relation:

ẼQ(p̃) = 2arcsinh

(
1

2g

√
p̃2 +Q2

)
3.3 Very large volume solution: ABA for the model

If we put N particles in a finite volume L the momenta of the particles will be quantized.
The multiparticle wave function has to be periodic in each argument, that is when a
particle transported along the cylinder it scatters on all other particles before arriving
back to its initial position. In a diagonal theory this results in (2.1). In a nondiagonal
theory, however, the multiparticle transfer matrix has to be diagonalized. This can
be achieved by introducing new type of (magnonic) particles with vanishing dispersion
relations and considering the original problem in terms of them as a diagonal scattering
theory.
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Here we focus only on the charge Q = 1 sector of the theory. We have momentum
carrying particles (•1) which scatter on each other as 3

S••11(p1, p2) = S(p1, p2) =
x+

1 − x−2
x−1 − x+

2

1− 1
x−1 x

+
2

1− 1
x+

1 x
−
2

σ−2
12

where x±(p) =
(cot p

2
±i)

2g

(
1 +

√
1 + 4g2 sin2 p

2

)
and σ represents the dressing phase.

These particles are extended for each su(2|2) factor with two types of auxiliary par-
ticles (y, ◦1), whose parameters are labeled by y ∈ R and w ∈ R. The auxiliary particles
have trivial dispersion relations (their energy and momentum are zero) and scatter with
the fundamental, momentum carrying ones as

S•y1y (p, y) =
x− − y
x+ − y

√
x+

x−
= Sy•y1(y, p)−1 ; S•◦11(p, w) = 1

Furthermore, they scatter on each other as

S◦◦11(w1, w2) = S−2(w1 − w2) ; Sy◦y1(y, w) = S1(v(y)− w) ; Syyyy (y1, y2) = 1

where v(y) = y + y−1 and we introduced a useful function Sn(v − w) =
v−w+ in

g

v−w− in
g

. Any

scattering matrix can be extended by unitarity to the opposite order of their particle
types/arguments: S(i, j)S(j, i) = 1.

In formulating the ABA equations for the full theory we have to take into account
the two su(2|2) factors and that they commute. The ABA equation for the momentum
carrying particles reads as

1 = eipjL
N•1∏
k:k 6=j

S••11(pj, pk)
∏
α=1,2

Nyα∏
l=1

S•y1y (pj, y
α
l )

where N•1 is the number of fundamental and Nyα the number of y type particles, while
the α = 1, 2 index refers to the two su(2|2) factors. Since the two factors commute the
ABA equations for the auxiliary particles with rapidities y1,2 and w1,2 can be written as

N•1∏
k:k 6=j

Sy•y1(yαj , pk)

N◦1,α∏
l=1

Sy◦y1(yαj , w
α
l ) = 1 =

Nyα∏
k:k 6=j

S◦y1y (wαj , y
α
k )

N◦1,α∏
l:l 6=k

S◦ ◦11 (wαj , w
α
l )

Not all solutions of the ABA equations correspond to single trace operators as the level
matching/zero momentum condition has to be fulfilled

∑
j pj = 0. The theory contains

also bound-states which can be determined from the singularity structure of the scatter-
ing matrices. Since from the TBA point of view only the bound-state spectrum of the
mirror theory is relevant we will focus only on them.

3The index 1 in •1 refers to the charge of the particle. This particle is a first member of an infinite
series of bound-states labeled by •Q. Similarly we will meet particles of type ◦N and .M .
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3.4 Very large volume solution: ABA for the mirror model

In the case of the mirror theory the fundamental scattering matrix is the analytical
continuation of the original one p → p̃. As a result the ABA will be the analytical
continuation, too

1 = eip̃jR
N•1∏
k:k 6=j

S••11(p̃j, p̃k)
∏
α=1,2

Nyα∏
l=1

S•y1y (p̃j, y
α
l ) (3.2)

−1 =

N•1∏
k:k 6=j

Sy•y1(yαj , p̃k)

N◦1,α∏
l=1

Sy◦y1(yαj , w
α
l ) (3.3)

1 =

Nα
y∏

k:k 6=j

S◦y1y (wαj , y
α
k )

Nα
w∏

l:l 6=k

S◦◦11(wαj , w
α
l ) (3.4)

There are some differences compared to the original ABA. First the domain of p̃ ∈ R
is different compared to p ∈ [−π, π] and the total mirror momentum does not need to
vanish. Then, as we are in the mirror theory, the way how x± is expressed in terms

of p̃ is also different: x± = (p̃−i)
2g

(√
1 + 4g2

1+p̃2 ∓ 1
)

. Additionally, in the calculations of

the ground state energy the sectors with antiperiodic fermions are relevant and this is
manifested in a minus sign in the middle equation. The possible bound-states and their
ABA equations are the subject of the next section. Let us note that usually in the
literature instead of (3.4) its inverse is considered as this will lead to positive particle
densities in the thermodynamic limit.

3.5 Exact groundstate energy: TBA

In this section we derive TBA integral equations for the groundstate energy in finite
volume R. We treat the theory as if it were diagonal with the scattering matrices
specified above. First we analyze whether this “diagonal” theory has bound-states by
analyzing the thermodynamic behavior of the equations and calculate the scattering
matrices of the bound-states, the so called strings. They are special complex solutions
of the ABA equations and they all contribute to the partition function which determines
the ground state energy. Then we use the canonical procedure to derive coupled integral
equations for the pseudo energies in a raw form, finally, using identities between the
scattering matrices originating from the symmetry, we rewrite them in a simplified form
and analyze simple excited states.

3.5.1 String hypothesis for the mirror model

The string hypothesis is similar to closing the S-matrix bootstrap program, that is to
identify all particles (including bound-states) of the theory and to determine their scat-
tering matrices. Let us premise that we will find bound-states of three infinite types
(•Q, .M , ◦N) for Q,M,N ∈ N, and also of a finite type yδ particle with δ ∈ {±}. They
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can be arranged in the two dimensional lattice shown in Figure 1. Let us see how they
arise from the ABA equations.

In the following we put R and all particle numbers large (keeping their ratio finite) and
analyze the ABA one by one. Let us first note the reality properties of the equations.
Unitarity of the mirror scattering matrix implies that the y roots come in complex
conjugated pairs yi = (y−1

j )∗ or lie on the unit circle y = (y−1)∗, similarly the roots w
come in complex conjugated pairs wi = w∗jor are real.

•Q particles

In looking for momentum bound-states we rewrite the scattering matrix in (3.2) as

S• •11 (p̃1, p̃2) =
u1 − u2 + 2i

g

u1 − u2 − 2i
g

Σ−2
11 ; Σ11 =

1− 1
x+

1 x
−
2

1− 1
x−1 x

+
2

σ

where the rapidity is introduced as u ± i
g

= x± + 1
x±

. As R is very large complex

values for u1 with positive imaginary part are allowed. In this case the lhs. of (3.2)
for j = 1 diverges so there should be another u say u2 that goes to u1 − 2i

g
. If u2

still has a positive imaginary part then by the same argument there should be another
u say u3 which goes to u2 − 2i

g
. Applying this procedure we arrive at a string of Q

roots u + (Q − 1) i
g
, u + (Q − 3) i

g
, . . . , u − (Q − 3) i

g
, u − (Q − 1) i

g
or shortly uQ+1−2j =

u+ i(Q+ 1− 2j) i
g

where j = 1, . . . , Q. (Clearly the Q = 1 string is the original particle

itself.) The scattering of the Q-string with any other particle of type (.), label i and
rapidity q is

S• .Qi(u, q) =

Q∏
j=1

S• .1i (uQ+1−2j, q) = S. •iQ(q, u)−1

Although naively the scattering matrices seem to depend on the parameters x± and such
a way the bound-state scattering matrix depends on its constituents, this is not the case
when we take into account the contributions of the dressing phase as was shown in [6].

The auxiliary particles exist for both su(2|2) factors. Here we focus only on one of
them and omit to write out its index.

yδ particles

Let us analyze (3.3). If we suppose that the number of momentum carrying particles N•1
goes to infinity then

N•1∏
k:k 6=j

Sy•y1(yj, p̃k)→


0 if |yj| < 1
±1 if |yj| = 1
∞ if |yj| > 1

(3.5)

In the middle case y roots lying on the unit circle are allowed. As the scattering matrix
Sy◦y1(y, w) has a difference form in the variable v(y) = y+y−1 we might use the parameter
v instead of y. The inverse of the relation, however, is not unique. Defining y−(v) =
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1
2
(v − i

√
4− v2) with the branch cuts running from ±∞ to ±2 we can describe any y

with =m(y) < 0 for v ∈ [−2, 2]. Clearly y+(v) = y−(v)−1 describes the other =m(y) > 0
case and in the scattering matrices Sy•y1 which depends on y, and not on v, we have to
specify which root is taken. As a consequence we have two types of y particles yδ with
δ = ± and the scattering matrices split as Sy•y1(y, q)→ Sy•δ1 (yδ(v), q) =: Sy•δ1 (v, q).

.M particles

If |y1| < 1 in (3.5) then the rhs. of (3.3) goes to zero which has to be compensated by
a w1 root which goes to v1 − i

g
= y1 + y−1

1 − i
g
. But then taking the ABA for w1 means

that the rhs. of (3.4) will diverge which has to be compensated by a root v2 = w1 − i
g
.

If the corresponding y2 satisfies |y2| > 1 then (3.3) is consistent with (3.5) and reality
requires y1 = (y−1

2 )∗, w1 = w∗1. The three roots y1 ↔ v1 = v + i
g

and w1 = v and

v − i
g

= v2 ↔ y2 form an M = 1 string which we denote by .1. In the case when

|y2| < 1 then we have to repeat the same arguments for y2 leading to w2 and y3 and so
on. Finally we arrive at the notion of a .M string. It consists of 2M y particles with
yj = (y−1

−j )
∗ and M ◦ particles with synchronized parameters wM+1−2j = v+(M+1−2j) i

g

and yj → vsign(j)(M+2−2j) = v + sign(j)(M + 2 − 2j) i
g

for j = 1, . . . ,M . The composite
scattering matrix of the .M particle with all other particles is simply the product of the
scatterings of its each individual constituents

S. .Mi(v, q) =
M+1∏
j=1

Sy .−i(vM+2−2j, q)
M∏
j

S◦ .1i (wM+1−2j, q)
M−1∏
j=1

Sy .+i(vM−2j, q) = S. .iM(i, v)−1

◦N particles

Suppose we have a large number of y particles and that w1 has a positive imaginary part.
Then the first factor of the rhs. of (3.4) will go to zero which has to be compensated by
a root w2 = w1 − 2i

g
. If =m(w2) < 0 then we obtain a ◦2 string. In the opposite case we

repeat to previous argumentation leading to an N string wN+1−2j = w + (N + 1− 2j) i
g
.

Clearly a single w is just a ◦1 string. The scattering of the N string with any other
particle is

S◦ .Ni(w, i) =
N∏
j=1

S◦ .wi(wN+1−2j, i)

Scattering matrices

Summarizing, the mirror AdS theory in the thermodynamic limit could be replaced by
a diagonal theory having constituents of infinite type (•, ., ◦) and index Q,M,N for
Q,M,N ∈ N, and also of finite type y particles with δ ∈ {±}. See also Figure 1.

For the readers convenience we summarize the scattering matrices in Table 2. The
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•Q′ .M ′ ◦N ′ yδ′

•Q S• •QQ′ S• .QM ′ 1 S• yQδ′
.M S. •MQ′ S. .MM ′ 1 S. yMδ′

◦N 1 1 S◦ ◦NN ′ S◦ yNδ′
yδ Sy •δQ′ Sy .δM ′ Sy ◦δN ′ 1

Table 2: Scattering matrices of the various particles

scattering matrices are unitary SijSji = 1 and their explicit forms are

S• •QQ′(u, u
′) = SQQ′(u− u′)ΣQQ′(u, u

′)−2

SQQ′(u− u′) = SQ+Q′(u− u′)SQ′−Q(u− u′)
Q−1∏
j=1

SQ′−Q+2j(u− u′)2

ΣQQ′(u, u
′) =

Q∏
j=1

Q′∏
k=1

σ(uQ+1−2j, uQ′+1−2k)
1− 1

x(uQ−2j)x(uQ′+2−2k)

1− 1
x(uQ+2−2j)x(uQ′−2k)

where uj = u+ j i
g

and we reparametrized the momentum carrying particles in terms of

the rapidity via the function x(u) = 1
2
(u−i

√
4− u2). Recall also that Sn(u−w) = un−w

u−n−w .
The other matrix elements are

S• .QM(u, v) =
x(u−Q)− x(vM)

x(uQ)− x(vM)

x(u−Q)− x(v−M)

x(uQ)− x(v−M)

x(uQ)

x(u−Q)

M−1∏
j=1

SM−Q−2j(u, v)

S• yQδ(u, v) =
x(u−Q)− x(v)δ

x(uQ)− x(v)δ

√
x(uQ)

x(u−Q)

S. .MM ′(u, u) = SMM ′(u− u′) = S◦ ◦MM ′(u, u
′)−1

S. yMδ(u, v) = SM(u− v) = S◦ yMδ(u, v)

The ABA equations then have a generic form

(−1)F = eip̃.(qj)R
∏
k

S. •jQk(qj, uQk)
∏
α=1,2

∏
l

S. yjδl(qj, v
α
l )
∏
m

S. .jMm
(qj, v

α
Mm

)
∏
n

S. ◦jNn(qj, wNn)

where . can be any type of •, ., ◦, y but only the • particles have nonvanishing energy ẼQ
and momentum p̃Q(u) = g(x(u−Q)−x(uQ)) + iQ. The parameter F denotes the fermion
number. We also indicated the contributions of the two su(2|2) factors. The energy of
such a multiparticle state having N•Qk of Qk particles is

Ẽ(p̃1, . . . , p̃k) =
∑
k

ẼQk(p̃k)

Let us note that the ABA equations for the auxiliary particles can be inverted without
changing their physical meaning. Taking the inverse of (3.4) is equivalent to redefining
simultaneously the scattering matrices S◦y1δ → (S◦y1δ )−1 and S◦◦11 → (S◦◦11)−1. Actually
these are the equations used in the literature as they give positive particle densities in
the thermodynamic limit.
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3.5.2 Raw TBA equations

Suppose now that we would like to describe the groundstate energy in the AdS system
in volume L. In doing so we follow the steps presented in Section 2 to evaluate the
partition function for large mirror sizes. We introduce densities of particles (strings)
ρ•Q(u), ρ.M(u), ρ◦N(u) for u ∈ R and ρyδ(u) for u ∈ [−2, 2] and the analogous densities
of holes ρ → ρ̄. They are restricted via the logarithm of the ABA which contains the
logarithmic derivatives of the scattering matrices

K . .
jj′(u, u

′) = −i∂u logS . .
jj′(u, u

′)

Clearly K . .
jj′(u, u

′) 6= −K . .
j′j(u

′, u) as the scattering matrices are not of the difference
type. (Keeping in mind how we obtained the string solutions the densities are naturally
ordered ρ•Q � ρy � ρ◦N , ρ

.
M .) Then we introduce the entropy factors for the densities, iπ

chemical potential for fermions and calculate the saddle point of the functional integral.
This results in integral equations for the pseudo energies ε•Q, ε

.
M , ε

◦
N , ε

y
δ as follows

ε•Q = LẼQ − log(1 + e
−ε•

Q′ ) ? K• •Q′Q − log(1 + e−ε
.
M ) ? K. •

MQ − log(1 + e−ε
y
δ ) ? Ky •

δQ

where in the contributions of the .M and yδ we have to sum for the contributions of the
two su(2|2) factors (which we omitted to write out). The remaining equations are valid
separately for the two su(2|2) factors separately:

ε.M = − log(1 + e−ε
•
Q) ? K• .QM − log(1 + e−ε

.
M′ ) ? K. .

M ′M − log(1 + e−ε
y
δ ) ? Ky .

δM

ε◦N = log(1 + e−ε
◦
N′ ) ? K◦◦N ′N + log(1 + e−ε

y
δ ) ? Ky ◦

δN

εyδ = − log(1 + e−ε
•
Q) ? K• yQδ − log(1 + e−ε

.
M ) ? K. y

Mδ − log(1 + e−ε
◦
N ) ? K◦ yNδ + iπ

Once these equations are solved the groundstate energy can be obtained as

E0(L) = −
∞∑
Q=1

ˆ
du

2π
∂up̃Q log(1 + e−ε

•
Q)

Finally we note that we replaced the magnonic ABA for the particle type ◦N with
its inverse and made the corresponding change in the scattering matrices to ensure the
positivity of the magnonic densities ρ◦N . It effectively changed the sign of the related
kernels.

3.5.3 Simplified TBA equations and Y-system

In this subsection using identities among the TBA kernels we bring the equations in to a
universal local form. This means that pseudo energies can be drawn in a two dimensional
lattice, such that only neighboring sites couple to each other with the following universal
kernel

s IMN = δMN − (K + 1)−1
MN ; s(u) =

g

4 cosh gπu
2

(3.6)
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where IMN = δM+1,N + δM−1,N and (K + 1)−1
MN ? (KNL + δNL) = δML. To simplify the

notation let us introduce the following Y functions

Y •Q = e−ε
•
Q ; Y .

M = e−ε
.
M ; Y ◦N = eε

◦
N ; Y y

δ = eδε
y
δ

Clearly we have two copies for Y .,α
M , Y ◦,αN , Y y,α

δ . (To conform with the literature we
inverted the ABA equations for .M and y−). Acting with the operator (3.6) on these
inverted TBA equations and using kernel identities like (K + 1)−1

MN ? KN = s δM,1 we
arrive at their simplified, universal form

log Y .
M = log(1 + Y •M+1) ? s− IMM ′ log(1 +

1

Y .
M ′

) ? s+ δM,1 log
1 + Y y

+

1 + 1
Y y−

?̂s

log Y ◦N = INN ′ log(1 + Y ◦N ′) ? s+ δN,1 log
1 + Y y

−

1 + 1
Y y+

?̂s

where in the convolution ?̂ we integrate over the interval [−2, 2] only. The other equations
do not behave so nicely.

log Y •Q = −IQQ′ log(1 +
1

Y •Q′
) ? s+ log(1 + Y .,1

Q−1) ? s+ log(1 + Y .,2
Q−1) ? s ; Q > 1

log Y •1 = − log(1 +
1

Y •2
) ? s+ (log(1 + Y y,1

− )(1 + Y y,2
− )) ? s− ∆̌ ? s

where ∆̌ vanishes on the interval [−2, 2] whose explicit form can be found in [7]. The
equation for the y particles are simpler in the original form

δ log Y y
δ = − log(1 + Y •Q) ? K•yQδ + log

1 + Y .
M

1 + 1
Y ◦M

? KM + iπ

These equations for Y y
δ are not in a local form. However, acting with the inverse of s

they can be brought into such form. The operator s−1 acts as (f ? s−1)(u) = f(u+ i
g
−

i0) + f(u − i
g

+ i0) and involves the analytical continuation of the functions. It has a
large null space, thus when acting on the equation information is lost:

log Y y
− ? s

−1 = log(1 + Y •1 ) + log(1 + Y ◦1 )− log(1 +
1

Y .
1

)

The advantage of defining s−1 in the above manner is that it uses the analytically con-
tinued values of the Y functions on the rapidity torus only. If we continue them across
the cuts by using (f ? s−1)(u) = f(u + i

g
− i0) + f(u − i

g
− i0) = f+(u) + f−(u) then

the term ∆̌ disappears, but the Y functions have to be extended to an infinite genus
Riemann surface. On this surface the Y-system has the universal form

Y +
N,MY

−
N,M =

(1 + YN,M+1)(1 + YN,M−1)

(1 + Y −1
N−1,M)(1 + Y −1

N+1,M)
(3.7)

where the N,M indices live on a two dimensional integral lattice. In our situation the
identification can be drawn on Figure 1, which explicitly reads as Y •Q = YQ,0, Y .,α

M =
YM+1,να , Y ◦,αN = Y1,να(N+1), Y

y,α
− = Y1,να and Y y,α

+ = Y2,να2 where ν1 = 1 and ν2 = −1.
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Figure 1: Y - system for planar AdS/CFT. Y− is denoted by 	 while Y+ by ⊕.

3.5.4 Excited states by analytical continuation

Here we focus on the TBA equations for excited states in the sl2 sector for small coupling.
This sector contains particles of type •1 only and have ABA:

1 = eipkL
∏
j:j 6=k

S• •11 (pk, pl)

These equations are asymptotic only and the exact system of TBA equations is required
to describe the energy of the multiparticle state exactly. As the vacuum is a BPS state
it has vanishing energy and its analytical continuation cannot describe excited states.
Alternatively we choose an integration contour, such that when it is taken back to the
real axis the residue of a singularity of the form 1 + e−ε

•
1(pk) = 0 is picked up resulting in

additional source terms in the raw equations as:

ε•Q →
∑
j

logS• •1Q(pj, u) ; ε.M →
∑
j

logS• .1M(pj, u) ; εyδ →
∑
j

logS• y1δ (pj, u)

Once the new system of TBA equations are solved the pseudo energies ε•Q have to be
plugged into the energy formula:

E(L) =
∑
k

E1(pk)−
∞∑
Q=1

ˆ
du

2π
∂up̃Q log(1 + e−ε

•
Q)

to obtain the energy of the multiparticle system.
We can rewrite the TBA equations in terms of the Y functions into their simplified

form. They satisfy the same Y -system relations (3.7) but with a different asymptotical
behavior. There is a systematical asymptotical expansion of the Y -system, which re-
produces both the ABA and the leading Lüscher correction of these multiparticle states.
This is valid for weak coupling g → 0 (or large sizes) and it is very nontrivial to follow the
analytical behavior of the Y functions as one increases the coupling. The ABA solution
itself suggests, that additional 1 + Y = 0 singularities could appear and then the TBA
equations have to be modified by additional source terms. These source terms ensure
the analytical behavior of the energy around these singular points.

4 Guide to the literature

Here we list the representative papers where the various parts of the TBA program were
developed.
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The idea that the TBA program can be applied in the planar AdS/CFT setting was
presented in [9]. The infinite volume scattering description of theory can be found in
chapters [10, 11]. The ABA equations for the planar AdS/CFT model was conjectured
in [12] (and thoroughly discussed in chapters [13,14]), while the analogous ABA for the
mirror model was described in [15]. As the color structure (su(2|2)) of the scattering
matrix is the same as that of the Hubbard model, the Hubbard TBA solution can be
adopted [16]. This results in the string hypothesis which was formulated explicitly in [17].
The standard procedure leads to raw TBA equations, which were developed in [19,18,20].
The simplified form of the TBA equations was presented in [7] and the Y-system relations,
presented previously in [21], were derived in [19, 18, 20]. In doing this the analytical
properties of the dressing phase [6, 20, 22] had to be investigated. In the AdS/CFT
context the volume of the integrable system has to be an integer, which can be seen also
on the groundstate TBA [23].

Although we obtained the Y-system from the ground-state TBA equations, in prin-
ciple, it follows from the hidden PSU(2, 2|4) symmetry of the model. An independent
alternative approach based on this symmetry is the subject of the next Chapter in this
volume [24].

The Y-system plays a crucial role in describing excited states. As it is related to the
symmetry of the model [24–26] it is the same for each state. What makes the difference
is the asymptotical and analytical behavior of the Y-functions. The analytical properties
of the Y-functions was thoroughly analyzed in [19, 28, 23, 8]. Based on the solution of
the Y-system of the O(4) model [27] the authors of [21] identified the large volume
solution in terms of the transfer matrices of the ABA [14]. This helps to derive excited
states TBA equations for the sl2 sector, which was done in [20, 28]. The excited state
TBA equations provide an exact description of the given state and they were used in
the Konishi case, [29, 30], to analyze numerically the behavior of the energy for large
coupling. The results are summarized in Figure 24, see also [31]. It was further shown
in [28] how to modify these excited state TBA equations if a 1 + Y = 0 singularity
appears in the analytical continuation in g.

The weak coupling limit of the Y-system equations can be compared to the ABA [14]
and Lüscher type correction [32]. The leading order behavior is built in the asymptotic
solution [21] of the Y-function, but the next to leading one provides a stringent test of the
excited states TBA equations, which was performed numerically for the Konishi operator
in [33] and analytically at next to leading order in [34]. Later this analytical calculation
was extended to describe the next to leading order Lüscher correction of generic twist
two states [35] in [36].

The strong coupling limit of the Y -system for a finite density of string particles was
analyzed in [37], where a complete agreement with the one loop string energies including
all exponential finite size corrections has been found. The functional Y -system equations
were encoded into simpler Q functions in [38,25,31].

Let us mention, how our TBA equations are related to those in the literature. We
summarized the relation between the various conventions for half of the Y-system in Table
2 as the other half is trivially related, see also [8]. Under this replacement our simplified

4We thank the authors of [31] for borrowing their figure.
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Figure 2: Numerical solution of the excited TBA equations for the Konishi
state [29,30].

Ya,s This review AF BFT GKKV

YQ,0(u) Y •Q(u) YQ(u) YQ(u) Y•Q(u′)

YM+1,1(u) Y .
M(u) Y −1

M |vw(u) Yv,M(u) Y4M+1
(u′)

Y1,N+1(u) Y ◦N(u) YN |v(u) Yw,N(u) Y◦N+1
(u′)

Y2,2(u) Y y
+(u) −Y+(u), Yy(u) Y⊕(u′)

Y1,1(u) Y y
−(u) −Y −1

− (u), Yy∗(u) Y⊗(u′)

Table 3: Relating the Y-functions to those in the literature, where u′ = gu.

equations are equivalent to AF [7], while the raw equations to BFT [18], except for the
chemical potentials of [18]. In comparing to GKKV [20] the indentification is not enough.
Comparing our kernel K• •QQ′ to the one K•Q•Q′ in [20] we observe a slight difference. This
is irrelevant, however, for excited states satisfying the level matching/zero momentum
condition 5.

The AdS5/CFT4 correspondence has a brother theory, the AdS4/CFT3 duality [39],
where the TBA program has been developed in an analogous way. The ABA together
with the string hypothesis of the mirror theory lead to ground state TBA equations and
Y-system relations in [40, 41] and extend the previously conjectured Y-system proposal
of [21]. This program is further elaborated in [41] by additionally determining excited
states TBA equations and comparing them to the asymptotic solution of the Y functions
[21] and to the quasi classical string spectrum.

Finally, let us list some open problems.
There are two disagreeing string theory calculations ( [42] and [43]) for the anoma-

lous dimension of the Konishi state. Additionally, the numerical solution of the TBA
equations for large couplings [29, 30] provides a third result, and calls for improvements
both the string theory and the TBA sides. On the string theory side it could be a pure

5We thank the authors of [20] for pointing out this.
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spinor calculation, while on the TBA side one should analyze the analytical behavior
of the Y-system and check whether, with increasing g, a singularity of type 1 + Y = 0
indeed appears, as the asymptotic solution suggests [28]. In principle the effect of such
singularities is to make the coupling dependence of the energies analytical, but it has to
be established concretely.

The anomalous dimensions of twist operators in the planar limit can be described by
integral equations derived directly from the ABA [44]. It would be nice to see, how the
exact excited TBA equations reduce to these equations in the large spin limit.

The analytical comparision of the excited state TBA equations to the next to leading
order Lüscher corrections [34, 36] tested explicitly only the . part of the Y-system. A
next to next to leading order analysis could test the ◦ part as well.

The excited states TBA equations are coupled nonlinear integral equations for infinite
unknowns. An ideal system of equations should contain finite unknowns only, and could
be developed in analogy to [27,45] by exploiting the result of [38, 25,31].
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Note added in proof

After this review chapter was finished three string theory calculations based on different
methods determined the strong coupling expansion of the anomalous dimension of the
Konishi operator [46–48]. All agreed with each other and with the strong coupling expan-
sion of the TBA equation [29,30]. This gives a strong support not only for the correctness
of the TBA equations but also for the integrability approach to planar AdS/CFT.
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Chapter III.7: Hirota Dynamics for Quantum Integrability

1 Introduction

The Hirota integrable hierarchy [1] enables us to take a very general point of view on
integrability, in classical systems [2] as well as in 2D statistical mechanical [3] and quan-
tum systems [4–6]. The analytic Bethe ansatz approach based on the Y- and T-systems
for the fusion of transfer-matrices in various representations was successfully applied to
various spin chains and 2D QFT’s [6, 7] and is especially efficient for the supersymmet-
ric systems [8–10]. Being integrable, Hirota equation with specific boundary conditions
stemming from the symmetry of the problem, can be often solved explicitly, either by
the Bäcklund method [6,9] or in the determinant (Wronskian) form [6,11]. Of course to
specify completely the physical solutions we have to precise the functional space for the
functions of spectral parameter entering Hirota equation, or in other words, we also need
to impose certain analyticity conditions on these solutions which is usually the hardest
part of the problem. In the spin chains the role of analyticity conditions is usually played
by the polynomiality of the transfer-matrices, resulting in supplementary conditions - the
Bethe ansatz equations. For the Y-systems of integrable 2D QFT’s (sigma models) at a
finite volume, the analyticity imposes the absence of singularities on a physical domain
of the complex plane of a spectral parameter, except those related to various physical
excitations (see [12] for the example of O(4) sigma model).

These methods, based on the Hirota integrable dynamics, recently have shown again
their power in the problem of calculation of the exact conformal dimensions in the planar
N=4 SYM theory. The program of integrability for the spectrum in planar AdS/CFT
correspondence has lead to the discovery of a system of exact spectral equations —
the Y-system — containing an important information about the anomalous dimensions
of all local operators at arbitrary ’t Hooft coupling. The AdS/CFT Y-system and the
underlying integrable Hirota equation were first conjectured in a functional form [13] and
later reproduced in the form of an infinite system of non-linear integral equations [14–16]
from the TBA approach [4]. It was successfully tested analytically in the weak coupling
regime, in particular for Konishi operator and twist-2 operators by the direct 4-loop
perturbation theory, and even up to 5 loops, comparing with the BFKL approximation
[17], and in the strong coupling for long operators, by comparison with quasi-classical
string theory results [18, 19]. The first numerical study of Konishi dimension [20] in a
wide range of couplings (see Fig.2 of [21]), showed a perfect interpolation between the
N = 4 SYM perturbation theory and the SYM strong coupling asymptotics described
by the large radius of the superstring AdS5 × S5 background [22].

In this paper, we will introduce the reader into the basics of Hirota approach to the
quantum integrability on the example of AdS5/CFT4 duality. But first we will show how
to solve, following the methods of [9,23,6,8], Hirota equation for the fusion in the rational
supersymmetric spin chains with gl(N |M) symmetry, in terms of a generating functional
(generalized Baxter equations) by means of the Bäcklund method, and to derive the
nested Bethe ansatz equations. Then we will follow this logic in the AdS/CFT system
and try to show that the worldsheet scattering theory and asymptotic Bethe ansatz ABA
for the superstring on AdS5/CFT4 background are also tightly related to the analyticity
of the Y-system whose form, in its turn, is greatly constrained by the superconformal
psu(2, 2|4) symmetry of the theory.
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2 Hirota Equations in the gl(N) spin chain

The simplest example where the Hirota equation appears naturally is the generalized
Heisenberg gl(N) spin chain for compact representations. The spin chain Hamiltonian
and all other conserved charges can be constructed from the R-matrix [24]. We give in this
section the basics of the analytic Bethe ansatz approach to this system following [9,10,23].

Our the explanations (though not the proofs) will be self-contained, all the way from
the R-matrix to the Hirota equation. The R-matrix of gl(N) super-spin chain is

Rλ(u) = u I ⊗ Iλ + i

N∑
α,β=1

eβα ⊗ πλ(eαβ) , (2.1)

where the generators in the l.h.s.(r.h.s.) of the tensor product in each term correspond

Figure 1: A: R-matrix in pictures; B: Yang-Baxter relation; C: Transfer matrix

to the “physical” (“auxiliary”) space and λ refers to an arbitrary representation in the
“auxiliary” space. I and Iλ are the identity elements in fundamental representation and
in representation λ, respectively; eαβ are the generators of u(N) algebra acting in the
fundamental representation on the basis eγ as eαβeγ = eαδβγ , and πλ(eαβ) are the same
generators in any irrep λ. In λ fundamental, the second term P ≡

∑
αβ eβα ⊗ eαβ ,

becomes simply the permutation operator and it is easy to check that the R-matrix
satisfies the Yang-Baxter equation

R12(u)R13(u+ v)R23(v) = R23(v)R13(u+ v)R12(u) (2.2)

where the operators act on the tensor product of 3 fundamental physical states and the
lower indexes show on which of the states the action of R is nontrivial (see Fig.1B).

Next, we introduce the transfer matrix as a trace in the auxiliary space of irrep l of
the monodromy matrix (see the Fig.1C):

T̂λ(u, g) ≡ traux

(
Rλ(u)⊗Lπλ(g)

)
,

where the tensor products are taken for the physical spaces and the usual matrix product
and the trace refers to the the auxiliary space, πλ(g) being a group element g in the irrep
l. The transfer matrix T̂λ(u, g) is thus an operator acting on L copies of the physical
space, i.e. on the Hilbert space of the spin chain with L cites. Notice that for L = 0 the
transfer matrix is simply a character χ

λ
(g).
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To relate the transfer matrices to the group characters, we introduce a useful operator
called the co-derivative D [10] defined by the action on a function of g:

Df(g) = eβα
∂

∂φαβ
f
(
eφδγeδγg

)∣∣∣∣
φ=0

, where
∂

∂φα1β1

φα2β2 ≡ δα1α2δβ1β2 . (2.3)

In particular, applying it to (2.1), we rewrite the transfer matrix in an instructive way

T̂λ(u) = (u+ iD)⊗Lχ
λ
(g) . (2.4)

In what follows we consider only the representations l = sa with rectangular Young
diagrams λi = s, i = 1, . . . , a. Below we demonstrate that the transfer matrices with
different spectral parameters u and irreps λ commute with each other and thus we can
work with their eigenvalues denoted below as Tλ(u). We denote χa,s ≡ χsa and

T̂a,s(u) ≡
T̂
sa

(u+ s−a
2i

)

(u+ s−a
2i

)L
(2.5)

where we chose the normalization of the eigenvalues

Ta,0 = T0,s = 1 . (2.6)

The goal of this section is to demonstrate the following Hirota equation [3, 6]:

Ta,s(u+ i
2
)Ta,s(u− i

2
) = Ta+1,s(u)Ta−1,s(u) + Ta,s+1(u)Ta,s−1(u) (2.7)

Let us demonstrate the validity of (2.7) on the case a = 1. The symmetric characters
χ1,s(g) are generated as the Schur polynomials from the generating function

w(z) = det(1− zg)−1 =
∞∑
s=0

zsχ1,s . (2.8)

Acting on w(z) by the left co-derivative we easily find that

D logw(z) =
zg

1− zg
(2.9)

(1 +D)w(z1)Dw(z2) =
1

1− z1g

z2g

1− z2g
=
z2

z1

z1g

1− z1g

1

1− z2g
=
z2

z1

Dw(z1)(1 +D)w(z2) .

(2.10)
The last equation in particular implies the following relation among the characters

Dχ1,s(χs +Dχs) = Dχ1,s+1(χs−1 +Dχs−1) (2.11)

which, for the simple one spin chain L = 1, is equivalent to a particular case of (2.7)

T̂1,s(u+ i
2
)T̂1,s(u− i

2
) = T̂0,s(u)T̂2,s(u) + T̂1,s−1(u)T̂1,s+1(u) (2.12)

where we had to use that χ2,s = χ2
1,s − χ1,s+1χ1,s−1 and χ0,s = 1. Moreover, one can

see that the one spin transfer matrices are a combinations of only g and the unit matrix
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and thus commute with each other. We send the interested reader to [10] for the general
proof of the Hirota relation (2.7) for any irrep and any number of spins. Eq.(2.7) is a
generalization of a similar, but simplified, Hirota relation among the characters: χ2

a,s
=

χa+1,sχa−1,s + χa,s+1χa,s−1 - following from the multiplication of rectangular irreps.
It is remarkable that the fusion equation (2.7) is the same for all gl(N) groups.

Different N will correspond however to different boundary conditions. In particular, one
has TN+1,s = 0 (as well as Ta<0,s = Ta6=0,s<0 = 0), Ta<0,s = Ta6=0,s<0 = 0 which is clear
from the same conditions for the characters: χN+1,s = 0. It turns out that for the super
groups gl(N |M) the Hirota equation is again the same whereas the nonzero Ta,s belong
to so called fat-hook [8] (see Fig.2a).

It is easy to check that the “gauge” transformationI

Ta,s → g
[a+s]
1 g

[a−s]
2 g

[s−a]
3 g

[−a−s]
4 Ta,s (2.13)

where gi are arbitrary functions, leaves the form of the Hirota equation unchanged. One
may choose certain normalization of the solutions by fixing these functions in one or
another way, as we do in (2.6). Notice that (2.6) still leaves one gauge degree of freedom
unfixedII. We can also introduce the quantities gauge invariant w.r.t. (2.13)

Ya,s =
Ta,s+1Ta,s−1

Ta+1,sTa−1,s

(2.14)

As a consequence of Hirota equations (2.7) they satisfy the discrete Y-system equations

Y +
a,sY

−
a,s =

(1 + Ya,s+1)(1 + Ya,s−1)

(1 + 1/Ya+1,s)(1 + 1/Ya−1,s)
. (2.15)

There exists a concise solution of Cauchy problem for Hirota equation in the semi-
(a, s)-plane , in terms of T1,s(u) fixed along the boundary (recall that T0,s(u) = 1 in our
gauge), the so called Bazhanov-Reshetikhin determinant formula [25, 10] for the fusion
in spin chains (valid here in a more general context) III

Ta,s = det
1≤j,k≤a

T1,s+k−j
(
u+ k+j−a−1

2i

)
. (2.16)

Our strategy will be to get as much information as possible about the system by
solving the Hirota equations. The Bethe ansatz equations naturally appear in this ap-
proach as a requirement of analyticity, or, in the case of spin chains, of polynomiality of
all transfer-matrices. In the next section we show how the Hirota classical integrable dis-
crete dynamics helps to solve, by means of the Bäcklund transform, the fusion relations
(2.7) in terms of a generating functional.

IWe will often use the notations f± = f(θ ± i
2 ) , f±± = f(θ ± i), and in general f [±k] = f(θ ± i

2k).
IIAnother normalization, more natural for the spin chains, is to require Ta,s(u) to be polynomial. This

corresponds to (2.5) without denominator. For the AdS/CFT applications, and for the sigma-models in
general, these requirements of polynomiality are too strong

IIIA similar formula expresses Ta,s through the antisymmetric characters Ta,1. There exist also a
generalization to the irreps with arbitrary Young tableaux.
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Figure 2: The fat-hook for the representations of SU(N |M) (left) and T-
hook for the representations of SU(N1, N2|M) (right). The lengths of horizontal
(white) strips forming the Young tableau of an irrep are equal to its highest
weight components.

3 Integrability of Hirota Equations

In this section we describe the general solution of Hirota equations in the (N |M) fat
hook shown on the Fig.2. We apply for that the Bäcklund transformation technique
based on the classical integrability of discrete Hirota dynamics, and show how it helps to
solve the problem by gradually reducing the (N |M) fat hook to a trivial one (0|0). As a
result we derive the generating functional for the general solution of Hirota equations. In
particular, the polynomial solution corresponds to the transfer matrices of the SL(N |M)
rational Heisenberg super-spin chain described above.

3.1 Linear system for Hirota equation

The classical integrability for the Hirota dynamics manifests itself in the existence of an
axillary linear problem - a pair of Lax equations

eqIa,s(u) : Ta+1,sF
+
a,s = +x T+

a+1,s−1Fa,s+1 + T+
a,sFa+1,s ,

eqIIa,s(u) : Ta,s−1F
+
a,s = −x T+

a+1,s−1Fa−1,s + T+
a,sFa,s−1 . (3.1)

Their compatibility condition gives the Hirota equation (2.7). Indeed, we notice that
F++
a,s can be expressed through Fa+1,s−1, Fa,s, Fa−1,s+1 in two different ways: 1) use

eqIa,s(u + i
2
) and then eqIIa,s+1(u) with eqIIa+1,s(u) 2) use eqIIa,s(u + i

2
) and then eqIa−1,s(u)

with eqIa,s−1(u). If we subtract the two results only the term linear in x survives which
implies:

T+
a,sTa+1,s−2

Ta,s−1T
−
a+1,s−1

+
T+
a,sTa+2,s−1

Ta+1,sT
−
a+1,s−1

−
T+
a+1,s−1Ta−1,s

Ta,s−1T−a,s
−
T+
a+1,s−1Ta,s+1

Ta+1,sT−a,s
= 0 (3.2)

or, to put it differently, the function defined by fa,s = Ta−1,sTa+1,s+Ta,s−1Ta,s+1

T+
a,sT

−
a,s

should be

periodic under the shift fa,s(u) = fa+1,s−1(u). Since for the transfer matrices T0,s = 1
this implies that f0,s = 1 and thus fa,s ≡ 1, leading to Hirota eq. (2.7).
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Next, noticing that the Hirota equation is invariant under (a, s, u) → (−a,−s,−u)
we can easily find another linear system (useful for the next section)

Ta−1,sF̃
−
a,s = +y T−a−1,s+1F̃a,s−1 + T−a,sF̃a−1,s ,

Ta,s+1F̃
−
a,s = −y T−a−1,s+1F̃a+1,s + T−a,sF̃a,s+1 . (3.3)

3.2 Solution of Hirota fusion equation by the Bäcklund method

As it was announced above the Bäcklund method allows to reduce the Hirota equation in
a fat-hook (N |M) to the same equation in a smaller fat hook (n|m) with n ≤ N, m ≤M .
For that we notice that (3.1), after the appropriate shifts in the spectral parameter and
in a and s, can be written in the form

Fa−1,sT
−
a,s = +x F−a−1,s+1Ta,s−1 + F−a,sTa−1,s ,

Fa,s+1T
−
a,s = −x F−a−1,s+1Ta+1,s + F−a,sTa,s+1 (3.4)

which is precisely the second linear system (3.3) with Fa,s and Ta,s interchanged. In
particular, this implies that Fa,s should also satisfy the same Hirota equation. It is
always possible to choose Fa,s so that it satisfies Hirota equation in a smaller fat-hook
(N − 1|M) i.e. to have FN,s = 0 , s > M. One can immediately see from (3.4)
that this condition is compatible with the fat hook boundary condition for T-functions
TN+1,s>M = 0. Below we will construct this solution explicitly.

In view of this symmetry between F and T we can denote T
N |M
a,s = Ta,s and T

N−1|M
a,s ∝

Fa,s with a particular normalization (2.13): we normalize them so that T0,s = 1 and
Ta,0 = 1. From (3.1), this normalization implies for F the following relations F0,s+1 =
F−0,s , Fa−1,0 = F−a,0 which means that we can express F0,s or Fa,0 in terms of F0,0 with
a shifted argument F0,s = F0,0(u− i s

2
), Fa,0 = F0,0(u + ia

2
) . Thus in our normalization

we get T
N−1|M
a,s ≡ Fa,s(u)

F0,0(u+
s−a
2i

)
. It should be also clear that due to the symmetry between

F and T we can change the logic and tell that (3.1) allows to increase M . Similarly,
the second linear system (3.3) allows to decrease M (or increase N) and we denote

T
N |M−1
a,s ≡ F̃a,s(u)

F̃0,0(u+
s−a
2i

)
.

By making an appropriate chain of these two transformations we can always reduce
a fat hook (N |M) to the trivial one (0|0), through a set of the intermediate fat hooks
(n|m), 0 < n < N ; 0 < m < M (see fig.3). This procedure allows to write the solution
quite explicitly. IV For the next section we introduce the parameterization

F−−0,0

F0,0

=
Q++
N |MQ

−−
N−1|M

QN |MQN−1|M
,
F̃++

0,0

F̃0,0

=
Q−−N |MQ

++
N |M−1

QN |MQN |M−1

(3.5)

The above equations define QN |M−1 and QN−1|M in terms of QN |M , for given functions

F0,0, F̃0,0. Since our normalization (2.6) allows for one more gauge one can set QN |M to
1. This, however, is not the most convenient choice. In the case of spin chains (as in

IVThis procedure is a “quantum” analogue of the construction of the so called Gelfand-Zeitlin basis.
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section 2) a natural chose is QN |M =
∏L

j=1(u−θj). In this normalization, at an arbitrary
step, or nesting level (n|m) of our Bäcklund procedure, Qn|m will be a polynomial, the

denominator of the rational functions T
n|m
a,s (u− s−a

2i
) (like in (2.5)).

Furthermore we denote

Xn|m = xn
Q++
n|mQ

−−
n−1|m

Qn|mQn−1|m
, Yn|m = ym

Q−−n|mQ
++
n|m−1

Qn|mQn|m−1

. (3.6)

3.3 A recurrent equation for the generating functional

For the quantum generalization of the generating function for the characters (2.8) we
introduce an operator valued functional

Wn|m =
∞∑

s=−∞

DsT
n|m
1,s (u)Ds (3.7)

where D is a shift operator defined by Df(u) = f(u− i
2
)D. From (3.1) at a = 0 we get

in notations (3.6)

T
n−1|m
1,s (u) = T

n|m
1,s (u)−Xn|m(u+ s−1

2i
) T

n|m
1,s−1(u+ i

2
) (3.8)

where we introduced new n|m indices for F characterizing the “level” on which we make
this Bäcklund transformation. This implies

Wn−1|m =Wn|m (1−DXn|mD) (3.9)

and similarly
Wn|m =Wn|m−1

(
1−DYn|mD

)
. (3.10)

Using the relations (3.9) and (3.10) we can show that any solution of Hirota equation
in the (N |M) fat hook can be explicitly and concisely written in the form of a simple
generating functional. For that we have to apply the recursions (3.9) and (3.10) along a
path of the length N +M on the (n|m) lattice, connecting the upper right and the lower
left corners of the N ×M rectangle on Fig.3. This gives the following formula for the
generating functional (3.7) [6, 8, 9]

WN |M =
←−∏
path

{
(1−DXn|mD)−1 , vertical
(1−DYn|mD) , horizontal

(3.11)

where the subset of N +M functions Xn|m, Yn|m, chosen out of the whole set of N ×M
such functions, depends on the path (see Fig.3).

Xn|m , line from (n,m) to (n− 1,m) (3.12)

Yn|m , line from (n,m) to (n,m− 1) (3.13)

In the case when Qn|m are polynomials the solution of Hirota equation constructed in
this way corresponds to the transfer matrices with a twist given by a supergroup element
g = diag{x1, . . . , xN |y1, . . . , yM}.
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Figure 3: Bäcklund procedure: a possible reduction path on the (n|m)-lattice.

3.4 Analyticity and Bethe ansatz equations

The parameterization of a solution of Hirota equation in terms of Q-functions described
above is very convenient for constructing solutions with particular analytic properties.
In this section we assume that Qn|m are some functions without poles, more general than
polynomials, which could have some zeros. Generically, in the process of the Bäcklund
construction of a solution these zeros will create poles in the T-functions. However it is
possible to cancel all the poles in all T -functions by adjusting accordingly the zeros of
the Qn|m functions. This will lead to a set of nested Bethe ansatz equations.

To get it we notice that if Qn|m has a zero u
(n|m)
j then two vertical links in the path

in fig.3 meeting at the point (n|m) give the following (explicitly written) factor in the
generating functional

W ' · · · × (1−DXn|mD)−1(1−DXn+1|mD)−1 × · · · = (3.14)

· · · ×

[
1−D

(
xn
Q++
n|mQ

−−
n−1|m

Qn|mQn−1|m
+ xn+1

Q++
n+1|mQ

−−
n|m

Qn+1|mQn|m

)
D + xk xn+1

Q+
n+1|m

Q−n+1|m
D4
Q−n−1|m

Q+
n−1|m

]−1

× . . .

In order to have no poles in T1,s(u) we have to require that the poles u
(n|m)
j at zeros of

Qn,m cancel in the round brackets giving the Bethe ansatz equations

Q++
n+1|mQ

−−
n|mQn−1|m

Qn+1|mQ++
n|mQ

−−
n−1|m

∣∣∣∣∣
u

(n|m)
j

= − xn
xn+1

,
Q−−n|m+1Q

++
n|mQn|m−1

Qn|m+1Q−−n|mQ
++
n|m−1

∣∣∣∣∣
u

(n|m)
j

= − ym
ym+1

(3.15)

where the second equation comes from a similar cancelation for two neighboring horizonal
links. Similar cancelation can be seen for a horizontal link followed by a vertical link
meeting at a point (n|m)

(1− ymDYn|mD)(1− xn+1DXn+1|mD)−1

=
Q+
n|m−1

Q−n|m
(1− ymD2)

Q+
n+1|m

Q+
n|m−1

(1− xn+1D
2)−1

Q−n|m
Q+
n+1|m

(3.16)

=

([
Q+
n+1|m

Q−n|m
− ym
xn+1

Q+
n|m−1

Q−n|m−1

Q−n+1|m

Q−n|m

]
+

ym
xn+1

Q+
n|m−1

Q−n|m

Q−n+1|m

Q−n|m−1

(
1− xn+1D

2
))

× (1− xn+1D
2)−1

Q−n|m
Q+
n+1|m

.
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We see that we only have to require the cancelation of the poles in the square brackets to
ensure that the poles will not appear at any order in D. Similar relations can be written
for a horizontal link following by a vertical one. That gives another pair of the Bethe
equations, so that we have

Qn|m−1Q
++
n+1|m

Q++
n|m−1Qn+1|m

∣∣∣∣∣
u

(n|m)
j

=
ym
xn+1

,
Qn−1|mQ

−−
n|m+1

Q−−n−1|mQn|m+1

∣∣∣∣∣
u

(n|m)
j

=
xn
ym+1

. (3.17)

Notice that this pair of equations is compatible with the first pair (3.15) – their products
coincide. This is a consequence of the “zero curvature” equations discussed below. In
general, we need only N + M − 1 Bethe equations, written in the interior vertices of a
path of Fig.3, to fix completely the full set of Q-functions with all their zeros.

3.5 Self-consistency of the construction and QQ-relations

Once a path on Fig.3 is fixed one can choose an arbitrary set of functions Qn|m along
this path in order to get some solution of the Hirota equation. If we want now to change
the nesting path without changing the solution for T-functions, it is possible to choose
a new subset of N + M − 1 Q-functions entering the generating functional (3.11). Let
us consider such an elementary modification of the functional:

(1−DXn|m−1D)−1(1−DYn|mD) = (1−DYn−1|mD)(1−DXn|mD)−1 (3.18)

The terms quartic in D cancel automatically and the quadratic terms give

Xn|m−1 − Yn|m = Xn|m − Yn−1|m (3.19)

which means that the combination

fn|m =
xnQ−n−1|m−1Q

+
n|m − ymQ

+
n−1|m−1Q

−
n|m

Q−n−1|mQ
+
n|m−1

(3.20)

is a periodic function with a period i. In the case when Qn|m are polynomials fn|m should
be a constant, which leads to the following QQ relation [8, 9]

fn|m Q−n−1|mQ
+
n|m−1 = xnQ−n−1|m−1Q

+
n|m − ymQ

+
n−1|m−1Q

−
n|m . (3.21)

In the spin chain case, when Q’s are polynomials, one can fix their normalization to have
the same lading large u coefficient. In this case, evidently fn,m = xn − ym.

Now we will show how all these rather abstract considerations can help us to attack
an important physical problem - the study of the Y-system for the exact spectrum of an
AdS/CFT system.

4 Classical transfer matrix of AdS5×S5 superstring

In this section, we remind the results of the finite gap solution of the classical superstring
on AdS5 × S5 [26, 27] (see [28] for the details). We will construct in the classical limit
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a set of the eigenvalues of transfer matrices in various representations. We demonstrate
that, very similarly to transfer matrices of the spin chains, the classical transfer matrices
(traces of the monodromy matrix in various irreps) of the Metsaev-Tseytlin sigma model
satisfy the Hirota equation. The crucial difference with the previous example is the
non-compact symmetry group PSU(2, 2|4) which implies a different type of boundary
conditions for the Hirota equation - the so called T-Hook (Fig.2b).

We examine the properties of solutions of Hirota eqs. given by the classical transfer
matrices and then in the next section we discuss certain aspects of the generalization to
the quantum case.

4.1 Characters of PSU(2, 2|4) and their Hirota dynamics

The monodromy matrix Ω(x) is a spectral parameter dependent SU(2, 2|4) group ele-
ment. In the fundamental representation it is a 4|4× 4|4 supermatrix with 4 + 4 eigen-
values (x1, . . . , x4|y1, . . . , y4) expressed through the quasi-momenta (of S5 and AdS5 re-
spectively) as follows: xj = e−ip̃j(x) , yj = e−ip̂j(x) , j = 1, 2, 3, 4. The dependence of Ω(x)
on the spectral parameter x comes from the expression for the Lax pair [27]. Supertrace
of the monodromy matrix Ω(x) in any unitary highest weight irreducible representation
(irrep) λ will be denoted by Tλ = StrλΩ(x)V.

Such highest weight irreps of U(2, 2|4) can be parameterized by generalized Young
diagrams (see Fig.2b). The rectangular irreps λi = s + 2, i = 1, . . . , a which we denote
as [a, s] are playing a crucial role since they obey a closed system of relations w.r.t. their
tensor product [a, s]⊗ [a, s] = [a + 1, s]⊗ [a− 1, s]⊕ [a, s+ 1]⊗ [a, s− 1] . Tracing out
this relation we find that the characters of Ta,s of such irreps again satisfy the Hirota
relation, as it was the case for the characters χa,s of the sec.2

Ta,sTa,s = Ta+1,sTa−1,s + Ta,s+1Ta,s−1 . (4.1)

As we shell see later, this equation is a special limit of the full quantum Hirota equation
(2.7) containing no shift in the spectral parameter, since it is invisible in this system in
the strong ’t Hooft coupling λ→∞ limit where the spectral parameter is parameterized

as u =
√
λ

4π
(x+ 1/x) and scales as

√
λ.

Let us compare the characters for finite dimensional irreps of U(4|4) and the charac-
ters of non-compact infinite dimensional irreps of U(2, 2|4). They satisfy the same Hirota
equation (4.1) but with different boundary conditions in the infinite (a, s) lattice. Both
are defined by the same generating function

w(z) = SDet (1− zΩ(x))−1 =
(1− y1z)(1− y2z)(1− y3z)(1− y4z)

(1− x1z)(1− x2z)(1− x3z)(1− x4z)
(4.2)

where the characters of irreps (1, s) are generated by the contour integrals

T
(4|4)
1,s =

1

2πi

∮
C

dz

zs+1
w(z) , (4.3)

VSince all the unitary representations are indefinite dimensional the supertrace may not be convergent
in some special cases. For sufficiently large L/

√
λ the convergence is guarantied.
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and all the other representations can be generated from there irreps by the Jacobi-Trudi
type formula (which is a direct consequence of (4.1)):

Ta,s = det
1≤i,j≤a

T1,s+i−j . (4.4)

The two types of characters differ by the definition of the integration contour C. If the
contour encircles the origin, living aside all the poles in the denominator of (4.2), then
the corresponding Ta,s (also called the super-Schur polynomials) constructed from T1,s by
means of (4.4) will be non-zero only inside the so called 4|4 fat hook on the (a, s) lattice
(see Fig.2). This corresponds to the compact unitary representations of U(4|4). But if
the contour encircles the origin together with the poles t = x−1

3 , x−1
4 the corresponding

characters generated by (4.4) are non-zero only within the T-hook Fig.2b. It is shown
in [29,30] that the irreps corresponding to these characters are indeed the unitary infinite
dimensional irreps of U(2, 2|4) (see also [19] for some explanations and for the explicit
formulas for these characters).

These characters have a few discrete symmetries. They have a specific symmetry
w.r.t. to the inversion of the eigenvalues:

Ta,s(x1, . . . , x4|y1, . . . , y4) = Ta,−s

(
1

x4

, . . . ,
1

x1

∣∣∣∣ 1

y4

, . . . ,
1

y1

)
(4.5)

and instead of the full Weyl symmetry of the compact irreps, they have only a residual
permutational symmetry

x1, x2 ↔ x2, x1 ; x3, x4 ↔ x4, x3 ; {y1, y2, y3, y4} ↔ Perm{y1, y2, y3, y4} . (4.6)

They also have some complex conjugation properties described below.

4.2 Z4 symmetry and reality

From the unitarity of the classical monodromy matrix, the eigenvalues as functions of x
are unimodular

xi(x) = 1/xi(x̄) , yi(x) = 1/yi(x̄) . (4.7)

The Z4-symmetry of this AdS5 × S5 coset model imposes the following monodromy
property [27]

x1,2,3,4(1/x) =
1

x2,1,4,3(x)
, y1,2,3,4(1/x) =

1

y2,1,4,3(x)
. (4.8)

Since on the unit circle |x| = 1 we have x̄ = 1/x and we get

x1,2,3,4(x) =
1

x1,2,3,4(1/x)
= x2,1,4,3(x) , y1,2,3,4(x) = y2,1,4,3(x). (4.9)

All this, together with (4.6), implies the reality of Ta,s on the unit circle |x| = 1:

Ta,s = Ta,s . (4.10)

326



Chapter III.7: Hirota Dynamics for Quantum Integrability

Then the Y functions defined by (2.14) are also real: Ya,s = Ya,s. It follows from the
definition (2.14) and the explanations below the eq.(4.4) that whereas Ta,s are non-
zero in the vertices of the Fig.4(left) the Ya,s are defined only in the visible nodes on the
Fig.4(right). As was explained in [18] eq.(4.1) and the corresponding simplified Y-system
describe the quasi-classical limit of the AdS5/CFT4 system.

5 Quantum Hirota equation for AdS/CFT

There is no rigorous prove that the Metsaev-Tseytlin (MT) superstring σ-model is a well
defined quantum theory, though the explicit perturbative SYM calculations lead to the
results consistent up to two loops with the classical limit of MT model [31,32]. We know
that this σ-model is classically integrable and that there is also an abundant evidence
of its quantum mechanical integrability. The experience from relativistic quantum σ-
models with massive spectra shows that the problem of the energy spectrum on a finite
space circle, or a finite radius 2D space-time cylinder, always boils down to a very simply
looking and universal system of functional Y- and T-systems, or Hirota equations (2.7),
the same as for the spin chains considered in the Sec.2. The boundary conditions in
a, s and the analyticity conditions in u for the Hirota-type system or the corresponding
Y-system differ from model to model, but usually their general form (2.7) is tightly
related to the underlying symmetry and stays the same for all gl(N |M) algebras (with
only minor modifications for other algebras)VI. Unless there exists an integrable lattice
version, the only tangible proof of the Y-system for each particular finite size σ-model is
based on the TBA approach [33] with the finite temperature interpreted as a finite space
circle [4].

The quantum MT σ-model in the light-cone gauge, looking as a massive, though
not explicitly relativistic theory, seems to be in the same class of integrable σ-models
as the above mentioned relativistic examples. The absence of the worldsheet relativistic
invariance, necessary to swap the worldsheet time and space directions, complicates but
does not ruin the TBA approach to the finite size problem.

To apply the T-system for a particular σ-model one should identify the boundary
conditions on the (a, s)-lattice. The quasi-classical picture of the previous section sug-
gests that the full quantum Hirota equation should have the same boundary conditions,
the T-hook of Fig.4, as the simplified system for characters (4.1), as a consequence of
the AdS/CFT superconformal PSU(2, 2|4) symmetry.

The next step is to identify the spectral parameter u entering the full quantum Hi-
rota eq.(2.7). In analogy with the integrable sigma-models [34] it can be taken the same
as entering the pair (p, u), where p is the quasi-momentum of the classical monodromy
matrix, defining the simplectic structure of the algebraic curve and entering the holo-
morphic integrals

∮
pdu of the Bohr-Sommerfeld quantization. This parameter is related

to the one used in the previous section by Zhukovski map [27]

u =
√
λ

4π
(x+ 1/x) . (5.1)

VIFor an incomplete table of integrable models and their Y-systems see the last page of [12].

327



Chapter III.7: Hirota Dynamics for Quantum Integrability

We will assume that this spectral parameter u is the same as in the full quantum
AdS/CFT Y-system (2.15). The initial spectral parameter x is then a double valued
function w.r.t. the new parameter u. As a consequence of these additional analyticity
features in this construction we expect that Ya,s has several cuts parallel to the real
axes, with the branchpoints at ±2g + in

2
. To fix the cut structure we distinguish two

kinematics: the physical and the mirror (where the role of time and space is swapped)

xph(u) =
1

2

(
u

g
+

√
u

g
− 2

√
u

g
+ 2

)
, xmir(u) =

1

2

(
u

g
+ i

√
4− u2

g2

)
, (5.2)

having branch cuts at (−2g, 2g) and (−∞,−2g) ∪ (2g,∞), respectively.VII

Figure 4: T-shaped “fat hook” (T-hook) uniting two SU(2|2) fat hooks, see [13]
for this T-hook and its generalization [35].

In the supersymmetric models the Hirota equation [13] appears to be a little more
then the Y-system (2.15) in which two corner equations are missing. When one tries
truncate the Y-system from the full (a, s) plane lattice to the T-hook one has to put
Y -functions to zero on the vertical boundaries, and to ∞ at the horizontal boundaries
in the left figure of Fig.4. Then the equation for Y2,±2 contains an uncertainty 0

0
. The Y-

system has to be supplemented by additional information. In this respect, the T-system,
free of that uncertainty, looks more fundamental than the Y-system.

To fix the functions Y2,±2(u) at the corner nodes we will use a fact noticed from
TBA [14–16] (and partially inspired by ): in the mirror kinematics, Y2,±2(u) and Y1,±1(u)
are related on two sides of the cut (−∞,−2g) ∪ (2g,∞) on R by

Y2,±2(u+ i0) =
1

Y1,±1(u− i0)
. (5.3)

In the next section we will use (5.3) as a natural analytic input for the asymptotic large
L solution of the quantum Y-system.

Given a particular solution of the Y-system, the corresponding energy of a string

VIIx(u) as analytic function has the following conjugation properties: x̄(u) = 1
x(u) on the mirror sheet

and x̃(u) = x(u) on the physical sheet.
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state (or anomalous dimension of a SYM operator) can be obtained fromVIII

E =
∑
j

εph
1 (u4,j) +

∞∑
a=1

∫ ∞
−∞

du

2πi

∂εmir
a

∂u
log (1 + Ya,0(u)) , (5.4)

whose general form is rather standard in the TBA context. The physical energy εph
a or

the mirror momentum εmir
a are defined by the same formula

εa(u) = a+
2ig

x[+a]
− 2ig

x[−a]
. (5.5)

with the corresponding choice of x(u) from (5.2).
The physical roots u4,j are subject to the exact, finite size Bethe ansatz equations

Y ph
1,0 (u4,j) = −1 (5.6)

where the Y ph
1,0 (u) was explicitly defined in [20] as an analytic continuation of Y1,0(u)

down through the cut (−∞,−2g + i
2
) ∪ (+2g + i

2
,+∞). The first term in (5.4) is given

by the logarithmic pole contributions from the second one at the points u4,j.
It is also important to mention that at large L the Y-functions of the middle (black)

nodes are exponentially suppressed on the real axis in the mirror sheet

Ya,0(u) ∼ e−ip
mir
a (u)L , where pa(u) = −i log

(
x[+a]

x[−a]

)L
. (5.7)

5.1 Integrability of AdS/CFT Y-system and large volume limit

To study the AdS/CFT Y-system we need to clarify the analyticity properties of the
Y-functions. Most of this information is due to the TBA derivation of the Y -system.
The full understanding of these properties still needs additional efforts (see [37] for some
advances). We will try to summarize them and demonstrate their naturalness. Ideal
would be to postulate these properties from some simple and natural physical principles
and then deduce from them the asymptotic Bethe ansatz (ABA) equations, along with
the dressing factor (ignoring the standard S-matrix bootstrap procedure) as it can be
done for various relativistic sigma-models (see [12, 38] for an inspiring example of the
SU(N) × SU(N) principal chiral field). On our current level of understanding of the
AdS/CFT Y-system, this program can be fulfilled only partially.

This Y-system is equivalent to Hirota eq.(2.7) in the T-hook fig.4(left) with specific
analyticity conditions. Fortunately, many of the results for the simplified Hirota eq.(4.1)
for quasi-classical AdS/CFT, in particular (4.4) and (4.2), as well as the analyticity (4.7)-
(4.10), can be generalized to the full quantum case. We will demonstrate in this section
that the asymptotic Bethe ansatz (ABA) of [39] can be explained, and partially derived
from the AdS/CFT Y-system (2.15) together with the relation (5.3), providing the reality
of Y-functions, the s↔ −s symmetry and certain natural analyticity assumptions, such
as the existence of analyticity strips in u-plane.

VIIIwhich can be partially motivated by a similar formula for the wrapping contributions in the quasi-
classical quantization from the algebraic curve of the finite gap method, see [36,19].
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5.2 Generating functional for U(2, 2|4) T-functions

Since Hirota equation for AdS5/CFT4 is exactly the same as the one considered in the
Sec.2 for spin chains one may try to construct its general solution in terms of only a few
functions. But we here we deal with a non-compact symmetry group, and the T-hook
instead of the usual L-shaped fat hook domain for the Y-system as a consequence. In
the pervious section, in the strong coupling limit the difference between the U(4|4) and
U(2, 2|4) generating functions was only in the way we expand various parts of (4.2) w.r.t.
the generating parameter t. A natural generalization of (3.11) for the quantum case or
the T-hook gives T1,s(u) in terms of the generating functional [19]

W =

[
(1−DY1D)

1

1−DX1D

1

1−DX2D
(1−DY2D)

]
+

× (5.8)[
(1−DY3D)

1

1−DX3D

1

1−DX4D
(1−DY4D)

]
−

=
∞∑

s=−∞

DsT1,sD
s

Here {Y1(u)|X1(u),X2(u)|Y2(u),Y3(u)|X3(u),X4(u)|Y4(u)} are 8 arbitrary functions of
the spectral parameter u parameterizing the general solution where, as a convenient
choice for the AdS/CFT system, the grading is fixed by the Kac-Dynkin diagram

⊗
−©

−
⊗
−©−

⊗
−©−

⊗
. Similarly to the U(2, 2|4) characters (see after eq. (4.4)), we expand

in positive powers of the shift operator D IX (replacing the t of (4.2)) inside the bracket
[. . . ]+ corresponding to the u(2|2)R sub-algebra, and in negative powers of D inside the
bracket [. . . ]− corresponding to the u(2|2)L subalgebra X. As a result one gets an infinite
sum for each T1,s, −∞ < s < ∞. Note also that (5.8) corresponds to a gauge where
T0,s = 1 and all other Ta,s can be found from (2.16).

In the asymptotic L → ∞ limit the full Y-system in the U(2, 2|4) T-hook almost
splits into two Y-subsystems of two su(2|2)L,R fat hooks corresponding to the L,R wings:
X1,X2,Y1,Y2 are exponentially small whereas X3,X4,Y3,Y4 are exponentially large, thus
the terms in the sum over s are organized in powers of wrappingXI.

We can easily find these 8 functions in the L → ∞ limit by comparing T1,1(u)
generated from (5.8) with the explicit asymptotic solution of the Y-system with given
Bethe roots found in [13] (partially by matching with the known ABA of [39])

Y1 = HRF
+
0

Q−1
Q+

1

, X1 = HR
Q−1Q++

2

Q+
1Q2

, X2 = HR
Q−−2 Q+

3

Q2Q−3
, Y2 = HR

Q+
3

Q−3
F−4 ,

Y4 = HL
1

F−0

Q+
7

Q−7
, X4 = HL

Q+
7Q−−6

Q−7Q6

, X3 = HL
Q++

6 Q−5
Q6Q+

5

, Y3 = HL
Q−5
Q+

5

1

F+
4

(5.9)

IXWe remind that D is defined by Df(u) = f(u− i/2)D. Since presently we may expect branch cuts
originated from the map x(u) the shift may be ambiguous, the prescription is to analytically continue
along the path going between the branch points without crossing the cuts going to infinity parallel to
the real axes.

XAs was noticed in [40], we can generate symmetric and antisymmetric representations by expanding
the generating functional in powers of D and D−1 respectively. Mixed expansions generate infinite
representations for non-compact real forms of gl(M |N).

XIWrappings are related to the Feynman graphs wrapped around the “spin chain” representing an
operator of a length L: in weak coupling, k wrappings occur at the order λLk
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where F4 =
∏
j

x− x+
4,j

x− x−4,j
, HR =

(
x−

x+

)L
2 ∏

j

x+ − x−4,j
x− − x−4,j

σ(u, x±4,j) (5.10)

F0 = F̄4 , HL = H̃R . (5.11)

As before, the bar means the complex conjugation in mirror plane whereas the tilde
is the complex conjugation in physical plane. The Qa functions generalize the Baxter
polynomials - they are generic ”polynomials” on the two-sheet Riemann surfaceXII

Qa =
Ka∏
j=1

(x(u)− ya,j)
K̄a∏
j=1

(
1

x(u)
− yā,j

)
. (5.12)

The roots of these polynomials are constrained by the mirror reality condition of the
Y functions. Namely, we have, as in the strong coupling limit (4.9)XIII

X1 = X2 , Y1 = Y2 . (5.13)

This asymptotic solution has a few important symmetries and analytic properties. We
will study some of them below. It is very important to find a minimal set of such
properties, such as reality and analyticity, which can be used then to constrain the 8
functions parameterizing the general solution, to generate only the physically relevant
solutions. We present below a possible list of some of such properties which, in our
opinion, should be satisfied by the physical solutions and try to constrain by them the
ABA solution (5.9). This program worked well for the principal chiral field model [12,38]
but it appears to be more tricky to do it for the AdS/CFT Y-system.

We will show that an essential part of ABA can be derived from these properties.

5.3 Minimal analyticity structure of Y-functions

Here we summarize some of the analyticity properties of Y-functions which, by our
assumption, are satisfied by the physical solutions of the AdS/CFT Y-system:
Reality:

I) Reality of Y-functions Ȳa,s = Ya,s

II) Reality of the Bethe roots u4,j
XIV

Analyticity:

1) Y1,±1, Y2,±2 should have a Zhukovski cut on the real axes and be related by (5.3)

2) Y1,s should have no branch cuts inside the strip − s−1
2
< Imu < s−1

2

3) Ya,1 should have no branch cuts inside the strip −a−1
2
< Imu < a−1

2

XIIWe allow for some of the Bethe roots yj to be at infinity.
XIII and similarly for the left wing: X̃4 = X̃3 , Ỹ4 = Ỹ3
XIVWe believe that the auxiliary roots should be real or appear in complex conjugated pairs, though

this question deserves a better study.
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4) Ya,0 should have no branch cuts inside the strip −a
2
< Imu < a

2

This list may be not enough to completely constrain the ABA and the physical meaning
of some of them remains to be understood. All this deserves an additional study. But
these properties are consistent with the TBA equations for the excited states.

In what follows we consider for simplicity the operators/states obeying the symmetry
Ya,s = Ya,−s. The generalization to the full asymmetric case is almost straightforward.
One can see that Ya,s = Ya,−s implies (which is also true for finite L)

X+
4

Y+
4

=
Y−1
X−1

,
X4

X3

=
X2

X1

,
X−3
Y−3

=
Y+

2

X+
2

. (5.14)

5.3.1 Reality

Reality of Ya,s>0 implies that Ta,s are also real up to a gauge transformation. Here we
will examine this condition in the asymptotic large L limit.

It is easy to see that since the first four functions X1,Y1,Y2,X2 are small whereas
X3,Y3,Y4,X4 are large in the L → ∞ limit only a half of the generating functional
(5.8) (corresponding to one of the subgroups su(2|2)L,R) contributes. For s ≥ 0 the full
functional reduces to [40] XV

WR ' (1−DY1D)
1

1−DX1D

1

1−DX2D
(1−DY2D)

Y−3 Y+
4

X−3 X+
4

=
∞∑
s=0

DsT1,sD
s (5.15)

Since we fixed T0,s = 1 we have only two degrees of freedom left: one is a possible
redefinition of D → g(u)D which does not change the definition of the shift operator,
whereas another corresponds to the transformation is W → Wg(u). In particular, we
can remove the last factor from (5.15) by a desired gauge transformation (2.13) to get

W = (1−DY1D)
1

1−DX1D

1

1−DX2D
(1−DY2D) . (5.16)

Let us show that the hermiticity of the above generating functional automatically
implies the reality of all Ya,s>0. Indeed since D is hermitian we have

W =
∑
s

DsT1,sD
s =

∑
s

DsT̄1,sD
s =W† (5.17)

= (1−DȲ2D)
1

1−DX̄2D

1

1−DX̄1D
(1−DȲ1D) ,

which is equivalent to (5.13): since we have to equate the coefficients of infinitely many
powers of D the monomials should coincide. This relation is a quantum analog of (4.8).
Notice that (5.13) implies (assuming that HR and F4 do not depend explicitly on the
Bethe roots ya,j, yā,j) that

Q̄1 = Q3 , Q̄2 = Q2 , F̄4 = F0 , H̄R = HR . (5.18)

XVFor s ≤ 0 only the complimentary part of the full generating functional, dropped in (5.16), is
relevant.
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The first equality implies that y1̄,j = y3,j, y1,j = y3̄,j. The second equality tells us that
y2,j = y2̄,j i.e. that Q2 is a usual polynomial of u. Notice that the combination Q1Q3 is
a polynomial of u. Finally, the last equality implies for the (unitary) dressing factor

∏
j

σ(u, u4,j)

σ̄(u, u4,j)
=
∏
j

1/x− − x+
4,j

1/x+ − x+
4,j

x− − x−4,j
x+ − x−4,j

(5.19)

which is the crossing condition of [41]!XVI (see [42] for its solution).

5.3.2 Analyticity properties 1), 2)

To see the consequences of the analyticity property 1) let us make a simple observation.
By a direct calculation of the corresponding T-functions from (5.16) we get

Y1,+1Y2,+2 '
X−1 X+

2

Y−1 Y+
2

=
1

F0F4

, (5.20)

and hence the property 1) immediately implies F0(u + i0)F4(u + i0) = 1
F0(u−i0)F4(u−i0)

.

To arrive to the above conclusion we used a weaker version of the property 1) for the
product of two Y functions. In fact, one can get more from the property 1), namely

F
[+0]
4 = 1/F

[−0]
0 , which together with (5.18) gives a powerful constraint on the functions

F4 and F0. We will show below that requiring F4 and F0 to have only one Zhukovski cut
on the real axes leads to the conditions 2) and 3).

Let us study the property 2). Notice that the transformation X1,2 → gX1,2, Y1,2 →
gY1,2 where g(u) is an arbitrary function, does not affect Y1,s and therefore it is a gauge

transformation. If we take g =
Q+

1

HRQ−1
we notice that Q1 appears only in the combination

Q1Q3, which does not have branch cuts as we have shown above. This implies that in
that gauge X1 and X2 have no branch cuts any more. Expanding the denominator in
(5.16) we get

W '
∞∑
s=0

Ds(1−DY [+s]
1 D)

(∑s
n=−sX

[−s+1]
1 . . .X [n−1]

1 X [n+1]
2 . . .X [+s−1]

2

)
(1−DY [−s]

2 D)Ds.

The cuts in T1,s come only from Y [+s−1]
1 and Y [−s+1]

2 . The analyticity requirement 2) is

satisfied since T1,s ∼ Y [+s−1]
1 Y [−s+1]

2 ∼ F
[+s]
0 F

[−s]
4 have the analyticity strip |Im (u)| < s/2

because F0, F4 have only a single cut one the real axes.

5.3.3 Duality transformation and analyticity 3)

Similarly to the Sec.3.5 we can consider a duality transformation as an effect of the
commutation of two operatorial factors within the generating functional:

(1−DX1D)−1(1−DY1D) = (1−DŶ1D)(1−DX̂1D)−1 (5.21)

XVIThe original crossing relation of Janik coincides with (5.19) up to a factor which becomes 1 due to
the zero total momentum (level matching) condition on the roots u4,j .
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and a similar equation for the factors with X2,Y2. It is convenient to parameterize the
new factors as (compare it with (3.6),(3.18))

X̂1 = ĤR
Q̂+

1

Q̂−1

1

F−0
, Ŷ1 = ĤR

Q−−2 Q̂+
1

Q2Q̂−1
, Ŷ2 = ĤR

Q++
2 Q̂−3
Q2Q̂+

3

, X̂2 = ĤR
Q̂−3
Q̂+

3

1

F+
4

(5.22)

where by definition ĤR can only depend on the momentum carrying roots u4,k whereas

Q̂1 is a function of the form (5.12). In this parameterization we have X̂+
1 /Ŷ+

1 =
X−1 /Y−1 , X̂−2 /Ŷ−2 = X+

2 /Y+
2 and to keep (5.16) intact we only have to satisfy commpare

with (3.19)) X̂1−Ŷ1 = X1−Y1 , X̂2−Ŷ2 = X2−Y2 Second equation is the complex con-

jugate of the first one. The first equation gives
Q̂+

1 Q
+
1

Q̂−1 Q
−
1

= F−0
HR
ĤR

F+
0 Q2−Q++

2

F−0 Q
−−
2 −Q2

which has the

solution Q̂1Q1 = f(u, x4,k)(F0Q−2 −Q+
2 ) . Since the r.h.s. has no poles at x = 1/x+

4,k and

cannot explicitly depend on x4,k we should take f = C
∏

k(1/x−x
+
4,k) to cancel the poles

in F0. This leads to the condition Q̂1Q1 ∝ Q+
2

∏K4

k=1(1/x− x+
4,k)−Q

−
2

∏K4

k=1(1/x− x−4,k)
from where we can determine Q̂1 and its complex conjugate Q̂3. The resulting formulas
are analogous to (3.20).

We demonstrated above that the terms in the generating functional can be reshuffled
in such a way that the expression for the new elementary factors (5.22) are very similar
to the initial ones (5.9), with the modified Bethe roots.

Now let us use this fact to show that Ya,1 are also analytic in their strips given in the
property 3). Indeed, using the Bäcklund relations, in the way similar to the subsection
3.3 where Ta,s was generated fromW , we can show that Ta,1 can be computed fromW−1

as follows [9]

W−1 = (1−DX̂2D)
1

1−DŶ2D

1

1−DŶ1D
(1−DX̂1D) '

∞∑
a=0

(−1)aDaTa,1D
a . (5.23)

As we saw in subsection 5.3.2, for the analyticity of T-functions in their physical strips F4

should have a cut only on the real axes. The arguments given there can be also applied
to the functional (5.23) which leads to the proof of the property 3). It also shows that
in a certain gauge Ta,1 has the analyticity strip |Im (u)| < a/2.

Due to (5.7) we can drop the denominator in the r.h.s. of (2.15) at s = 0 and rewrite it,

using 1 + Ya,s =
T+
a,sT

−
a,s

Ta+1,sTa−1,s
following from (2.7) and (2.14),

Y +
a,0Y

−
a,0

Ya−1,0Ya+1,0
'
(

T+
a,1T

−
a,1

Ta−1,1Ta+1,1

)2

,

where in the equation for a = 1 one should replace in the l.h.s. Y0,0 by 1. Solving this

Y-system equation for Ya,0 we get Ya,0 = φ(u+ia/2)
φ(u−ia/2)

T 2
a,1 where the first factor, a zero mode,

is easy to calculate since φ(u) can be extracted from Y1,0. Hence the most complicated
part of Ya,0 is hidden in Ta,1 and has the correct analyticity structure 4). The proof of

the correct analyticity of the factor φ(u+ia/2)
φ(u−ia/2)

is left to the reader.

5.3.4 Reality of Ya,0

Finally let us also imply the reality condition to Y1,0 = (Y1−X1−X2+Y2)2

Y2Y3
. Note that the

numerator is real, so for the reality of Y1,0 we only have to require that Y2Y3 = HLHR
F−4
F+

4

is
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real. Note that the factors HR is a real function as a consequence of the crossing equation
in the mirror kinematics stemming from the last of eqs.(5.18). In the physical kinematics
HL is conjugate to HR and naively one would expect it to be also real as well. However
the conjugation in the physical sense does not necessarily commute with the mirror

conjugation. Explicit calculation shows that Y2Y3 =
Q++

4 Q−−4

Q2
4

, Q4 =
∏K4

k=1(u − u4,k)

which is indeed real. The reality of all other Ya,0 follows from the Y-system.
Finally, the above expression for Y1,0 simplifies on a Bethe root u = u4,k: since

1/F−4 (u4,k) = 0 , Y2 dominates the numerator and we get from Y1,0(u4,k) = Y2/Y3 =
HR
HL
F+

4 F
−
4
Q+

3 Q
+
5

Q−3 Q
−
5

= −1. Since HR is a complex conjugate of HL we see that Y1,0(u4,k) is

unimodular in the physical kinematics, ensuring the reality of the Bethe roots u4,k
XVII.

6 Conclusions and perspectives

Our main purpose in these notes was mainly pedagogical: to show the power of Hirota
discrete integrable dynamics (HDID) for the solution of quantum integrable models.
The Bäcklund method of solution of Hirota equation for fusion in the supersymmetric
generalizations of the Heisenberg spin chain, with the polynomiality condition of the
transfer matrix gives a rather direct way of derivation of the final Bethe ansatz equations
for the roots of Baxter’s Q-polynomials. However, the applications of HDID is not limited
to the spin chains and can be quite efficient in the study of integrable CFT’s, σ-models
at finite volume and, remarkably, in such a complicated problem as the AdS5/CFT4

system.
We demonstrated that the general asymptotic solution of Y-system for AdS/CFT

obeys several remarkable analyticity and reality properties. They seem to be rather con-
straining and could be used at finite volume to single out the physically relevant solutions
of this Y-system. It seems possible to reverse the logic and derive the asymptotic Bethe
ansatz equations from these equations, as in relativistic σ-models.

We hope that further study of this circle of questions, and in particular of the role and
the consequences of the equation (5.3), will lead to the complete understanding of the
analyticity structure of the integrable AdS/CFT systems. This understanding, together
with the solutions of Y-system stemming from the HDID (in the form the generating
functional (5.8) or in the Wronskian form recently obtained in [43]) should allow to
reduce the problem to a finite set of integral Destri-DeVega type equations.
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Chapter IV.1: Aspects of Non-Planarity

1 Introduction

The discovery of the integrability of the planar spectral problem of AdS/CFT [1–3]
has provided us with a wealth of new results and tools for the study of gauge and
string theory. Given this success it is natural to investigate whether the integrability
extends to other aspects of the AdS/CFT correspondence. Here we shall discuss this
possibility mainly from the gauge theory perspective and staying entirely within the
maximally supersymmetric gauge theory in four dimensions, N = 4 SYM. The fate of
the integrability of the planar spectral problem when reducing or completely removing
the supersymmetry is discussed in the chapters [4] and [5]. A natural direction in which
to search for integrability is in the non-planar version of the spectral problem. As we
will review below, while the non-planar version of the dilatation generator can easily
be written down (at least in some sub-sectors and to a certain loop order) attempts to
diagonalize it have so far not revealed any traces of integrability. For a conformal field
theory like N = 4 SYM natural observables apart from anomalous dimensions are the
structure constants which appear in the three point functions of the theory and govern the
theory’s operator product expansion. Three-point functions are of course not unrelated
to non-planar anomalous dimensions as correlators of three traces can be seen as building
blocks for higher genus two-point functions. As we shall see the calculation of structure
constants of N = 4 SYM is impeded by extensive operator mixing. For a certain subset
of operators, this mixing can be handled via the diagonalization of the planar dilatation
operator and the structure constants can be calculated using tools pertaining to planar
integrability. An integrable structure allowing to treat all types of three-point functions
has not been identified.

Anomalous dimensions and structure constants are observables which are associated
with local gauge invariant operators but in a gauge theory one of course also has at
hand numerous types of non-local observables such as Wilson loops, ’t Hooft loops,
surface operators and domain walls. Here we will limit our discussion to Wilson loops,
more precisely to locally supersymmetric Maldacena-Wilson loops. Another type of
Wilson loops, Alday-Maldacena-Wilson loops and their relation to scattering amplitudes
of N = 4 SYM will be discussed in the chapters [6]. As was known before the discovery
of the spin-chain related integrability of the AdS/CFT system, expectation values of
Maldacena-Wilson loops can in certain cases be expressed in terms of expectation values
of a zero-dimensional integrable matrix model and this connection has provided us with
the most successful test of the AdS/CFT correspondence beyond the planar limit to
date. The connection of Maldacena-Wilson loops to integrability in the form of spin-
chain integrability is so far very limited.

We start by discussing the role of integrability in connection with non-planar anoma-
lous dimensions in section 2 and subsequently treat multi-point functions and Maldacena-
Wilson loops in sections 3 and 4.
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2 Non-planar anomalous dimensions

In a CFT conformal operators, {Oα}, and their associated conformal dimensions, ∆α,
are characterized by being eigenstates and eigenvalues of the dilatation generator, D̂.
As a consequence of this two-point functions of conformal operators upon appropriate
normalization take the form

〈Oα(x)Oβ(y)〉 =
δαβ

(x− y)2∆α
. (2.1)

2.1 The non-planar dilatation generator

The dilatation generator, D̂, of N = 4 SYM has a double expansion in λ and 1
N

where
λ is the ’t Hooft coupling which we until further notice take to be

λ =
g2

YMN

8π2
, (2.2)

and where N is the order of the gauge group, SU(N). By the planar limit we mean the
limit N → ∞, λ fixed. At a finite order in λ the 1

N
-expansion of the dilatation gener-

ator starts at order N0 and terminates after finitely many terms, the number of which
increases with the loop order. The planar dilatation generator and its loop expansion is
discussed in the chapter [7]. The non-planar part of the dilatation generator was first
derived at one loop order in the SO(6) sector [8, 9], see also [10]. The derivation was
based on evaluation of Feynman diagrams and was extended to two-loop order in the
SU(2) sector in [2]. Later a derivation based entirely on algebraic arguments gave the
dilatation generator including non-planar parts for all fields at one-loop order [11] and
for the fields in the SU(1, 1|2) sector at two-loop order [12]. Recently, the non-planar
part of the dilatation generator was written down at order λ3/2 in the SU(2|3) sector [13].
In addition, the non-planar part of the dilatation generator is known in the scalar sector
in a certain N = 2 superconformal gauge theory [14]. In ABJM theory [15] and ABJ
theory [16] the non-planar part of the two-loop dilatation generator has been derived in
a SU(2)× SU(2) sector [17,18].1

The diagonalization problem for the full dilatation generator of N = 4 SYM has
mainly been studied in the SU(2)-sector which consists of multi-trace operators built
from two complex scalar fields, say X and Z. For simplicity we shall likewise focus our
discussion on this sector. The one-loop dilatation generator including the non-planar
parts reads for the SU(2) sector

D̂ = − λ
N

: Tr[X,Z][X̌, Ž] :, where Žαβ =
δ

δZβα
, (2.3)

1We remark that our D̂ is the dilatation generator describing the asymptotic spectrum. Hence we
ignore the wrapping contributions discussed in the chapters [7, 19]. In particular, the splitting of the
dilatation operator into planar and non-planar parts that we discuss here pertains to the asymptotic
regime. What is here referred to as non-planar parts of the dilatation generator might for short operators
give rise to planar wrapping contributions [20].
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and similarly for X̌. The normal ordering symbol signifies that the derivatives should
not act on the X and Z field belonging to the dilatation generator itself. Below we
illustrate how the full dilatation generator acts on a double trace operator. Notice that
we only consider one out of four terms contributing to the dilatation generator and that
we only represent one possible way of applying the derivatives

Tr(ZXŽX̌) · Tr(XZXXZ) Tr(XZ) = Tr(ZXŽZXXZ) Tr(XZ)
1 2 3

= NTr(ZXXXZ) Tr(XZ) + Tr(ZX) Tr(ZXX) Tr(XZ) + Tr(ZXZZZXXZ).

As is evident from this example the full one-loop dilatation generator can be written as
follows

D̂ = λ(D̂0 +
1

N
D̂+ +

1

N
D̂−), (2.4)

where D̂+ and D̂− respectively increases and decreases the trace number by one and
where D̂0 conserves the number of traces. Suggestions for how to write D̂+ and D̂− in
a more explicit form can be found in [21, 22]. We notice that for gauge group SO(N)
or Sp(N) the one-loop dilatation operator will have a term which is of order 1

N
but still

conserves the number of traces [23]. At l-loop order the dilatation operator can change
the number of traces by at most l. Notice that since the anomalous dimensions are the
eigenvalues of the dilatation generator these do not necessarily have a 1

N
-expansion which

truncates. What is more, some anomalous dimensions do not even have a well-defined
double expansion in λ and 1

N
. An example of an operator with this property can be

found in [2]. Speaking about a one-loop anomalous dimension, however, always makes
sense. To calculate the leading 1

N
-corrections to one-loop anomalous dimensions one can

make use of standard quantum mechanical perturbation theory. Let us assume that we
have found an eigenstate of the planar dilatation generator D̂0, i.e.

D̂0|O〉 = γO|O〉, (2.5)

and let us treat the terms sub-leading in 1
N

as a perturbation. First, let us assume that
there are no degeneracies between n-trace states and (n+1)-trace states in the spectrum.
If that is the case we can proceed by using non-degenerate quantum mechanical pertur-
bation theory. Clearly, the 1

N
terms in eqn. (2.4) do not have any diagonal components

so the correction to the anomalous dimension for the state |O〉 reads

δγO =
1

N2

∑
K6=O

〈O|D̂+ + D̂−|K〉 · 〈K|D̂+ + D̂−|O〉
γO − γK

, (2.6)

and is of order 1
N2 . If there are degeneracies between n-trace states and (n + 1)-trace

states we have to diagonalize the perturbation in the subset of degenerate states and
the corrections will typically be of order 1

N
. We remark that the dilatation generator

is not a Hermitian operator but it is related to its Hermitian conjugate by a similarity
transformation and therefore its eigenvalues are always real [24,9].
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2.2 The non-planar spectrum and integrability

PlanarN = 4 SYM is described in terms of only one parameter, λ, and planar anomalous
dimensions have a perturbative expansion in terms of this single parameter. This fact
made it possible initially to search for integrability in the planar spectrum order by order
in λ. In particular, the concept of perturbative integrability was introduced, meaning
that at l loops the planar spectrum could be described as an integrable system when
disregarding terms of order λl+1 [2]. Studying this perturbative form of integrability
eventually led to the all loop Bethe equations conjectured to be true perturbatively to
any loop order and non-perturbatively as well [25–27]. When going beyond the planar
limit it is natural to follow a similar perturbative approach. The question of integrability
beyond the planar limit has so far been addressed only perturbatively in 1

N
at the one-loop

order. The fact that the non-planar part of the dilatation generator introduces splitting
and joining of traces enormously enlarges the Hilbert space of states of the system. This
complicates the direct search for integrability via the identification of conserved charges
or the construction of an asymptotic S-matrix with the appropriate properties. As a
simple way of getting an indication of whether integrability persists at the non-planar
level one can test for degenerate parity pairs [2]. Parity pairs are operators with the
same anomalous dimension but opposite parity where the parity operation on a single
trace operator is defined by [28]

P̂ · Tr(Xi1 Xi2 . . . Xin) = Tr(Xin . . . Xi2 Xi1). (2.7)

(For a multi-trace operator, P̂ must act on each of its single trace components.) At
the planar one-loop level one observes a lot of such parity pairs. The presence of these
degeneracies has its origin in the integrability of the model. N = 4 SYM is parity
invariant and its dilatation generator commutes with the parity operation, i.e.

[D̂, P̂ ] = 0. (2.8)

Notice that this only tells us that eigenstates of the dilatation generator can be organized
into eigenstates of the parity operator and nothing about degeneracies in the spectrum.
The degeneracies can be explained by the existence of an extra conserved charge, Q̂3,
which commutes with the dilatation generator but anti-commutes with parity, i.e.

[D̂, Q̂3] = 0, {P̂ , Q̂3} = 0. (2.9)

Acting on a state with Q̂3, one obtains another state with the opposite parity but with
the same energy2. Taking into account non-planar corrections the degeneracies are lifted.
Since parity is still conserved this is taken as an indication (but not a proof, obviously) of
the disappearance of the higher conserved charges and thus a breakdown of integrability.
Notice that in accordance with this picture, the parity pairs survive the inclusion of
planar higher loop corrections. The situation in ABJM theory is the same. Degenerate
parity pairs are seen at the planar level but disappear once non-planar corrections are
taken into account [17]. (For N = 4 SYM with gauge group SO(N) or Sp(N) parity is

2There exist states which are unpaired and annihilated by Q̂3.
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gauged and the concept of planar parity pairs loses its meaning [23]. For ABJ theory
parity is broken at the non-planar level [18].) Hence it seems that one can not hope
for integrability of the spectrum of AdS/CFT beyond the planar limit, at least not in a
simple perturbative sense.3

2.3 Results on non-planar anomalous dimensions

Prior to the derivation of the dilatation generator of N = 4 SYM anomalous dimen-
sions were determined through a rather complicated process which involved for each set
of operators considered an explicit calculation of their two-point correlation functions
through Feynman diagram evaluation. Early results on non-planar anomalous dimen-
sions for short operators obtained by this method can be found in [30,31].

With the derivation of the dilatation generator the calculation of anomalous dimen-
sions was enormously simplified. At the planar level one now even has at hand the tools
of integrability and all information about the (asymptotic) spectrum is encoded in a set
of algebraic Bethe equations. As argued above similar tools are not currently available
at the non-planar level. Thus to obtain spectral information beyond the planar limit one
has to explicitly diagonalize the dilatation generator in each closed subset of states. For
the following discussion it is convenient to divide the set of operators into three different
types, short operators, BMN type operators and operators dual to spinning strings.

By short operators we mean operators which contain a finite, small number of fields.
Such operators only mix with a finite, small number of other operators and the resulting
mixing matrix can be calculated and diagonalized by hand (or using Mathematica).
Various results on non-planar corrections to anomalous dimensions of short operator in
the SU(2) sector of N = 4 SYM can be found in [2] and [21]. Reference [21] in addition
contains results on the SL(2)-sector of N = 4 SYM. Results for the SU(2) × SU(2)
sector of ABJM and ABJ theory were obtained in [17] and [18].

BMN type operators [32] are operators consisting of many fields of one type and a
few excitations in the form of fields of another type (or of derivatives). Two-excitation
eigenstates can easily be written down at the planar level. In the SU(2) sector they read

OJ0,J1,...,Jk
n =

1

J0 + 1

J0∑
p=0

cos

(
πn(2p+ 1)

J0 + 1

)
Tr(X ZpX ZJ0−p)Tr(ZJ1) . . .Tr(ZJk),

(2.10)
where 0 ≤ n ≤

[
J0

2

]
and where the corresponding planar eigenvalues are

En = 8λ sin2(
πn

J0 + 1
). (2.11)

Acting with the non-planar part of the dilatation generator on BMN states only requires
a finite and small number of operations and the non-planar part of the mixing matrix for

3The paper, [29], entitled “Hints of Integrability Beyond the Planar Limit:Non-trivial Backgrounds” is
dealing with anomalous dimensions of operators from the SU(2)-sector consisting of the factor (det(Z))M

multiplying a single trace operator. In the limit N,M →∞ with N
M → 0 and g2

YMM fixed the authors
find a set of conserved charges commuting with the dilatation generator. We remark, however, that in
the limit considered the terms D̂+ and D̂− do not contribute to the dilatation generator.
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BMN states can easily be written down [9]. Treating D̂++D̂− as a perturbation of D̂0 one
should thus be able to determine the leading non-planar corrections to the anomalous
dimensions of BMN operators by standard quantum mechanical perturbation theory,
cf. section 2.2. However, degeneracies between single and multiple-trace states require
the use of degenerate perturbation theory and due to the complexity of the coupling
between degenerate states the mixing problem for BMN states was never resolved. For
a discussion of this problem, see [33]. There is one case, however, for which there is no
degeneracy issue and that is for states with mode number, n = 1. Here it is possible to
find the leading non-planar correction to the anomalous dimension in the limit Ji →∞,
i = 0, 1, . . . , k, and λ → ∞ with λ′ = λ/J2 and g2 = J2/N fixed where J =

∑k
i=0 Ji.

The result reads [8, 34]

δEn=1 = λ′g2
2

(
1

12
+

35

32π2

)
. (2.12)

There exist similar results for BMN operators belonging to the SL(2) sector of N = 4
SYM [35] and for BMN operators in a certain N = 2 superconformal gauge theory [14].
The result in eqn. (2.12) was extended to two-loop order in [9].

The third class of operators, operators dual to spinning strings, consist of an infinitely
large number of background fields and an infinite number of excitations. In the SU(2)
sector they take the form

O = Tr(ZJ−MXM) + . . . . , (2.13)

where . . . denotes similar terms obtained by permuting the fields and where J,M →∞,
but M/J is kept finite. Acting with the non-planar dilatation generator on such an op-
erator involves an infinite number of operations and becomes unfeasible. In [36], based
on a coherent state formalism, matrix elements of the non-planar dilatation generator
between operators dual to particular folded spinning strings were calculated but an ex-
plicit diagonalization of the non-planar dilatation generator for the situation in question
did not seem tractable.

2.4 Comparison to string theory

In order to generate string theory data with which to compare non-planar corrections
to anomalous dimensions one needs to take into account string loop corrections corre-
sponding to considering string world-sheets of higher genus. For short operators such a
comparison is currently out of sight since we do not even have any examples of a suc-
cessful comparison at the planar level, except for certain BPS states which can be shown
to have vanishing anomalous dimensions [37]. Recently, it was shown at one-loop order
that certain 1/4 BPS states can be labeled by irreducible representations of the Brauer
algebra [38], see also [39].

The situation is slightly more encouraging in the case of BMN operators. Considering
the BMN limit on the gauge theory side corresponds on the string theory side to taking
the Penrose limit of the AdS5 × S5 background which turns the geometry into a PP-
wave. On the PP-wave one can quantize the free IIB string theory in light cone gauge
and find the corresponding free spectrum. In addition, considering higher genus effects
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is possible by means of light cone string field theory (LCSFT). A review of the PP-
wave/BMN correspondence including an introduction to LCSFT can be found in the
references [40,41]. In LCSFT string interactions are described in terms of a three-string
vertex which encodes the information about the splitting and joining of strings. There
seems to be several ways of consistently defining this three-string vertex and there exist
at least three proposals for its exact form. For all proposals, however, it holds that there
is a freedom of choosing a certain pre-factor of the vertex. Reference [42] constitutes
the most recent review of this topic describing the different possible choices of the three-
vertex and containing all the relevant references. Furthermore, the authors of [42] show
that the one-loop gauge theory result (2.12) can be obtained from LCSFT provided one
chooses one particular of the proposed vertices and chooses its pre-factor in a specific
way.4 It is, however, not possible to recover the two-loop gauge theory result from the
LCSFT and generically LCSFT gives rise to half-integer powers of λ′ appearing in the
expressions for non-planar anomalous dimensions. Such half-integer powers of λ′ were
also found in the analysis of worldsheet one-loop corrections to the planar energies of
spinning strings [43] and eventually led to the recognition that the BMN expansion
breaks down not only at strong coupling but also at weak coupling starting at four-loop
order [44,26,45]. Hence, it appears that in order to obtain complete agreement between
gauge and string theory we are forced to consider the full AdS5 × S5 geometry.

Finally, in the case of operators dual to spinning strings no direct comparison between
gauge theory and string theory has been possible. In reference [22] the decay of a single
folded spinning string into two such strings was studied in a semi-classical approximation
and a certain relation between the conserved charges of the decay products was found.
If the semi-classical decay channel were the dominant one, as it is known to be in flat
space, one could hope that the matrix elements for string splitting and joining found
in [36] could encode some similar relation. The analysis of [36], however, did not point
towards the semi-classical decay channel being the dominant one.

3 Multi-point functions

By multi-point functions we mean correlation functions of the following type

〈O∆1(x1)O∆2(x2) . . .O∆n(xn)〉, (3.1)

where the operators involved are eigenstates of the dilatation generator and carry the
conformal dimensions ∆1,∆2, . . . ,∆n. Three-point functions play a particular role since
their form is fixed by conformal invariance and since they contain the information about
the structure constants Ci j k which appear in the theory’s operator product expansion.
For appropriately normalized conformal operators the three-point functions take the form

〈O∆1(x1)O∆2(x2)O∆3(x3)〉 =
C∆1 ∆2 ∆3

(x1 − x2)∆−2∆3(x2 − x3)∆−2∆1(x3 − x1)∆−2∆2
, (3.2)

4It should be noticed, though, that the match to the one-loop gauge theory result is obtained after
a truncation to the so-called impurity conserving channel while at the same time it is proved that
generically all channels would contribute to the result. In addition, it is pointed out that an undetermined
supercharge could potentially also contribute to the result.
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where ∆ = ∆1 + ∆2 + ∆3.

3.1 Results on multi-point functions

Before the advent of the BMN paper in 2002 [32] results on multi-point functions mostly
had to do with protected versions of these. A nice review and a complete list of references
can be found in [46]. Here we will only very briefly list the pre-BMN results. First,
two- and three- point functions of 1/2 BPS and 1/4 BPS operators do not renormalize.
Secondly, a large class of multi-point functions of 1/2 BPS operators have very simple
renormalization properties. These are the so-called extremal, next-to-extremal and near
extremal correlators. Extremal correlators fulfill that ∆1 = ∆2 + . . .+∆n and can always
be expressed entirely in terms of two-point functions. Next-to-extremal correlators obey
∆1 = ∆2 + . . . + ∆n − 2 and factorize into a product of n − 3 two-point functions and
one three-point function. Finally, near extremal multi-point functions have the property
that ∆1 = ∆2 + . . . + ∆n − 2m, where 2 ≤ m ≤ n − 3 and 4 ≤ ∆1 ≤ 2n − 2. These
multi-point functions can all be expressed in terms of lower point functions. The results
on multi-point functions, briefly reviewed here, can also be understood from the string
theory side [46].

With the advent of the BMN limit [32] the focus was shifted from BPS operators to
near BPS operators or BMN operators. As mentioned above these are operators which
are created from long BPS operators by the insertion of a few impurities. A much studied
set of BMN operators belonging to the SO(6) sector are the following ones

OJi j,n =
1√

JNJ+2

(
n∑
p=0

e
2πin
J Tr(Φi Z

p Φj Z
J−p)− δijTr(Z̄ ZJ+1)

)
, (3.3)

where Z is one of the three complex scalars of N = 4 SYM, say Z = Φ1 + iΦ2, and
i, j ∈ {3, 4, 5, 6}. These operators are determined by the requirement that they should
be eigenvectors of the one-loop planar dilatation operator [32] in the limit J →∞. (For
the exact finite J version of (3.3), see [47].) They can be organized into representations
of SO(6) in the obvious way. The calculation of three-point functions of non-protected
operators such as BMN operators necessitates a highly non-trivial resolution of operator
mixing. First, in the case of extremal correlators, in order to calculate the classical three-
point function to leading order in 1/N one needs to take into account mixing between
single and double trace states [48]. For BMN operators this calculation was carried out
in reference [8, 34] with the following result for the space-time independent part of the
three-point functions involving two BMN operators and one 1/2 BPS operator of the
form OJ = 1√

JNJ
Tr(ZJ).

〈ŌJij,n Or·Jkl,mO(1−r)·J〉 =
2 J3/2

√
1− r sin2(πnr)

N
√
r π2(n2 −m2/r2)2

(
1− λ(n2 −m2/r2)

2J2

)
×(

δi(kδl)jn
2 + δi[kδl]j

nm

r
+

1

4
δijδkl

m2

r2

)
, (3.4)

where it is understood that the operators appearing on the left hand side of (3.4) have
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been redefined to take into account the effects of the just mentioned operator mixing.5

To determine the order λ correction to the structure constants requires a number of con-
siderations. First, one actually has to resolve the operator mixing problem to two loop
order [31], see also the discussion in [51] as well as the remarks in [8, 34]. The reason is
that whereas the diagonalization of the dilatation generator to one-loop order does not
introduce any coupling constant dependent mixing of the states this is not so at two-loop
order. At one-loop order one has a set of states {Oα} which are simultaneously eigen-
states at the classical and one-loop level. However, when two-loop corrections are taken
into account these eigenstates are changed to {Oα + λcαβOβ}. The coupling constant
dependent modification of the states which occur at two-loop level gives contributions to
the structure constants of order λ. Finally, one of course has to ensure that the structure
constants one reads off from the three-point functions are renormalization scheme inde-
pendent. This can be achieved by normalizing the two-point functions of the operators
involved to unity at order λ, see discussion in [51].

The early papers which dealt with three-point functions ignored either one or both the
two complications from operator mixing, i.e. the mixing with multi-trace states and the
mixing which naively appears to be of higher order. References [52] dealt with the second
type of mixing phenomenon and suggested to solve it using purely algebraic means, hence
avoiding the explicit evaluation of higher loop two-point functions. References [53,54,51]
which studied one-loop properties of structure constants did not take into account any
of the two above mentioned mixing issues. However, these references pointed out certain
connections of three-point functions to integrable spin chains which we will review below
together with some very recent progress along the same lines [55].

3.2 Multi-point functions and integrability

As explained above calculating three-point functions involves first dealing with a subtle
mixing problem and secondly executing the Wick contractions between the appropriate
eigenstates. We will follow the historical development and postpone the discussion of
the mixing problem to the end of this section.

For one-loop three-point functions of scalar operators one has tried to derive a kind
of effective vertex which when applied to the three operators involved gives the order λ
contribution to the structure constant [53, 51]. When evaluating three-point functions
(apart from non-extremal ones) one generically encounters two types of Feynman dia-
grams. One type is two-point-like involving only non-trivial contractions between fields
from two of the three operators appearing in the three-point function whereas the other
type involves non-trivial contractions between fields from all three operators. The generic
term of the effective vertex of [51] correspondingly acts on the indices of three different
operators. However, one can show that in a certain renormalization scheme the one-loop
correction to the structure constant only obtains contributions from Feynman diagrams
which are two-point-like [53] and therefore it is possible to construct an effective vertex
whose terms act at most on indices from two different operators at a time [53]. Both

5Notice that in references [49, 10, 50] where classical three-point functions of BMN operators also
appear the contribution to the three-point function from the mixing with double trace states was not
taken into account.
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of the resulting effective vertices have a close resemblance to the Hamiltonian of the
integrable SO(6) spin chain. Notice, however, that both approaches [53, 51] ignore the
two particular mixing issues discussed in the previous section.

An approach to the calculation of three-point functions which explicitly exploits the
integrability of the planar dilatation generator was presented in reference [54]. Here
the field theoretic three-point functions are represented as matrix elements of certain
spin operators of the integrable spin chain determining the spectrum and it is shown
how these matrix elements can in principle be expressed in terms of the elements of the
spin chain’s monodromy matrix. The method does not allow one to resolve the mixing
between single and multi-trace operators, however.

More recently, it was understood how, for a certain subclass of operators, the mix-
ing due to one-loop corrections and the calculation of tree-level three-point functions
could be efficiently dealt with using integrability tools having their origin in the planar
integrability of the theory and this led to exact results for a class of tree-level structure
constants [55]. Furthermore, combining these tools with the ideas of [54] a wealth of
new data on one-loop three-point functions for short operators was obtained [55]. No-
tice again that these studies are restricted to cases without mixing between single and
multi-trace operators. Reference [56] also contains extensive data on one-loop three-point
functions for short operators but here even the single trace mixing problem was not fully
resolved for all cases.

3.3 Comparison to string theory

Given the success of the comparison of the anomalous dimensions of gauge theory op-
erators with the energies of string states it is natural to look for a representation of
the structure constants entering the three-point functions of non-protected operators in
terms of string theory quantities. With the discovery of the pp-wave limit of the type IIB
string theory and the corresponding BMN limit of N = 4 SYM hope was raised that in
this limit the AdS/CFT dictionary could be extended to include the structure constants
of the gauge theory and a first proposal for the translation of these into string theory was
put forward in [10]. Here some structure constants Cijk were suggested to be related in a
simple way to the matrix elements of the three-string vertex of the light cone string field
theory. A lot of debate followed this initial proposal. First of all it was debated whether
the Cijk were supposed to be the true CFT structure constants appearing after taking
into account the two types of operator mixing discussed in section 3.1 or if the translation
to string theory would not involve this mixing. Secondly, as mentioned in section 2.4
the exact form of the three-string vertex of LCSFT was also a subject of debate. The
status of the discussion by the end of 2003 is well summarized in the review [41]. In 2004
reference [57] provided a unifying description of the various earlier approaches. The true
LCSFT vertex was argued to be a linear combination of the two earlier proposed ones
and the Cijk’s of relevance for the comparison between gauge and string theory were
argued to be the true CFT structure constants. The precise translation of the gauge
theory structure constants to the string theory language is well explained in [58]. All
this should, however, be taken with some caution, as it has been understood that only
for the full AdS/CFT system can one hope for a complete matching of string and gauge
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theory, cf. the discussion in section 2.4.
In the past year there has been quite some progress in the calculation of two- and

three-point correlation functions of string states in the full AdS5 × S5 geometry using
semi-classical methods. First, in [59] (see also [60]) a semi-classical approach was shown
to reproduce the characteristic conformal scaling of the two-point function with the en-
ergy for spinning strings with large quantum numbers and it was suggested that a similar
approach could be applied to three point functions. In [61] the semi-classical calculation
of two-point functions was formulated in terms of vertex operators describing classical
spinning strings [62]. Subsequently, the semi-classical approach was extended to the cal-
culation of three-point functions involving two heavy states and one BPS state [63] and
various cases of this type were considered [64]. Furthermore, using the vertex operator
representation of the correlation functions a number of three-point functions between
two heavy states and one light non-BPS state was determined [65]. So far an explicit
comparison of the string theory three-point functions discussed here and gauge theory
three point functions has only been possible for protected correlators. However, very re-
cently it has been suggested that an expansion of the string theory three-point functions
in a large angular momentum of the heavy states might allow for a comparison with a
gauge theory perturbative expansion of the same quantity, at least for the first few loop
orders [66].

4 Maldacena-Wilson loops

Wilson loops constitute an important class of gauge invariant non-local observables in
any gauge theory. The idea that Wilson loops should have a dual string representation
has a long history, see [67] and references therein. A realization of this idea in the
context of the AdS/CFT correspondence was obtained by Maldacena who introduced
the following special type of locally supersymmetric Wilson loops [68]

W [C] =
1

dim(R)
TrR

(
P exp

[∮
C

dτ
(
iAµ(x)ẋµ + Φi(x)θi|ẋ|

)])
. (4.1)

Here R denotes an irreducible representation of SU(N), xµ(τ) is a parametrization of
the loop C, Φi(x) are the 6 real scalar fields of N = 4 SYM and θi(τ) is a curve on S5. In
the present section we will use the following definition of the ’t Hooft coupling constant

λ = g2
YM N. (4.2)

According to Maldacena [68] the expectation value of such a Wilson loop in the funda-
mental representation should be determined by the action of a string ending at the curve
C at the boundary of AdS5, i.e.

〈W [C]〉 =

∫
∂X=C

DX exp
(
−
√
λS[X]

)
. (4.3)

Expectation values of many supersymmetric Wilson loops have turned out to be express-
ible in terms of expectation values in integrable zero-dimensional matrix models. Fur-
thermore, Wilson loops have provided us with the most promising test of the AdS/CFT
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correspondence beyond the planar limit to date. The relation between Maldacena-Wilson
loops and spin chain integrability is so far rather sparse, cf. subsection 4.4.

4.1 The 1/2 BPS line and circle

A Wilson loop in form of a single straight line, i.e.given by x(τ) = τ, θi(τ) = const,
constitutes a 1/2 BPS object. Its expectation value does not get any quantum corrections
and is exactly equal to one. The circular Wilson loop parametrized by

x(τ) = (cos τ, sin τ, 0, 0), (4.4)

and θi(τ) = const can be obtained from the straight line by a conformal transformation
and is likewise 1/2 BPS. Its expectation value does get quantum corrections, however.
The expectation value of the circular Wilson loop was calculated at the planar level
in perturbation theory to two loop order in [69] and it was found that only ladder like
diagrams (i.e. diagrams whose vertices all lie on the loop) contributed. The authors of [69]
proposed that this could be true to all orders and showed that under that assumption
the calculation of the expectation value could be reduced to a combinatorial problem
the answer to which was given by an expectation value in a zero-dimensional Gaussian
matrix model. Subsequently, it was understood that the reason why the problem was
zero-dimensional in nature was that the expectation value of the circular Wilson loop
could be understood as an anomaly arising at the point at infinity when conformally
mapping the straight line to a circle [70]. In addition, the proposal of [69] was extended
to all orders in the 1

N
-expansion [70]. Stated precisely, the proposal says that the

expectation value of the circular Wilson loop is given to all orders in λ and all orders in
1
N

by the following expression 6

〈Wcircle〉 = 〈 1

N
Tr (exp(M))〉 =

1

Z

∫
DM 1

N
Tr (exp(M)) exp

(
−2N

λ
TrM2

)
. (4.5)

Using matrix model techniques the expectation value can be calculated exactly and
yields [70]

〈Wcircle〉 =
1

N
L1
N−1(−λ/4N) exp(λ/8N), (4.6)

where L1
N−1 is a Laguerre polynomial. One can explicitly write down the genus expansion

of (4.6) and then taking the strong coupling, λ→∞, limit of this one gets

〈Wcircle〉 =
∞∑
p=0

1

N2p

e
√
λ

p!

√
2

π

λ
6p−3

4

96p

[
1− 3(12p2 + 8p+ 5)

40
√
λ

+O
(

1

λ

)]
. (4.7)

The possibility of the expectation value getting additional contributions from instantons
was investigated in [71]. Recently, however, the proposal of [69, 70] was proved to be
true [72].

6Here the integration is over Hermitian matrices, i.e. DM =
∏
i dMii

∏
j>i d<(Mij)d=(Mij) and Z

is the partition function of the model.
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The expectation value of the circular Wilson loop can be found from the string theory
recipe (4.3) in the strong coupling limit by performing a saddle point analysis. It turns
out that the string action is dominated by its bosonic part at the saddle point and
the calculation becomes equivalent to determining the area of the minimal area surface
ending at the loop C. The minimal surface area, however, diverges and requires a
regularization which results in the saddle point action being negative [68]. The minimal
area corresponding to the circle was first determined in [73] and led to the first crude
estimate of the expectation value of the planar circular Wilson loop from the string
theory side 〈Wcircle〉string ∼ e

√
λ. Later the string analysis was extended to include sub-

leading corrections in λ coming from integration over zero-modes and to include higher
genus surfaces [70]. This led to the following string theory estimate of the expectation
of the circular Wilson loop

〈Wcircle〉string ∝
∞∑
p=0

1

N2p

e
√
λ

p!
λ

6p−3
4

[
1 +O

(
1√
λ

)]
. (4.8)

The matching between (4.7) and (4.8) provides a piece of evidence in favour of the
validity of the AdS/CFT correspondence beyond the planar level. In order to reproduce

the additional factor
√

2
π

appearing in (4.7) from string theory one needs to take into

account the fluctuations about the minimal surface. The framework for performing this
calculation at the planar level was laid out in [74] and recently interesting progress was
achieved in the explicit evaluation of the missing sub-leading contribution in the planar
case [75].

4.2 More supersymmetric Wilson loops

In reference [76] Zarembo found a series of Wilson loops of 1/4, 1/8 and 1/16 BPS type
which can be viewed as generalizations of the 1/2 BPS Wilson line living in the higher
dimensional subspaces IR2, IR3 and IR4. These Wilson loops all have trivial expectation
values. This was argued from the gauge theory side in [76, 77] and an understanding
from the string theory perspective was provided in [78]. Finally, it was explained by
topological arguments in [79].

The first example of a 1/4 BPS Wilson loop with non-trivial expectation value was
found by Drukker [80]. Later a large family of supersymmetric Wilson loops with non-
trivial expectation values was identified [81, 82]. This family of loops constitute gener-
alizations of the 1/2 BPS circular loop above. The most generic type is 1/16 BPS and
lives on an S3 sub-manifold of four-dimensional space-time. Loops further restricted to
an S2 are 1/8 BPS and their expectation values were conjectured to be equal to the
analogous expectation values in the zero instanton sector of two-dimensional Yang-Mills
theory on a sphere [82] which implies that they can again be evaluated using a matrix
model. More precisely, for such loops we should have

〈W [C]〉 =
1

N
L1
N−1

(
g2

YM

A1A2

A2

)
exp

[
−g

2
YM

2

A1A2

A2

]
, (4.9)
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where A1 and A2 are the two areas of the sphere bounded by the loop and A = A1+A2 =
4π. Perturbative gauge theory a arguments supporting the conjecture were presented
in [82, 83] and string theoretic arguments in favour of the conjecture appeared in [84].
The conjecture was further supported by studies using localization techniques in [85].

A unifying and exhaustive description of all supersymmetric Wilson loops was given
in [86] and it was found that the two classes of Wilson loops described by respective
Zarembo and Drukker et al. are indeed the two most natural ones.

Some aspects of the analysis outlined above have been generalized to N = 6 su-
persymmetric Chern-Simons matter theory. The 1/2 BPS Wilson loop has been con-
structed [87] and its expectation value shown to be expressible in terms of an expectation
value in a zero-dimensional supermatrix model [88, 87]. In addition, one has identified
a 1/6 BPS Wilson loop [89] whose expectation value can likewise be calculated using a
matrix model [88,90].

4.3 Higher representations

Having obtained the result (4.5) and using the Schur polynomial formula one has access
to the expectation value of the 1/2 BPS circular Wilson loop in any given irreducible
representation of SU(N). When the rank of the representation, k, i.e. the number
of boxes in the Young tableau, fulfills that k ∼ O(N) the appropriate string theory
description of the Wilson loop is in terms of Dp-branes rather than fundamental strings.
Early ideas in this direction were presented in [91, 92]. The precise dictionary between
Wilson loops in higher representations and Dp-branes was found in [93]. A Wilson loop
operator in a representation given by a Young diagram with M rows and K columns
with ni boxes in the i’th row and mj boxes in the j’th column has two different string
realizations. One is in terms of K D3-branes carrying electric charges n1, . . . , nK and
the other is in terms of M D5-branes carrying electric charges m1, . . . ,mM . In both
cases, as long as k � N2, one should be able to determine the expectation value of the
Wilson loop by treating the Dp-brane using the probe approximation, i.e. ignoring the
back reaction of the AdS5 × S5 geometry. 7

For the completely symmetric and the completely antisymmetric representation of
rank k the gauge theory expectation value of the 1/2 BPS circular Wilson loop has
been extracted from the matrix model in the limit N → ∞, k → ∞ with k/N fixed
using saddle point techniques. In the antisymmetric case the result in the large λ limit
reads [96]

〈WAk(C)〉 = exp

[
2N

3π

√
λ sin3 θk

]
, (4.10)

where θk is given by

π

(
1− k

N

)
= (θk − sin(θk) cos(θk)) . (4.11)

7 In particular, it is expected that energies of certain spinning D3- and D5-branes correspond to
anomalous dimensions of local twist operators (cf. the chapter [94]) carrying higher representations of
the gauge group [95].
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This result matches the result of a supergravity calculation on the string theory side
using D5-brane probes [97]. For the completely symmetric representation the situation
is more involved since in the large N analysis one encounters two different saddle points.
Which one dominates depends on the on the precise values of λ and k/N . If one considers
the limit of large λ and N with a fixed value of κ, defined by

κ =

√
λk

4N
, (4.12)

one finds [96,98]

〈W (1)
Sk

[C]〉 = exp
[
2N
(
κ
√

1 + κ2 + sinh−1(κ)
)]
. (4.13)

This result matches a supergravity calculation carried out using D3-brane probes [92].
The same saddle point dominates in the limit λ→∞, k →∞, N →∞ with k/N fixed.
In other regions of the parameter space the second saddle point might come into play
and in general one has that the expectation value of the Wilson loop in the symmetric
representation is a sum of two terms, i.e. WSk [C] = W

(1)
Sk

[C] +W
(2)
Sk

[C].
When the rank of the representation reaches the size k ∼ O(N2) the probe approx-

imation breaks down as the back reaction of the AdS5 × S5 geometry can no longer be
ignored. In this case the resulting string background can be described as a bubbling
geometry [99]. The determination of the bubbling geometry corresponding to 1/2 BPS
Wilson loops was initiated in [100] and completed in [101]. The calculation of the expec-
tation value of the Wilson loop from the gauge theory side still proceeds via the matrix
model and was carried out in [102].

Like the 1/2 BPS Wilson loop the less supersymmetric Wilson loops can be studied
in higher representations of the gauge group. This was done for a number of 1/4 BPS
Wilson loops in [103]. There also exist numerous results on correlation functions involving
multiple Wilson loops as well as Wilson loops and local operators for loops in various
representations.

4.4 Other instances of integrability of Wilson loops

As explained in section 4.1 expectation values of Wilson loops in the strong coupling,
λ → ∞ limit can be evaluated by finding a classical string solution with appropriate
boundary conditions. The string sigma model describing type IIB strings on AdS5 × S5

is known to be classically integrable [3] and this fact was exploited in reference [104] to
find the strong coupling expectation values of numerous Wilson loops with xµ(t) and
θi(t) periodic. More recently a class of polygonal (non-supersymmtric) Wilson loops
built from light like segments have attracted attention due to their relation with gluon
scattering amplitudes [105]. The minimal surfaces corresponding to these loops have
turned out to be described by integrable systems of Hitchin type. For a discussion of
Wilson loops related to scattering amplitudes and the relevant set of references we refer
to the chapters [6].

It seems difficult to relate the expectation value of supersymmetric Wilson loops to
integrable spin chains but there exists one special construction which exposes such a
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relation. In reference [106] the authors studied insertion of composite operators into
Wilson loops. The Wilson loop was taken to be a straight line or a circle and θi to
describe a single point on S5. Furthermore, the composite operator was assumed to
be built from two complex scalars Z = (Φ1 + iΦ2) /

√
2 and X = (Φ3 + iΦ4) /

√
2. It is

possible to assign a conformal dimension to such an inserted operator and to determine
this dimension one has to solve a certain mixing problem involving two-point functions
of the type

〈Wline

[
O†β(t)Oα(0)

]
〉 = 〈 1

N
Tr

(
P O†α(t)Oβ(0) exp

[
i

∫
(At + iΦ6)dt

])
〉. (4.14)

An operator insertion O∆ with a well-defined conformal dimension fulfills

〈Wline

[
O†∆(t)O∆(0)

]
〉 ∼ 1

t2∆
. (4.15)

The above mixing problem was studied at the planar one-loop order in [106] and mapped
onto the problem of diagonalising the Hamiltonian of an SU(2) open Heisenberg spin
chain with completely reflective boundary conditions. This spin chain is integrable and
can be solved by Bethe ansatz. For a description of the Bethe equations associated with
integrable open spin chains, we refer to the chapter [4]. The string dual of the inserted
operator can be identified and a successful comparison between the gauge theory side and
string theory side for inserted operators of BMN type and of the type dual to spinning
strings was carried out in [106].

5 Conclusion

The search for spin chain like integrable structures in N = 4 SYM regarding non-planar
anomalous dimensions and Maldacena-Wilson loops has so far not provided us with
very strong positive results. Maldacena-Wilson loops are more naturally related to zero-
dimensional integrable matrix models than to spin chains and non-planar anomalous
dimensions have not yet provided us with any traces of integrability. It is possible
that one can learn more about non-planar anomalous dimensions by studying the three-
point functions or structure constants of the theory. Non-trivial operator mixing issues,
however, make the evaluation of structure constants quite involved. For a subset of single
trace operators the mixing is an entirely planar effect and can in principle be handled
using tools originating from the planar integrability of the theory. In the generic case,
however, single trace operators will mix with multi-trace operators and the calculation
of structure constants requires a diagonalization of the non-planar dilatation operator.
The most naive approach to studying non-planar anomalous dimensions, namely doing
perturbation theory in 1

N
requires dealing with the splitting and joining of spin-chains

and leads to a Hilbert space of states for which the standard concepts of integrability such
as the asymptotic S-matrix and two-particle scattering do not immediately apply. Going
beyond the planar limit hence seems to require a rethinking of the entire framework of
integrability or invoking some non-perturbative way of handling the higher topologies.
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Chapter IV.2: Deformations, Orbifolds and Open Boundaries

1 Introduction

The fascinating integrable structures of the N = 4 SYM theory, reviewed in other
contributions to this collection, highlight the unique position that this theory occupies
among quantum field theories in four dimensions. Planar integrability is just the latest
addition to a long list of remarkable properties, such as exact (perturbative and non-
perturbative) conformal invariance, Montonen–Olive S-duality, as well as the celebrated
AdS/CFT correspondence, stating its equivalence to IIB string theory on the AdS5× S5

background.
The price to pay for these unique features is that the theory is highly unrealistic,

and arguably very far removed from QCD, the theory of the strong interactions. It
is thus natural to wonder whether the recent great advances in the understanding of
N = 4 SYM are of any use when studying less supersymmetric theories. In the specific
context of AdS/CFT integrability, one can ask whether there exist other four-dimensional
field theories with similar integrability structures, where the techniques developed in the
N = 4 SYM context can also be applied.

In this short review we will attempt to provide a guide to the current state of affairs
regarding AdS/CFT integrability in less supersymmetric situations. We will restrict
ourselves to the very special class of four-dimensional supersymmetric field theories with
similar finiteness properties to N = 4 SYM, which are therefore also superconformal.1

We will see that, despite many similarities to the N = 4 SYM case, there also appear
significant differences in the way integrability is manifested. Therefore, although there
still is quite a long way to go from these theories to QCD, their study is worthwhile and
can be expected to provide a useful stepping-stone towards unraveling the implications
of integrability in more realistic field theories.

2 The Marginal Deformations of N = 4 SYM

For any conformal field theory, it is interesting to study its space of exactly marginal de-
formations, all the ways to deform the theory preserving quantum conformal invariance.
It has been known since the early eighties that N = 4 SYM admits N = 1 supersymmet-
ric marginal deformations, with a non-perturbative proof given by Leigh and Strassler
in 1995 [3] (where references to the earlier literature can also be found).

In N = 1 superspace language, the Leigh–Strassler deformations can be obtained
purely by deforming the superpotential of the N = 4 SYM theory. The relevant part of
the N = 4 SYM lagrangian is (with g being the gauge coupling)

Lsup =

∫
d2θ WN=4 , where WN=4 = gTr(X[Y, Z]) . (2.1)

Here X, Y and Z are the three adjoint chiral superfields of the N = 4 theory. It is not
hard to see that WN=4 possesses an SU(3)×U(1)R global invariance, the maximal part

1We will thus not touch the topic of integrability in QCD, which is covered in [1] in this collection.
Neither will we discuss integrability in the 3-dimensional ABJM theory, referring instead to [2].
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of the SU(4) R-symmetry of the theory which can be made explicit in N = 1 superspace.
Now consider the following more general N = 1 superpotential:

WLS = κTr

(
X[Y, Z]q +

h

3

(
X3+Y 3+Z3

))
(2.2)

where κ, q and h are a priori complex parameters and the q-commutator is defined
as [X, Y ]q = XY − qY X. The N = 4 SYM theory can be recovered by the choice
(κ, q, h) = (g, 1, 0). Generically, the only continuous symmetry of WLS is the U(1)R
which is always present in an N = 1 superconformal theory. When h = 0, it is standard
to express q = exp(2πiβ) and call this case the β-deformation.2 Here, apart from U(1)R,
WLS has an extra U(1)× U(1) symmetry acting by phase rotations on the scalars. The
β-deformation with β real (i.e. q a phase) is variously known as the real-β or the γ-
deformation.

There are several more marginal terms one could add to the superpotential, however
(2.2) is special in that it preserves an important set of discrete symmetries:

(a) X→ Y , Y → Z , Z→ X,

(b) X→ X , Y → ωY , Z→ ω2Z
(2.3)

with ω a third root of unity. The first of these symmetries is particularly crucial, because
it ensures that all scalar anomalous dimensions are equal. This observation allowed Leigh
and Strassler to argue that finiteness imposes a single complex constraint on the four
couplings (g, κ, q, h), implying the existence of a three-dimensional parameter space of
finite gauge theories. On this space, the superpotential (2.2) is thus exactly marginal.
The finiteness constraint can be calculated at low loop orders, but its exact form is
unknown, and its determination, even in the planar limit, would be a major step in our
understanding of superconformal gauge theory. Here we give it at one loop (see e.g. [4]
for a derivation):

2g2 = κκ̄

[
2

N2
(1 + q)(1 + q̄) +

(
1− 4

N2

)
(1 + qq̄ + hh̄)

]
. (2.4)

Note that the constraint simplifies considerably in the planar (N →∞) limit, and that
for the real β-deformation it reduces to g2 = κκ̄, precisely the same as that for N = 4
SYM. It has been shown [5] that in this real-β case the one-loop constraint is not modified
at any higher order in the perturbative expansion. This is a first indication that, in the
planar limit, the theory will share many of the properties of N = 4 SYM, including, as
we will see, integrability.

2.1 The gravity dual of the β-deformation

If the N = 4 SYM theory admits exactly marginal deformations, the same must be
true for its dual gravity background. Since the deformations preserve the conformal
group, the AdS5 factor of the geometry will not be affected, but we expect the S5 part

2There exist several other conventions in the literature, related by relabellings of β and κ.
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to be deformed, reflecting the reduction of the R-symmetry group to a subgroup of
SU(4)R ' SO(6). For the β-deformation, the metric of this deformed S5 was found by
Lunin and Maldacena in 2005 [6]. Focusing first on the real -β deformation, these authors
showed that it can be obtained from S5 by a sequence of T-duality, angle shift and T-
duality, called a TsT transformation. To make this a bit more explicit, let us start with
the 5-sphere embedded in R6 as X̄X + Ȳ Y + Z̄Z = 1, and parametrise

X = cos γeiϕ1 , Y = sin γ cosψeiϕ2 , Z = sin γ sinψeiϕ3 (2.5)

to obtain the five-sphere metric in terms of angle coordinates

ds2 = dγ2 + cos2 γdϕ2
1 + sin2 γ

(
dψ2 + cos2 ψdϕ2

2 + sin2 ψdϕ2
3

)
. (2.6)

There are three explicit U(1) isometries related to the angles ϕi, with the diagonal shift
ϕi → ϕi + a corresponding to the U(1)R which is required by N = 1 superconformal
invariance. The TsT procedure starts by T-dualising along the other two isometry
directions, then shifting the dual angles as ϕ̃2 → ϕ̃2 + βϕ̃3, and finally T-dualising
back. This breaks the SO(6) implicit in (2.6) and results in a geometry preserving just a
U(1)3 isometry group, the right amount of symmetry for the dual to the β-deformation.
We refer to [6, 7] for more details and for the explicit IIB solution.3 Starting from
the real-β background, a sequence of S-dualities leads to the dual of the complex-β
deformation [6]. However, the geometry dual to the most general deformation (with
h 6= 0) is still unknown.

2.2 The real-β deformation and integrability

In this section we focus on the real-β deformation, which has received the most attention
in the literature. The integrability properties of this theory were first investigated in [9],
where it was shown that the one-loop planar dilatation generator in the two-scalar SU(2)β
sector corresponds to the hamiltonian of the integrable XXX SU(2)β spin chain. This was
extended to the SU(3)β sector in [10]. In the latter work it was also noted that a suitable
site-dependent transformation can map the hamiltonian of the deformed theory to that of
the undeformed one (i.e. N = 4 SYM) but with twisted boundary conditions. Building
on [6], where a simple star-product was introduced to keep track of the additional phases
appearing in the real-β theory compared to the undeformed case, the work [11] showed
that given an undeformed R-matrix satisfying the Yang–Baxter equation, the twisted
one will do so as well.4

The conclusion is that the real-β deformation is just as integrable as N = 4 SYM.
It should thus be possible to find a Bethe ansatz encoding the spectrum of the theory.
This can indeed be done by introducing appropriate phases (“twisting”) in the N = 4
SYM Bethe ansatz. In the SU(2)β sector, this was performed at one loop in [10], at

3It should also be noted that for β = 1/k (i.e. q being a k-th root of unity) the dual background is
actually an AdS5 × S5/Zk × Zk orbifold [8].

4The effect of the twist on other algebraic structures of the theory, such as the Yangian (reviewed
in [12]), was considered in [13].
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higher loops in [14], while the higher-loop twist for all sectors was obtained in [11]. For
simplicity, here we display just the one-loop, SU(2)β sector case:

e−2πiβL

(
uk + i/2

uk − i/2

)L
=

M∏
j=1,j 6=k

uk − uj + i

uk − uj − i
,

M∏
k=1

uk + i/2

uk − i/2
= e2πiβM (2.7)

where the second equation is the cyclicity condition. Very recently, [15] provided a deeper
understanding of the all-loop-twisted Bethe equations by deriving them from a suitable
Drinfeld-twisted S-matrix combined with a twist of the boundary conditions.

Integrability and the LM background

Integrability of the IIB Green–Schwarz sigma model in the real-β deformed case was
demonstrated in [7] by explicit construction of a Lax pair for the LM background. A
Lax pair was also constructed for the pure-spinor sigma-model in [16]. Therefore, just
as in the undeformed case (reviewed in [17]) one can attempt to compare gauge theory
results with strong coupling ones by considering semiclassical strings moving on the LM
background. This was done in [18], with the construction of several semiclassical string
solutions, which were matched to specific configurations of roots of the twisted Bethe
ansatz. Their energies precisely agree with the gauge theory anomalous dimensions.

Giant magnons [19] on the LM background were constructed in [20] and [21], with
the latter considering multispin configurations, while [22] considered more general rigid
string solutions on the S3

γ subspace, with the giant magnons and spiky strings as special
cases. The first finite-size correction to the giant magnon energy was computed in [23]
and takes the following form:5

E − J = 2g sin
p

2

(
1− 4

e2
sin2 p

2
cos

[
2π(n− βJ)

23/2 cos3 p
4

]
e−

J
g sin p/2 + · · ·

)
(2.8)

where n is the unique integer for which |n − βJ | ≤ 1
2
. This expression exhibits the ex-

pected exponential falloff, but the momentum dependence is highly unusual, and indeed
reproducing it from the Lüscher correction techniques discussed in [25] is still an open
problem.

Wrapping corrections

In order to calculate wrapping corrections to the spectrum (due to interactions whose
span is greater than the length of the spin chain), one needs to go beyond the asymptotic
Bethe ansatz. It turns out that the techniques developed for N = 4 SYM (reviewed
in [25–27] in this collection) can be applied with relative ease to the β-deformed theory. In
particular, it was argued in [28] that the β-deformation is described by the same Y-system
asN = 4 SYM. The β parameter arises by appropriately modifying the asymptotic (large
L) solution, exploiting the freedom to twist it by certain complex numbers. The authors
of [28] showed that this procedure correctly reproduces the higher-loop asymptotic Bethe

5Recently, this result was extended to the case of dyonic, or two-spin, giant magnons [24].
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ansatz of [11] (for all sectors, and more general twists) and derived generalised Lüscher
formulae for generic operators in the β-deformed theory.

Turning to results for specific operators, an interesting feature of the β-deformed
theory compared to N = 4 SYM (first noted in [29]) is that one-impurity operators

O1,L = TrφZL−1 , φ ∈ {X, Y } (2.9)

are not protected by supersymmetry and thus acquire anomalous dimensions. Because
of this, the real-β theory provides an excellent setting for the perturbative study of
wrapping effects for short operators (reviewed in [30] and also in [31]): Apart from the
calculations being simpler (compared to two-impurity cases like the Konishi operator), it
also allows for a clean separation of the effects of wrapping from those due to the dressing
factor, since the latter does not contribute at all for these states. Wrapping effects for
such states, at critical wrapping (where the loop level equals the length of the operator)
have been computed up to 11 loops in [32,33] (who also provided a recursive formula for
calculating them at higher loop orders), and have recently been reproduced in [28] via
the twisted solution to the Y-system and in [34] using generalised Lüscher formulae.6

A very special case arises when β = 1
2

and one considers even length operators. Then
the (higher-loop version of the) Bethe ansatz (2.7) becomes the same as that for N = 4
SYM, apart from a sign in the cyclicity constraint. In this case, a closed (instead of
iterative) form for the critical wrapping correction at any L was found in [35]. Also
working at β = 1

2
, and using the Lüscher techniques reviewed in [25], the work [36]

calculated the wrapping corrections to the single-impurity operator with L = 4 up to
five loops, i.e. the first two nontrivial orders:7

∆4-loop
w =128(4ζ(3)− 5ζ(5)),

∆5-loop
w =− 128(12ζ(3)2 + 32ζ(3) + 40ζ(5)− 105ζ(7)) .

(2.10)

The four-loop result agrees with the perturbative calculations in [32], while at the time of
writing there does not exist a perturbative result for the five-loop (subleading wrapping)
correction. In [37], the wrapping corrections at β = 1

2
were used to argue for the

equivalence (suggested by (2.7) for the asymptotic spectrum) of the full (non-asymptotic)
spectra of the β-deformed theory at β and β + 1/L, with the recent leading-finite-size
results of [34] in complete agreement with this.

Moving on to the two L = 4 two-impurity operators (Tr(XYXY ) and Tr(XXY Y )),
their anomalous dimensions were found to four-loop order through explicit calculation
in [32, 33].8 They were also computed and matched (for arbitrary β) using Lüscher
methods in [38] as well as through the Y-system in [28]. Essentially the same calculation
(starting from a slightly different perspective) was performed in [34].

Finally, there exists at the moment a prediction [34], coming from Lüscher methods,
for the leading finite-size correction to the energy for one- and two- impurity sl(2)-sector

6Note that no TBA equations (see [26]) have yet been constructed for the β-deformed theory.
7Here ∆w denotes the wrapping contribution to the anomalous dimension, i.e. the difference of the

exact result from the asymptotic one.
8Note that in N = 4 SYM one linear combination of these operators is BPS, while the other is a

descendant of the Konishi operator. However, in the deformed theory there is no BPS combination.
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operators, which has yet to be checked by explicit perturbative calculations.9

Amplitudes

As reviewed in [40], one manifestation of integrability in the N = 4 SYM context
is the appearance of iterative structures (which go by the name of the BDS conjecture)
expressing multiloop amplitudes in terms of one-loop ones. One might therefore expect
that amplitudes in the real-β theory satisfy such relations as well. It has indeed been
shown [41] that all (MHV and non-MHV) planar amplitudes in the real-β theory are
proportional to the corresponding N = 4 SYM ones, differing only in phases affecting
the tree-level part of the amplitude. Thus the BDS conjecture for N = 4 SYM extends
straightforwardly to the real-β deformation. At strong coupling (where the tree-level
part is not visible), gluon amplitudes in the real-β theory have been shown to equal
those for N = 4 SYM [42].

2.3 Integrability beyond the real-β deformation?

In the above we focused on a very special subset of the marginal deformations, those
where h = 0, while q is just a phase. One can ask whether there exist other integrable
values of the parameters (q, h). Keeping h = 0 but passing to complex β, the hamiltonian
in the two-holomorphic-scalar sector is that of the SU(2)q XXZ model and is thus inte-
grable [9]. However, this generically ceases to be the case beyond this simple sector [10]:
Contrary to initial expectations, the one-loop hamiltonian in the full scalar sector is not
that of the integrable SO(6)q XXZ spin chain, but of a type not matching any known
integrable hamiltonians. It was also shown in [10] that, unlike the real-β case, it is
not possible to transfer the deformation to the boundary conditions by site-dependent
redefinitions.10 The conclusion was that the one-loop hamiltonian for the generic LS
deformation is not integrable.11

Nevertheless, as demonstrated in [44], there do exist certain special choices of param-
eters for which the one-loop hamiltonian is integrable:

(q, h) =
{

(0, 1/h̄) ,
(

(1 + ρ) e
2πim

3 , ρ e
2πin

3

)
,
(
−e

2πim
3 , e

2πin
3

)}
. (2.11)

Some of these choices were also discovered via the study of amplitudes in [45]: They
correspond to special cases where the 1-loop planar finiteness condition (2.4) does not
receive corrections at higher loops, similarly to the real-β deformation.

In [46], a unifying framework for all these integrable cases was proposed: Their corre-
sponding one-loop hamiltonians can be related to the real-β case by Hopf twists. These
are a way of modifying the underlying R-matrix, leaving the integrability properties
unaffected. Since (as shown in [11]) the real-β hamiltonian is itself related to the unde-
formed hamiltonian by such a twist, all these integrable cases can be seen to be nothing
but Hopf-twisted N = 4 SYM.

9See also [39] for more recent results on wrapping for twist operators in the β-deformed theory.
10Note, furthermore, that the star-product techniques of [6] do not apply beyond real β, their naive

extension giving rise to a non-associative product.
11The question of whether higher-loop integrability persists in the (all-loop closed) SU(2)q sector

remains open, with some progress towards constructing the required higher charges reported in [43].

369



Chapter IV.2: Deformations, Orbifolds and Open Boundaries

Another special (one-loop) integrable sector beyond real β was found in [47]: It is an
SU(3) sector composed of two holomorphic and one antiholomorphic scalar, for instance
{X, Y, Z̄}. The hamiltonian in this sector actually turns out to be XXZ SU(3)q, the
standard (integrable) q-deformation of SU(3). However, this sector is not closed beyond
one loop, complicating the discussion of higher-loop integrability.

Apart from these special cases, the deformed hamiltonian is not integrable. An
intuitive explanation for this [14] is that the construction of the dual gravity background
for the complex β deformation involves a sequence of S-duality transformations on the
LM background [6]. The strong-weak nature of S-duality means that the intermediate
stages involve interacting strings, which (as reviewed in [48]) are unlikely to preserve
integrability.

A more direct argument for this lack of integrability was recently given in [46], who
noticed that there exists a Hopf algebraic deformation of the global SU(3) R-symmetry
group of the N = 4 theory under which the full LS superpotential (2.2) is invariant.
However, this symmetry, defined through a suitable R-matrix depending on the defor-
mation parameters q and h, is not a “standard” quantum-group deformation of SU(3).
In particular, apart from the special cases discussed above, the (q, h)–R-matrix does not
respect the Yang–Baxter equation, and consequently the corresponding Hopf algebra is
not quasitriangular. Thus the construction (reviewed in [49]) of the transfer matrices
and eventually of the integrable S-matrix of the theory would not be expected to go
through.

2.3.1 More general TsT transformations

A different way of generalising the Lunin–Maldacena solution is by performing TsT
transformations along all three available U(1)’s within the S5 [7]. Since one of these cor-
responds to the R–symmetry, this procedure will completely break the superconformal
symmetry. However it can be shown that these γi-deformations preserve integrability:
The Lax pair construction goes through in this case as well [7] and in [50] it was argued
that the Green–Schwarz action on TsT-deformed backgrounds is the same as the unde-
formed one, but with twisted boundary conditions. In [51], string energies were shown to
match anomalous dimensions coming from the corresponding three-phase deformed spin
chain. In addition, [52] showed that the action for three-spin strings in the “fast string”
limit admits a Lax pair and thus that string motion is integrable. The integrability
properties of the γi theories are thus very similar to the real-β case.12

One can also perform integrability-preserving TsT transformations along one AdS5

and one S5 direction, leading to dipole-type deformations in the gauge theory [54], as
well as purely along the AdS5 directions, leading to a noncommutative deformation on
the gauge theory side [55] (see [56] for a review of the latter case).

12As was the case for the β deformation, it is possible to generalise the γi-deformations to complex
values of γi while preserving integrability, but only for very special values, similar to (2.11) [53].
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2.3.2 Non-field theory deformations

As was first noted in [10], there exist integrable deformations of the algebraic structures
at the N = 4 SYM point which do not have a good field theory interpretation, in
the sense of arising as the one-loop hamiltonian of a deformed field theory. A large
class of such deformations was presented in [11]. More recently, q-deformations of the
psu(2|2) n R3 algebra were considered in [57]. The role of such deformations in the
AdS/CFT correspondence is not well understood, but their further study can be expected
to provide a deeper understanding of theN = 4 integrable structures by embedding them
in a larger framework.13

3 Integrability and orbifolds of N = 4 SYM

Besides adding marginal operators, another way of obtaining CFT’s with less supersym-
metry from N = 4 SYM is by orbifolding [58]. On the gauge theory side, this involves
picking a discrete subgroup Γ of the R-symmetry group and performing the following
projection on the fields (here for Γ = ZM):

φ→ ωsφγφγ−1 , where γ = diag(1, ω, ω2, . . . , ωM−1) , ω = e
2πi
M . (3.1)

The integer sφ is related to the SU(4)R charge of the field φ. The resulting theories have
a quiver structure: Starting with an U(MN) theory, one obtains a product gauge group
U(N)1× · · · ×U(N)M with matter fields in bifundamental representations. The amount
of supersymmetry preserved can be N = 2,1 or 0, depending on the subgroup of SU(4)R
on which Γ acts: SU(2), SU(3) or the whole SU(4)R respectively. For instance, a choice
of sφ resulting in an N = 2 theory is (sX , sY , sZ) = (1,−1, 0).

One can easily keep track of gauge invariant operators by writing them in terms of
the unorbifolded fields but with suitable phases inserted in the trace:

Tr(γmXYXZ · · · ) , where γm = diag(1, ωm, . . . , ω(M−1)m) , m = 1, . . . ,M − 1 . (3.2)

Operators for different choices of m do not mix with each other and correspond to
different twisted sectors on the string side (m = 0 being the untwisted sector). It is easy
to see that the parent and orbifolded theory will only differ by additional phases in the
Bethe equations, as well as a modification of the cyclicity condition. The one-loop Bethe
equations in various SU(2) sectors were considered in [59], while their structure for the
full scalar sector was derived in [60], who also argued that the higher-loop N = 4 SYM
equations can easily be adapted to the orbifold case.14 For the (X,Y) m–twisted SU(2)
sector, the one-loop equations take the form

e−
4πim
M

(
uk + i

2

uk − i
2

)J
=

K∏
j 6=k

uk − uj + i

uk − uj − i
,

K∏
k=1

(
uk + i

2

uk − i
2

)
= e

2πim
M . (3.3)

13For a simple illustrative example of how considering a deformed theory can nicely clarify aspects of
the undeformed one, the reader is referred to section 1.2 of [49] in this collection.

14These authors also exhibited the Bethe equations for a combination of orbifolding and twisting.
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Note the strong similarity to the Bethe ansatz (2.7) for the β-deformation. The Bethe
ansatz for more general (e.g. non-abelian) orbifolds was presented in [61].

On the string side, one considers an AdS5 × S5/ZM background15, constructed via
the following identifications (here for an N = 2 orbifold):

(X, Y, Z) ∼ (e
2πi
M X, e−

2πi
M Y, Z) . (3.4)

An analysis of two-spin semiclassical strings on this and more general backgrounds was
performed in [59] and their energies were successfully compared to the corresponding
solutions of the orbifolded Bethe ansatz above.

An advantage of the orbifold theory compared to the parent one is that a single
giant magnon is a physical state. This was used in [63] to settle an issue of gauge non-
invariance (dependence of the magnon energy on the light-cone gauge fixing parameter,
once finite-size effects are considered) which had previously arisen in the AdS5 × S5

case [64]. It was later argued that single magnons in N = 4 SYM can always be thought
of as living on the orbifolded theory [65]. Recently, TBA equations and wrapping effects
(up to next-to-leading order) were considered for a particular orbifold theory in [34].

Another interesting application of orbifold theories is that, having a new parameter
M , one can consider novel scaling limits. One such limit produces the “winding state”
[66], where one starts with a string winding around an S3/ZM in an N = 2 orbifold
and takes M → ∞ while also taking J large, keeping M2/J finite. In [67], finite-size
corrections to this state, as well as to orbifolded circular strings, were calculated up to
order 1/J2 and shown to match with Bethe ansatz results. In a related M →∞, BMN-
type limit [68], the first finite-size corrections to two-impurity operators in the N = 2
theory were computed in [69], both directly using the dilatation operator (to two loops)
and using the higher-loop version of the twisted Bethe ansatz 3.3. They were shown to
agree with each other and, given the appropriate choice of dressing factor, with the dual
pp-wave string result, calculated using DLCQ methods (see [70] for related earlier work).

Starting from the N = 2 U(N) × U(N) quiver theory, one can move away from
the orbifold point by varying the two gauge couplings independently, while preserving
superconformal invariance. In [71] this was shown to break integrability, but in the
extremal case where one of the two couplings vanishes (and we obtain an SU(N) gauge
theory with Nf = 2N flavors) it appeared that integrability might be recovered. This
result, if confirmed, would provide a first example of an integrable theory in the Veneziano
limit (N,Nf →∞ with N/Nf constant) instead of the usual ’t Hooft limit. Recently, [72]
considered magnon propagation on such interpolating non-integrable chains.

On the amplitude side, it is known that orbifold theories are planar equivalent to the
parent theory to all orders in perturbation theory [73]. Thus the BDS iterative conjecture
is expected to immediately transfer to the orbifold theories.

3.1 Other backgrounds

Apart from the orbifold theories discussed above, there exist several AdS/CFT setups
with reduced supersymmetry in the literature, and one can ask whether integrability

15Integrability for AdS5 × S5/Zp × Zq orbifolds has been considered in [62].
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appears in those cases as well. Perhaps the best-known example of this kind [74] is
constructed by taking the near horizon limit of a stack of D-branes situated at the tip of
the conifold, a noncompact 6-dimensional Calabi–Yau manifold which can be written as
a cone over the 5-dimensional Sasaki–Einstein manifold known as T 1,1. The near horizon
geometry of this system is AdS5 × T 1,1 and corresponds to an N = 1 superconformal
U(N) × U(N) gauge theory with bifundamentals, which is an infrared limit of a Z2

orbifold theory of the type discussed above.
There has been intense activity in constructing semiclassical string solutions on T 1,1,

as well as generalisations known as T p,q, Y p,q and Lp,q,r [75–77]. However, these conformal
fixed points only appear at strong coupling, and thus do not correspond to perturba-
tively finite field theories. It is therefore far from obvious that one should expect to find
integrability. Indeed, no Lax pair construction is known for these backgrounds. Further-
more, as observed in [76] for T 1,1 and its β–deformed analogue, the dispersion relation for
magnons and spiky strings is transcendental, in stark contrast to the AdS5×S5 case. This
is a clear indication that integrability, if it appears at all, would have to do so in a much
more complicated way than in N = 4 SYM. On the other hand, it was shown in [78] that,
for the cases mentioned above, the bosonic sector in the near-flat-space limit [79] is the
same as for S5. Thus the full sigma models do at least possess an integrable subsector.

4 Open spin chain boundary conditions

One can also investigate integrability in a less supersymmetric setting by considering
systems involving spin chains with open boundary conditions. This clearly signals the
presence of open strings, and therefore D-branes, on the dual string side. After reviewing
some universal aspects of open spin chains, we will proceed to discuss several different
situations where they make an appearance in the AdS/CFT context.

As reviewed in [49] in this collection, in the algebraic approach to integrability for
closed spin chains one begins by considering the RTT relations for the monodromy
matrix, defined in terms of an R-matrix satisfying the Yang–Baxter equation:

R12(u, v)R13(u,w)R23(v, w) = R23(v, w)R13(u,w)R12(u, v) . (4.1)

For open chains, these equations still hold, but have to be supplemented (at each bound-
ary) with the reflection, or boundary Yang–Baxter equation [80]:

R12(u, v)K1(u)R21(v,−u)K2(v) = K2(v)R12(u,−v)K1(u)R21(−u,−v) . (4.2)

Here the K1,2(u) are known as the boundary reflection matrices. See e.g. [81] for a
discussion of various boundary conditions, and the corresponding reflection matrices, for
sl(n) and sl(m|n) spin chains, as well as further references to the open-chain literature.
In the special case where the boundary conditions preserve the same gl(n) symmetry
as the bulk chain (which is often not the case in the setups to be considered below),
the general form of a perturbatively long-range integrable gl(n) spin chain with open
boundary conditions was given in [82].
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The generic structure of any putative open string Bethe ansatz is

e2ipkL = B1(pk)B2(pk)
M∏

j=1,j 6=k

Sjk(pj, pk)Skj(−pj, pk) (4.3)

where the Sjk are the bulk S-matrices, and B1,2 are the boundary reflection matrices.
To understand the above structure (see also [82] for a nice exposition), note that a given
excitation moving with momentum pi will scatter with a number of other excitations,
reflect from the boundary, scatter with the other excitations again (but with opposite
momentum) and reflect from the second boundary before finally returning to its original
position. Assuming that the bulk theory is integrable, the question of integrability hinges
on the precise form of the boundary matrices B1,2.

In the closed-chain case the Bethe ansatz is normally accompanied by a cyclicity con-
dition (which on the string side arises from the closed-string level-matching condition).
However, this is absent for the open-chain case. An immediate consequence of this is
that single-impurity states are physical, even for non-zero momentum.

As in the closed spin-chain case, new effects arise when considering long-range short
open spin chains, in particular spanning terms, which are the analogues of the closed-
chain wrapping interactions for finite-length open spin chains. Little is known at present
about their structure from the field theory side, though a study of such terms in [82]
suggests that they are not strongly constrained by integrability, which would therefore
appear to lose some of its predictive power for short chains.

4.1 Open spin chains within N = 4 SYM

Although this review is mainly concerned with integrable theories beyond N = 4 SYM,
there exist several interesting cases where integrable open spin chains arise within the
N = 4 theory itself. We will thus first discuss this class of theories, which arise through
the consideration of non-trivial backgrounds within N = 4 SYM.

4.1.1 Open strings on giant gravitons

The first case of this type is that of open strings ending on maximal giant gravitons [83]
in AdS5 × S5. These are D3-branes wrapping 3-cycles inside the 5-sphere. The gauge
theory picture is that of an open-spin chain word attached to a baryon-like (determinant)
operator in N = 4 SYM, formed out of one of the scalars in the theory, here denoted
ΦB:

εi1···iN ε
j1···jN (ΦB)i1j1 · · · (ΦB)

iN−1

jN−1
(Φk1Φk2 · · ·ΦkL)iNjN . (4.4)

In the large-N limit the determinant part becomes very heavy and has no dynamics of
its own, so this system behaves as a spin chain with open boundary conditions.

The one-loop hamiltonian for this type of chain was considered in [84] and shown to
be integrable. It was further investigated at two-loops in [85], with the final two-loop
result, in the SU(2) sector, given in [86]:

H =(2g2 − 8g4)
∞∑
i=1

(I− Pi,i+1) + 2g4

∞∑
i=1

(I− Pi,i+2) + (2g2 − 4g4)qΦB
1 + 2g4qΦB

2 (4.5)
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with qΦB
i = 1 if Φi = ΦB and 0 otherwise. The first two terms are the same as the

bulk hamiltonian, the third is the naive boundary contribution coming from all the
derivatives in the dilatation operator acting outside the determinant, while the last term
comes from one of the derivatives acting on the determinant. This term is naively 1/N
suppressed, but survives in the planar limit, the suppression being compensated by the
fact that it can act on any of the N − 1 terms in the determinant. As shown in [19], the
hamiltonian (4.5) is consistent with integrability. On the string side, [87] constructed
non-local conserved sigma-model charges for classical open strings ending on maximal
giant gravitons in the full bosonic sector, thus providing strong supporting evidence for
all-loop integrability of the maximal graviton system.

For non-maximal giant gravitons (which correspond to sub-determinant-type opera-
tors in the gauge theory) the open spin chain becomes dynamical, in the sense that the
number of sites can vary, even at one-loop level. This case was investigated in [88], where
it was argued that the formalism of Cuntz chains provides a better description than the
standard spin chain, and some (numerical) evidence for integrability was provided. How-
ever, on the string side, the appearance of extra conditions hinders the construction of
non-local sigma model charges [87]. Thus the prospects for integrability in this case do
not look particularly good.16

Reflecting magnons

Giant magnons ending on maximal giant gravitons were considered in [86]. One can,
without loss of generality, choose to consider open chains made up of a large number
of Z fields, which, on the string side, correspond to semiclassical strings with a large
angular momentum along the 5− 6 plane within S5. One can then consider two different
orientations of the giant magnon relative to this plane.

The Y = 0 magnon: In this case we choose the D3-brane to wrap the 3-sphere defined
by Y = 0, which corresponds to the operator detY in the gauge theory. Attaching an
open spin chain to this determinant, we are led to an operator of the form:

εi1···iN ε
j1···jNY i1

j1
· · ·Y iN−1

jN−1
(Z · · ·ZχZ · · ·Z)iNjN . (4.6)

Here χ stands for any impurity, though it will need to be a Y field if we wish to stay
within the SU(2) sector. As explained in [86], this configuration has no boundary degrees
of freedom, and there is a unique vacuum state. The boundary preserves an SU(1|2)2

out of the bulk SU(2|2) symmetry. The boundary scattering phase was found in [90],
while commuting open-chain transfer matrices, necessary for the construction of the
Bethe ansatz, were derived in [91].17 In [93] it was shown that part of the bulk Yangian
symmetry persists for boundary scattering and can be used to determine the bound-state
reflection matrices. This boundary Yangian was further discussed in [94]. The higher–
loop Bethe ansatz for this class of operators was proposed in [95], see also [96] for an
earlier discussion. A different derivation, which agrees with the one above, is in [97].

16Nevertheless, integrability was recently demonstrated for giant magnons scattering off Y = 0 non-
maximal gravitons [89], indicating that integrable subcases do exist.

17The works [92] generalised the q-deformed S-matrix of [57] to the Y = 0 and Z = 0 magnon context,
and studied open–chain transfer matrices for these cases.
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The Z = 0 magnon: Here we consider a D3-brane wrapping the 3-sphere defined by
Z = 0, which is dual to the gauge theory operator detZ. The open chain is still made
up mainly of Z’s, but it is easy to see that they cannot be attached directly to the
determinant: Such a configuration would factorise into a determinant plus a trace. To
obtain a nontrivial open spin chain, there need to be impurities (fields other than Z)
stuck to the boundary:18

εi1···iN ε
j1···jNZi1

j1
· · ·ZiN−1

jN−1
(χZ · · ·Zχ′′Z · · ·Zχ′)iNjN . (4.7)

In this case there are boundary degrees of freedom, which (like the bulk magnon) fall
into representations of SU(2|2)2 [86]. There are thus 16 states living on each boundary,
which were identified on the string side in [98], by considering fermionic zero modes
around the finite-size string solution for an open string ending on the Z = 0 graviton.19

The boundary scattering phase was found in [99]. One notable feature of the Z = 0 case
is the presence of poles in the reflection amplitude not corresponding to bound states,
whose origin was explained in [100]. As for Y = 0, a boundary R-matrix was proposed
in [86], however it did not directly satisfy the BYBE. This was reconsidered in [101],
who found a suitable basis where the boundary R matrix does satisfy the BYBE. The
higher-loop nested Bethe ansatz in this case was constructed in [102].

Finite-size effects

Considerable recent activity in the N = 4 SYM context has centered around un-
derstanding finite-size effects, or wrapping interactions on the gauge theory side (see
the reviews [25, 30, 27, 26] in this collection). There is an analogous formalism for the
open-chain case, which was used in [103] to compute Lüscher-type corrections to open
strings ending on giant gravitons (for vacuum states) and compare with explicit gauge
theory results. The anomalous dimension of the Y = 0 vacuum chain was shown to
vanish (a result expected by supersymmetry) while in the Z = 0 case it was non-trivial.
The Lüscher formulae of [103] were extended to the multiparticle case in [104], allow-
ing the computation of finite-size corrections to one-excitation states in the Y = 0 case
and leading to an explicit prediction to be checked by future gauge theory perturbative
calculations. The analogous computation for the (more challenging) Z = 0 brane has
not yet been performed. Furthermore, no TBA or Y-system equations are available at
present for the boundary case.

Classical solutions for finite-size magnons on Z = 0 gravitons (generalising those
in [98]) can be found in [105].

Other graviton-magnon combinations

The work [106] studied open strings ending on giant gravitons in the AdS part of
the geometry and, on the gauge side, identified the planar dilatation operator as the
hamiltonian of an open sl(2) spin chain. However, novel features such as a variable oc-
cupation number and continuous bands in the spectrum prevented a clear understanding

18In the SU(2) sector, all the χ’s will have to be of the same type, e.g. Y fields.
19The string solution itself was previously found in unpublished work by C. Ahn, D. Bak and S.J. Rey.
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of integrability in this case. Other configurations of strings on giant gravitons have been
considered in [107] (in the BMN limit), as well as in [108], where gauge theory operators
dual to a giant graviton/magnon bound state are proposed.

4.1.2 Operators with very large R-charge

Giant gravitons are dual to baryonic operators in N = 4 SYM whose dimensions grow
linearly with N . One can consider other types of operators whose dimension grows as N2,
which in the simplest case are of the form (detZ)M (with M ∼ N) but more generally
are described by Schur polynomial operators related to the Young diagram encoding
their symmetries. On the dual gravity side the number of D3-branes is so large that it
is no longer possible to ignore backreaction, and this modifies the AdS geometry into an
LLM-type background. Strings “attached” to the above operators20 have recently been
considered from the gauge theory side in [109]. It is possible to integrate out the effect
of the background and construct an effective dilatation operator, which is integrable
in a certain limit. Interestingly, this limit includes non-planar diagrams between the
trace operator and the background. Although, as reviewed in [48], truly non-planar
contributions (acting on the trace operator by splitting and joining) are still expected
to spoil integrability, this novel integrable limit of N = 4 SYM is still interesting and
deserves further exploration.

4.1.3 Open string insertions on Wilson loops

In the absence of nontrivial background operators for the spin chain to end on, open
string boundary conditions would not be gauge invariant. A way to avoid this problem
is to consider open chain insertions on Wilson loops [110]. As shown in that work, which
considered such operators in the SU(2) sector at one loop, the boundary conditions turn
out to be purely reflective (Neumann). Thus the Bethe ansatz can be related to a closed-
chain one by the method of images. The dual description of the Wilson loop (which has
angular momenta on S5 to account for the scalar insertions) was shown to reduce to
“half” the standard closed folded string solution, whose energy precisely matches the
Bethe ansatz computation. This setup is thus at least one-loop integrable (no higher-
loop checks have been performed at present).

4.2 Theories with fundamental flavor

One can also obtain open spin chains by extending the field content of N = 4 SYM
by adding flavors, i.e. fields in the fundamental representation of the gauge group.
Introducing such fields in the spectrum means that, apart from trace operators, one can
construct gauge–invariant operators of the generic form:

Q̄Φi1Φi2 · · ·ΦiLQ (4.8)

20Note that these are actually closed strings, since after the D3-branes have backreacted there are no
explicit open strings on the background.
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where Q is one of the fundamental fields. This operator, having no cyclicity properties,
will behave as an open chain. We will now review three distinct settings where these
types of operators have been studied in an integrability context.

4.2.1 The orientifold theory

In this setup, one considers a D3–O7–D7 system, where one first performs an orientifold
projection and then adds the required number of D7 branes (four, plus their mirrors)
to cancel the orientifold charge. The result is N = 2 SYM with gauge group Sp(N),
one hypermultiplet in the antisymmetric representation and four in the fundamental,
which is known to be a finite theory.21 The N = 2 vector multiplet contains an adjoint
chiral multiplet W , while the antisymmetric hypermultiplet two chiral multiplets Z,Z ′.
The near-horizon geometry is that of an AdS5 × S5/Z2 orientifold. Here the Z2 acts as
Z → −Z (or ϕ3 → ϕ3 + π), leaving a fixed plane at Z = 0. The worldsheet coordinate
is also identified as σ → π − σ.

Relatively few studies of integrability have been undertaken for this theory. The pp-
wave spectrum was discussed in [112]. Several open spinning string solutions on the dual
orientifold were considered in [113]. In [114], the one-loop hamiltonian for the SU(3)
sector comprised of W,Z,Z ′ was shown to be integrable and the corresponding one-loop
Bethe ansatz constructed. In the (Z,Z ′) SU(2) sector, it is:(

uk + i
2

uk − i
2

)2L

=
K∏
j 6=k

uk − uj + i

uk − uj − i
uk + uj + i

uk + uj − i
(4.9)

Notice that it is of the form (4.3). Applying the doubling trick, by means of which this
Bethe ansatz can be related to a closed string one with the extra condition that the set of
roots is symmetric under uj → −uj, energies of two-spin open strings were successfully
compared to gauge theory in [115]. At the time of writing three-spin strings have not
been compared, while the question of higher-loop integrability is still open.

4.2.2 The D3–D7–brane system

Here one considers AdS5 × S5, with a D7-brane filling AdS5 and wrapping an S3 in S5.
Unlike the case above, this theory is conformal only in the strict large-N limit, where the
backreaction of the D7 brane can be ignored. On the gauge theory side, this corresponds
to ignoring 1/N -suppressed processes with virtual fundamental flavors between bulk
states (which would provide a non-zero contribution to the β-function).

The bulk hamiltonian is the same as for N = 4 SYM, so closed spin chains in this
setup are automatically integrable. The one-loop open-chain hamiltonian is integrable
as well, with trivial boundary terms [116]. The one-loop, SU(2)-sector Bethe ansatz is
precisely the same as (4.9). The higher-loop reflection matrices for this case were studied
in [117], where it was shown that integrability survives, largely thanks to the fact that

21A different type of orientifold which preserves N = 4 SYM but leads to gauge group SO(N) or
Sp(N) was recently considered in [111], though in that case the focus was on non-planar corrections,
the differences to SU(N) being relatively minor at planar level.
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the boundary respects the psl(2|2) × psl(2|2) factorisation of the bulk theory. More
recently, the work [118] extended these results by constructing the reflection matrices for
boundary scattering of bound states.

On the gravity side, [87] showed integrability for the full bosonic sector by observing
that the equations governing open string motion are practically the same as in the
maximal giant graviton case discussed above. It is thus expected that this system exhibits
higher-loop integrability.

4.2.3 Defect theories

A different setup with fundamentals can be obtained by considering a D3–D5 system,
with a single D5 sharing only three directions (say x0, x1 and x2) with the stack of N
D3 branes. The configuration thus has four Neumann–Dirichlet directions and preserves
supersymmetry. Taking the D3-brane near-horizon limit, we obtain the usual AdS5× S5

geometry, but now the D5 brane wraps an AdS4×S2 in AdS5×S5. On the gauge theory
side, we obtain N = 4 SYM coupled to a defect located at x3 = 0. The matter content
on the defect is a 3d SU(N) vector multiplet plus a 3d fundamental hypermultiplet
(containing two chiral multiplets q1,2).

As shown in [119], starting from a ground state of the form q̄1Z · · ·Zq1 there are
two types of excitations one can consider: If the excitations are along the D5 brane, the
boundary conditions are Dirichlet, which on the gauge theory translates to the boundary
term being fixed. Otherwise, the string satisfies Neumann boundary conditions, which
for the spin chain means that the boundary excitations are dynamical: The boundary
state can flip from q1 to q2, which effectively increases the length of the chain by 1. In
both cases the boundary matrix is trivial and the full bosonic sector is integrable at one
loop. As before, there is no boundary phase in the SU(2) sector, though it does make
an appearance in the SL(2) sector [120]. Spinning string solutions in this setup were
considered in [121].

However, it was eventually understood that this one-loop integrability is an accident.
The first indication came from the gravity side, when [87] showed that nonlocal charges
could only be constructed in the SU(2) sector. Finally, by careful analysis of the symme-
tries, [117] constructed the all-loop reflection matrices (aspects of which were previously
considered in [96]) with the result that they do not satisfy the BYBE.

5 Outlook

In this short review we gave an overview of several different known ways of pushing
integrability beyond the highly symmetric case of N = 4 SYM. As we have seen, it
is relatively easy to maintain integrability at the one-loop level in less supersymmetric
(but still superconformal) situations, but all-loop integrability is a much more stringent
requirement. Indeed, it appears that all non-N = 4 SYM models where higher-loop
integrability persists are really just N = 4 SYM in disguise, in the sense that the
bulk spin chain is undeformed, with differences arising only in the boundary conditions:
Twisted ones for the real–β deformations, orbifold ones for the quiver theories, and open
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ones for giant gravitons and theories with fundamentals.
This observation seems to reaffirm how special the N = 4 SYM theory is, even within

the already very restricted class of superconformal quantum field theories. On the other
hand, the rich pattern of integrability breaking in the theories discussed above should
help us better appreciate the implications (and limitations) of integrability for more
realistic theories, in a more controllable setting than that of QCD. Even in those cases
which are believed to be higher-loop integrable, there remain numerous open questions
whose resolution can be expected to contribute to a deeper understanding of AdS/CFT
integrability, and ultimately of the AdS/CFT correspondence itself.
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Chapter IV.3: N = 6 Chern-Simons and Strings on AdS4 × CP 3

1 Introduction

Almost all statements that have been made in the other chapters of this review [1] about
the duality and integrability of string theory on AdS5×S5 and N = 4 Yang-Mills theory
in four dimensions, also hold in an appropriately adopted form for a second example
of the AdS/CFT correspondence. This example has been known since June 2008 [2],
and it is as concrete as the “old” one. Because the involved space-times are of one less
dimension, this correspondence is often referred to as AdS4/CFT3 to distinguish it from
the more established AdS5/CFT4.1

In the AdS5/CFT4 case, we had IIB superstring theory on AdS5 × S5 with self-dual
RR 5-form flux F (5) ∼ N through AdS5 and S5. This is now replaced by:

IIA superstring theory on AdS4 × CP3

with RR four-form flux F (4) ∼ N through AdS4

and RR two-form flux F (2) ∼ k through a CP1 ⊂ CP3.

(1.1)

On the gauge theory side, we hadN = 4 superconformal Yang-Mills theory with coupling
gYM and gauge group U(N) on R1,3. Now this is replaced by ABJM theory:

N = 6 superconformal Chern-Simons-matter theory
with gauge group U(N)× U(N) on R1,2

and Chern-Simons levels k and −k.

(1.2)

Both theories are controlled by two and only two parameters, k and N , which take
integer values. These parameters determine all other quantities like coupling constants
and the effective string tension. In ABJM theory, the Chern-Simons level k acts like
a coupling constant. The fields can be rescaled in such a way that all interactions are
suppressed by powers of 1

k
, i.e. large k is the weak coupling regime. One can take a

planar, or ’t Hooft, limit which is given by

k,N →∞ , λ ≡ N

k
= fixed . (1.3)

It is in this limit where integrability shows up and which is therefore the focus of this
review. On the gravity side, the string coupling constant and effective tension are given
by2

gs ∼
(
N

k5

)1/4

=
λ5/4

N
,

R2

α′
= 4π

√
2λ , (1.4)

where R is the radius of CP3 and twice the radius of AdS4. These relations are qual-
itatively the same as in the AdS5/CFT4 context. In the planar limit gs goes to zero
and thus the strings do not split or join. At small ’t Hooft coupling, the background
is highly curved and the string is subject to large quantum fluctuations. At large ’t

1Since December 2009, also an AdS3/CFT2 correspondence has been discussed in the context of
integrability [3].

2There are corrections to the second relation at two loops in the sigma model [4].
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Hooft coupling, the background is weakly curved which renders the sigma-model weakly
coupled and the string behaves classically.

The first equation in (1.4) contains a hint that the duality is about more than the
relationship between (1.1) and (1.2). If we are not in the ’t Hooft limit but if we let
N � k5, then the string coupling gs becomes large. However, strongly coupled IIA string
theory is M-theory. Indeed, ABJM theory (1.2) at arbitrary value of k and N is dual
to [2]

M-theory on AdS4 × S7/Zk
with four-form flux F (4) ∼ N through AdS4.

(1.5)

In other words, ABJM theory is the world-volume theory of a stack of N M2 branes
moving on C4/Zk [2]. The duality of (1.1) and (1.2) is really only a corollary of this
more general M/ABJM duality in the limit where k5 � N and where therefore M-theory
is well approximated by weakly coupled IIA string theory on a AdS4×CP3 background3.
The lecture notes [5] discuss the general M/ABJM correspondence. However, in the
planar limit (1.3), where k and N grow large with equal powers, we are always in the IIA
regime. Thus, by concentrating on the question of integrability we are only concerned
with IIA/ABJM. An extended and largely self-contained review of the AdS4/CFT3 cor-
respondence is forthcoming [6].

Overview. In a nutshell, the differences between AdS5/CFT4 and AdS4/CFT3, see
Tab. 1, are: The first duality involves theories that are invariant under the supergroup
PSU(2, 2|4) and therefore are maximally supersymmetric (32 supercharges), while the
theories in the second duality are OSp(6|4)-symmetric, a group which contains “only”
24 supercharges. After gauge fixing, the symmetry groups reduce to two and one copy of
SU(2|2), respectively. The sixteen elementary excitations in the 5/4d case transform in
the representation (2|2)L ⊗ (2|2)R of the residual symmetry group, while there are only
eight elementary excitations in the 4/3d case which transform in the representation

(2|2)A−particles ⊕ (2|2)B−particles . (1.6)

In Sec. 3 and Sec. 5 we will show how these two types of particles arise from the gauge
and string theory degrees of freedom, respectively.

Another difference between the two dualities is that the interpolation between weak
and strong coupling in AdS4/CFT3 is much more intricate. Take e.g. the magnon dis-
persion relation, which due to the underlying SU(2|2) symmetry is fixed in either duality
to be of the form [7] (see also [8])

E(p) =
√
Q2 + 4h2(λ) sin2 p

2
, (1.7)

where Q is the magnon R-charge and where the function h(λ) is not fixed by symmetry.
The fundamental magnon in AdS5/CFT4 has charge Q = 1, while in AdS4/CFT3 it has

3CP 3 arises from writing S7 as S1 fibered over CP3 and by identifying the circle as the M-theory
direction which shrinks to zero size by the orbifold action of Zk in the large k limit.
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AdS5/CFT4 AdS4/CFT3

Global symmetry PSU(2, 2|4) OSp(6|4)

Dynkin diagram

Residual symmetry SU(2|2)L × SU(2|2)R SU(2|2)

Representations (2|2)L ⊗ (2|2)R = 16 d.o.f (2|2)A ⊕ (2|2)B = 8 d.o.f

Table 1: Comparison of symmetries. The Dynkin diagram of PSU(2, 2|4)
contains two SU(2|2) branches which represent the residual symmetries, and ex-
actly one momentum carrying root which we marked by shading it gray. This
indicates that all 16 elementary excitations transform in a single irreducible rep-
resentation with one fundamental index in each SU(2|2). The Dynkin diagram of
OSp(6|4) contains only one SU(2|2) branch, but two momentum carrying roots.
Correspondingly, the 8 elementary excitations transform in two copies of the
fundamental representation of SU(2|2).

Q = 1
2
. In the AdS5/CFT4 case the function h(λ) turned out to be simply

√
λ/4π, which

can be argued to arise from S-duality [9]. In the present case there is no such argument
and indeed the function h happens to be quite non-trivial. The weak and strong coupling
asymptotics are given by

h(λ) =

λ
[
1 + c1λ

2 + c2λ
4 + . . .

]
for λ� 1 ,√

λ
2

+ a1 + a2√
λ

+ . . . for λ� 1 ,
(1.8)

where the leading terms were deduced in [10,11] and [11,12], respectively. In fact, the λ-
dependence of many other quantities like the S-matrix, the Bethe ansatz, the Zhukowsky
map, the universal scaling function, etc., are also related between the AdS5/CFT4 and
the AdS4/CFT3 correspondence by appropriately replacing λ by h(λ). Despite this fact,
the subleading terms seem to be scheme dependent. E.g. a worldsheet computation yields
a non-zero a1 [13] while the algebraic curve computation produces a1 = 0 [14] which is
also what is used in the Bethe ansatz proposal [15]. In order to unambiguously com-
pare different approaches, one should therefore express all results in terms of a physical
reference observable, and neither in terms of λ nor h(λ).

2 N = 6 Chern-Simons matter theory

Field content. ABJM theory is a three-dimensional superconformal Chern-Simons
theory with product gauge group U(N)× Û(N) at levels ±k and specific matter content.
The quiver diagram visualizing the fields of the theory and their gauge representations
is drawn in Fig. 1. The entire field content is given by two gauge fields Aµ and Âµ,
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U(N) Û(N)Aµ Âµ

Y A, ψA

Y †
A , ψ†A

Figure 1: Quiver diagram of ABJM theory. The arrows indicate the
representations of the fields under the gauge groups. The arrows are drawn from
a fundamental to an anti-fundamental representation.

U(N) Û(N) SU(4)R SU(2)r U(1)∆ U(1)b
Aµ N2 1 1 3 1 0

Âµ 1 N2 1 3 1 0
Y A N N̄ 4 1 1

2
1

ψA N N̄ 4̄ 2 1 1

Table 2: Representations of ABJM fields.

four complex scalar fields Y A, and four Weyl-spinors ψA. The matter fields are N × N
matrices transforming in the bi-fundamental representation of the gauge group.

Global symmetries. The global symmetry group of ABJM theory, for Chern-Simons
level4 k > 2, is given by the orthosymplectic supergroup OSp(6|4) [2, 16] and the
“baryonic” U(1)b [2]. The bosonic components of OSp(6|4) are the R-symmetry group
SO(6)R ∼= SU(4)R and the 3d conformal group Sp(4) ∼= SO(2, 3). The conformal group
contains the spacetime rotations SO(3)r ∼= SU(2)r and dilatations SO(2)∆

∼= U(1)∆. The
fermionic part of OSp(6|4) generates the N = 6 supersymmetry transformations. The
baryonic charge U(1)b is +1 for bi-fundamental fields, −1 for anti-bi-fundamental fields,
and 0 for adjoint fields. The representations in which the fields transform under these
symmetries are listed in Tab. 2. For more details about the OSp(6|4) group theory in
this context see [17]. Finally, the model also possesses a discrete, parity-like symmetry.
This might be surprising since the Chern-Simons action is not invariant but changes sign
under a canonical parity transformation. The trick to make the model parity invariant
is to accompany the “naive” parity transformation by the exchange of the two gauge
group factors. The total transformation is a symmetry because the Chern-Simons terms
for the two gauge group factors have opposite signs.

Action. The ABJM action was first spelled out in all detail in [18] inN = 2 superspace
and in component form. An N = 3 [19], an N = 1 [20], and an N = 6 [21] superspace

4We are ignoring the symmetry enhancement to OSp(8|4) at k = 1 and k = 2, because for the
purpose of discussing integrability we have to work in the ’t Hooft limit where k is large.
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version is also known. The component action using the conventions of [18] reads

S =
k

4π

∫
d3x

[
εµνλ tr

(
Aµ∂νAλ + 2i

3
AµAνAλ − Âµ∂νÂλ − 2i

3
ÂµÂνÂλ

)
− tr(DµY )†DµY − i trψ† /Dψ − Vferm − Vbos

]
, (2.1)

where the sextic bosonic and quartic mixed potentials are

V bos = − 1

12
tr
[
Y AY †AY

BY †BY
CY †C + Y †AY

AY †BY
BY †CY

C

+ 4Y AY †BY
CY †AY

BY †C − 6Y AY †BY
BY †AY

CY †C

]
. (2.2)

V ferm =
i

2
tr
[
Y †AY

Aψ†BψB − Y AY †AψBψ
†B + 2Y AY †BψAψ

†B − 2Y †AY
Bψ†AψB

− εABCDY †AψBY
†
CψD + εABCDY

Aψ†BY Cψ†D
]
. (2.3)

The covariant derivative acts on bi-fundamental fields as

DµY = ∂µY + iAµY − iY Âµ , (2.4)

while on anti-bi-fundamental fields it acts with Aµ and Âµ interchanged. According to
the M-theory interpretation, this theory describes the low-energy limit of N M2 branes
probing a C4/Zk singularity. The three-dimensional spacetime of ABJM theory is the
world-volume of those M2 branes. For conventions and further details we refer to [18].

Perturbation theory and ’t Hooft limit. Note that the Chern-Simons level occurs
in (2.1) as an overall factor of the entire action. Alternatively, one can rescale the fields
in such a way that all quadratic terms come without any factors of k and interactions
of order n come with 1

kn/2−1 . Either way, this shows that g2
CS ≡ 1

k
acts like a coupling

constant of ABJM theory, quite similar to g2
YM in N = 4 SYM, though of course k

has to be an integer to preserve non-abelian gauge symmetry. As announced in the
introduction, the theory can be restricted to the planar sector by taking the ’t Hooft
limit (1.3) which introduces the effective coupling

λ ≡ g2
CSN =

N

k
. (2.5)

In this limit the theory becomes integrable [10] (see also [11, 22]) in the same sense as
we are used to in planar N = 4 SYM theory and as we will discuss below.

Gauge group. The model can be generalized to have gauge group U(M)k × U(N)−k
[23]. This generalization goes by the name ABJ theory. The M-theory interpretation is
given by min(M,N) M2 branes allowed to move freely on C4/Zk and |M −N | fractional
M2 branes stuck to the singularity. The gauge theory action is formally the same as in
(2.1), except that the matter fields are now given by rectangular matrices. Thus two ’t
Hooft couplings can be defined by

λ =
M

k
, λ̂ =

N

k
, (2.6)
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and it becomes possible to take different planar limits depending on the ratio of λ and
λ̂. On the other hand, the generalized parity invariance of the ABJM theory is explicitly
broken, because now the two gauge group factors cannot be exchanged anymore.

Deformation. It is possible to introduce independent Chern-Simons levels k and k̂
for the two gauge groups U(N) and Û(N) that do not sum to zero. This generalized
theory possesses less supersymmetry and less global symmetry. It is proposed to be
dual to a type IIA background with the Romans mass F0 = k + k̂ turned on [24]. This
modification, however, seems to break integrability [25].

3 From ABJM theory to the integrable model

Spin-chain picture. The integrability of the planar ABJM theory is best described in
terms of an integrable OSp(6|4) spin-chain which represents single trace operators [10].
A qualitative difference between the case at hand and the case of N = 4 SYM is that
the ABJM spin-chain is an “alternating spin-chain.” Because the matter fields are in bi-
fundamental representations of the product gauge group U(N)× Û(N), gauge invariant
operators need to be built from products of fields that transform alternatingly in the
representations (N, N̄) and (N̄,N), e.g.

tr(Y 1Y †4 Y
1Y †4 · · · ) . (3.1)

Thus, the spin-chain has even length and the fields on the odd sites are distinct from
the ones on the even sites. On the odd sites, we can have any of the 4B+8F fields Y A,
ψAα, and on the even sites, we can have any of the 4B+8F fields Y †A, ψ†Aα . We can also
act with an arbitrary number of derivatives Dµ = Dαβ onto the fields, but derivatives
do not introduce extra sites. Also field strength insertions do not count as extra sites as
they can be written as anti-symmetrized derivatives.

Spin-chain excitations. In the spin-chain description, the ABJM fields are distin-
guished according to whether they represent the vacuum (or “down spin”), or elementary
or multiple excitations. A convenient and common choice for the vacuum spin-chain is
the BPS operator (3.1), i.e. Y 1 is the vacuum on the odd sites, and Y †4 is the vacuum
on the even sites.

Selecting a vacuum breaks the OSp(6|4) symmetry group of ABJM theory down to
SU(2|2)×U(1)extra which becomes the symmetry group of the spin-chain model [10,11].
The bosonic components of this SU(2|2) are SU(2)G× SU(2)r ×U(1)E, where SU(2)G is
the unbroken part of SU(4)R, SU(2)r ∼= SO(1, 2)r is the Lorentz group, and U(1)E is the
spin-chain energy E = ∆ − J which itself is a combination of the conformal dimension
∆ and a broken SU(4)R generator J . The charges of the fields under these groups are
listed and explained in Tab. 3.

By construction, the ground state spin-chain (3.1) has energy E = ∆− J = 0. This
spin-chain can be excited by replacing one of the vacuum fields by a different field or
by acting with a covariant derivative. This procedure increases the energy in quanta of
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SU(4)R SU(2)G′ SU(2)G U(1)extra U(1)∆ SU(2)r U(1)E
[p1, q, p2] J ∆ s E = ∆− J

Y 1 [ 1 , 0 , 0 ] +1/2 0 +1 1/2 0 0
Y 2 [−1, 1, 0] 0 +1/2 −1 1/2 0 1/2
Y 3 [0,−1, 1] 0 −1/2 −1 1/2 0 1/2
Y 4 [0, 0,−1] −1/2 0 +1 1/2 0 1
ψ1± [−1, 0, 0] −1/2 0 −1 1 ±1/2 3/2
ψ2± [1,−1, 0] 0 −1/2 +1 1 ±1/2 1
ψ3± [0, 1,−1] 0 +1/2 +1 1 ±1/2 1
ψ4± [ 0 , 0 , 1 ] +1/2 0 −1 1 ±1/2 1/2
D0 [ 0 , 0 , 0 ] 0 0 0 1 0 1
D± [ 0 , 0 , 0 ] 0 0 0 1 ±1 1

Y †1 [−1, 0, 0] −1/2 0 −1 1/2 0 1

Y †2 [1,−1, 0] 0 −1/2 +1 1/2 0 1/2

Y †3 [0, 1,−1] 0 +1/2 +1 1/2 0 1/2

Y †4 [ 0 , 0 , 1 ] +1/2 0 −1 1/2 0 0

ψ†1± [ 1 , 0 , 0 ] +1/2 0 +1 1 ±1/2 1/2
ψ†2± [−1, 1, 0] 0 +1/2 −1 1 ±1/2 1
ψ†3± [0,−1, 1] 0 −1/2 −1 1 ±1/2 1
ψ†4± [0, 0,−1] −1/2 0 +1 1 ±1/2 3/2

Table 3: Charges of fields. The R-symmetry group SO(6)R ∼= SU(4)R splits
up into SU(2)G′×SU(2)G×U(1)extra, and the conformal group Sp(2, 2) ∼= SO(2, 3)
splits up into U(1)∆×SU(2)r. The symmetry group of the spin-chain is SU(2|2)×
U(1)extra ⊃ SU(2)G × SU(2)r × U(1)E × U(1)extra. The U(1)J generator J =
p1+q+p2

2 is the Cartan generator of SU(2)G′ , and the U(1)E generator E is given
by the difference ∆− J .

δE = 1/2 by a total amount that can be read off from the last column in Tab. 3. If
the energy increases by 1/2, then the excitation is an elementary one. We find that the
elementary excitations on the odd and even sites are given by

“A”-particles: (Y 2, Y 3|ψ4+, ψ4−) , (3.2a)

“B”-particles: (Y †3 , Y
†

2 |ψ
†1
+ , ψ

†1
− ) , (3.2b)

respectively [11]. These are the two multiplets anticipated in (1.6). All other fields
correspond to composite excitations and are listed in Tab. 4.

Subsectors. A subsector is a set of fields which is closed under the action of the spin-
chain Hamiltonian, i.e. there is no overlap between spin-chains from within a subsector
with spin-chains from outside. The subsectors of ABJM theory above the vacuum (3.1)
are listed in Tab. 5. To prove that these sectors are closed to all orders in perturbation
theory, one defines a positive semi-definite charge P = n1p1 + n2q + n3p2 + n4∆ +
n5s + n6b ≥ 0 from the eigenvalues of all operators that commute with the spin-chain
Hamiltonian E = ∆−J . These are the 5 Cartan generators of OSp(6|4) and the baryonic
charge U(1)b. The set of fields with P = 0 constitute a closed subsector. Different
subsectors are obtained by different choices for the numbers ni.

Spin-chain Hamiltonian. Various works have computed the spin-chain Hamiltonian
for different subsectors to different loop orders with different methods in different ap-
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Multi-excitation made of

Double excitations Y †1 Y
1 , Y 4Y †4 Y 2Y †2 ± Y 3Y †3

ψ2Y
†
4 , ψ

†3Y 1 ψ4Y
†

2 ± Y 3ψ†1

ψ3Y
†
4 , ψ

†2Y 1 ψ4Y
†

3 ± Y 2ψ†1

Triple excitations ψ1Y
†
4Y

1 Y 2ψ†1Y 3

ψ†4Y 1Y †4 Y †2 ψ4Y
†

3

DµY
1Y †4 ψ4γµψ

†1

Table 4: Multi-excitations. In order to determine which elementary excita-
tions a composite is made out of, one needs to compare their SU(2|2)×U(1)extra

charges. E.g. for the triple excitation ψ1 one can check that the charges of ψ1

together with the two background fields Y 1Y †4 coincide with the charges of the
three elementary excitations Y 2ψ†1Y 3.

Subsector Vacuum Single Double

Vacuum Y 1 Y †4
SU(2)× SU(2) Y 1 Y †4 Y 2 Y †3
OSp(2|2) Y 1 Y †4 ψ4+ ψ†1+ D+

OSp(4|2) Y 1 Y †4 Y 2 ψ4+ Y †3 ψ†1+ D+ ψ3+ ψ†2+

SU(2) Y 1 Y †4 Y 2

SU(1|1) Y 1 Y †4 ψ4+

SU(2|1) Y 1 Y †4 Y 2 ψ4+

SU(3|2) Y 1 Y †4 Y 2 Y 3 ψ4+ ψ4−

Table 5: Subsectors. This list of closed subsectors above the vacuum
tr(Y 1Y †4 Y

1Y †4 · · · ) is complete, although a specific subsector can be realized also
by other fields. That would correspond to a different embedding of the sector
into the full theory. Note that there is no closed SL(2) sector that is made only
out of derivatives as we had in N = 4 SYM. This is because derivatives are dou-
ble excitations of fermions with the above choice of vacuum. However, it is also
possible to consider closed subsectors based on a different vacuum. There is, for
instance, an SL(2) sector built from derivatives onto the vacuum tr(Y 1ψ†1)L [26],
which was studied e.g. in [27].
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proximations. The first results were obtained in the SU(4) sector5 at two6 loops [10,22]
where the spin-chain Hamiltonian reads

H =
λ2

2

2L∑
l=1

(
2− 2Pl,l+2 + Pl,l+2Kl,l+1 +Kl,l+1Pl,l+2

)
. (3.3)

with Pl,m and Kl,m being the permutation and the trace operator, respectively, and 2L
being the length of the spin-chain. This Hamiltonian has been proven to be integrable by
means of an algebraic Bethe ansatz [10,22]. In the SU(2)× SU(2) sector, independently
studied in [11], the trace operators annihilate the states and the Hamiltonian reduces to
the sum of two decoupled Heisenberg XXX1/2 Hamiltonians, one acting onto the even
sites and one acting onto the odd sites. The only coupling between these two sublattices
comes from the cyclicity condition which says that the total momentum of all excitations
has to be zero (mod 2π), not individually for the even and odd sites. Nevertheless, the
Hamiltonians will continue to be decoupled up to six loop order [15].

The extension of the two-loop Hamiltonian to the full theory was derived in [26]
and [28]. The integrability in the OSp(4|2) sector was proved by means of a Yangian
construction [26]. The generalization to ABJ theory at two loops was studied in the
scalar sector [29] and the full theory [28], which at this perturbative order amounts to
replacing λ2 in the ABJM result by λλ̂, cf. (2.6). That means that the absence of parity
in ABJ theory is not visible at two loop order.

Beyond two loops only the dispersion relation, i.e. the eigenvalue of the Hamiltonian
on spin-chains with a single excitation, is known to date. It is of the general form (1.7).
The expansion of the interpolating function h to four-loop order was computed for the
ABJM and the ABJ theory in [30–32] with the result

h2(λ, λ̂) = λλ̂− (λλ̂)2

[
2π2

3
+
π2

6

(
λ− λ̂√
λλ̂

)2
]
, (3.4)

where the ABJM expression is obtained from this by setting the two ’t Hooft couplings
equal to each other. We see that h(λ, λ) is for the form (1.8) with c1 = −π2/3. Note that
(3.4) is invariant under the exchange of λ and λ̂, even though ABJ theory lacks manifest
parity invariance. The fact that parity is not broken in the spin-chain picture is not
a consequence of integrability, because as shown in [29] there are integrable but parity
breaking spin-chain Hamiltonians already at two loops. Alternative explanations for the
non-visibility of parity breaking were proposed [29]. In ABJ theory one can also study
the limit λ� λ̂ [30]. In this limit, the Hamiltonian of the SU(2)×SU(2) sector is, at any
loop order, proportional to two decoupled Heisenberg spin-chain Hamiltonians [30]. An
exact expression for the λ-dependent prefactor, which gives a prediction for the function
h(λ, λ̂) in the limit λ̂� λ, has been conjectured in [33]. Very recently, even for the case
when λ = λ̂ an all-order guess for h2(λ) was made [32], that is in line with the weak and
strong coupling data.

5This sector is closed at two-loop order but not beyond.
6There is no contribution to the Hamiltonian at an odd number of loops as in three dimensions no

such Feynman diagram is logarithmically divergent.
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At six loops only a subset of Feynman diagrams have been evaluated, namely those
which move the impurities along the spin-chain by the maximal amount that is possible
at this loop order [34]. The contributions from this subset to the dilatation operator are
consistent with the corresponding spin-chain being integrable [34].

Also non-planar contributions to the two-loop dilatation operator have been com-
puted in the SU(2) × SU(2) sector [35]. The degeneracy of the dimensions of parity
pairs at the planar level, which is a signature of integrability, is lifted by the non-planar
contributions [35]. At the non-planar level, one can also observe the breaking of parity
in the ABJ theory already at two loops [36].

4 Superstrings on AdS4 × CP3

String background. AdS4×CP3 with two- and four-form fluxes turned on is a solution
to IIA supergravity that preserves 24 out of 32 supersymmetries [37], i.e. unlike AdS5 ×
S5 it is not maximally supersymmetric. The AdS4 × CP3 superspace geometry has
been constructed in [38]. The fermionic coordinates Θ1..32 =

(
ϑ1..24, υ1..8

)
split into 24

coordinates ϑ, which correspond to the unbroken supersymmetries of the background,
and eight coordinates υ corresponding to the broken supersymmetries.

Green-Schwarz action. Although formal expressions for the Green-Schwarz super-
string action exist for any type II supergravity background [39], in practice it is generi-
cally hopeless to find exact expressions for the supervielbeins. Nevertheless, utilizing the
connection to M-theory on AdS4 × S7, all functions that are required to write down the
Nambu-Goto form of the action, in particular the supervielbeins and the NS-NS two-
form superfield, were explicitly spelled out in [38], and the simpler κ-gauge-fixed version
was given in [40]. However, it is probably fair to say that working with this action is
still quite cumbersome as the explicit expressions are rather involved.

Coset action. A more pragmatic approach to strings on AdS4 × CP3 has been taken
in [41] and [42]. The observation is that AdS4 is the coset SO(2, 3)/SO(1, 3) and CP3 is
the coset SO(6)/U(3), and that SO(2, 3) × SO(6) is the bosonic subgroup of OSp(6|4).
Thus the idea is to write the superstrings action as a sigma-model on the supercoset

OSp(6|4)

SO(1, 3)× U(3)
, (4.1)

analogously to the PSU(2, 2|4)/SO(1, 4)×SO(5) coset model for superstrings on AdS5×S5

[43], which itself was inspired by the WZW-type action for strings in flat space [44]. Again
it is possible to define a Z4 grading [45] of the (complexified) algebra [41,42], and when
this grading is used to split up the current one-formA = −g−1dg = A(0)+A(1)+A(2)+A(3),
constructed from a parametrization of the coset representatives g, then the coset action
is given by

S = − R2

4πα′

∫
dσ dτ str

[√
−hhαβ A(2)

α A
(2)
β + κεαβ A(1)

α A
(3)
β

]
. (4.2)
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The explicit form of this sigma-model action can look quite differently depending on the
choice of coset representative and the choice of gauge [41,42,46,47].

Fermions, κ-symmetry and singular configurations. There is a subtle problem
with the coset action (4.2). The supercoset (4.1) has only 24 fermionic directions, which
is the number of supersymmetries preserved by the background. However, independent of
how many supersymmetries are preserved, the Green-Schwarz superstring always requires
two Majorana-Weyl fermions with a total number of 32 degrees for freedom. Thus the
coset model misses 8 fermions and can therefore not be equivalent to the GS string! This
problem did not exist in the case of AdS5 × S5 because that background is maximally
supersymmetric and the corresponding supercoset has 32 fermionic directions.

It has been argued that the eight missing fermions υ are part of the 16 fermionic
degrees of freedom that due to κ-gauge symmetry are unphysical anyway, i.e. to think
of the coset action on (4.1) as an action with κ-symmetry partially gauge-fixed. Of the
remaining 24 fermions ϑ, further 8 should then be unphysical. For this interpretation to
be correct, the rank of κ-symmetry of the coset action must be 8. This is in fact true for
generic bosonic configurations [41, 42], unfortunately however not for strings that move
only in the AdS part of the background, in which case the rank of κ-symmetry is 12 [41].
This means that on such a “singular configuration” the coset model is a truncation of the
GS string where instead of removing 8 unphysical fermions (from 32 to 24), 4 physical
fermions have been put to zero, while 4 unphysical fermions have been retained.

The upshot is that the coset model is generically equivalent to the GS string, but not
on singular backgrounds. The consequence is that these singular backgrounds cannot be
quantized semi-classically within the coset description.

Near plane-wave expansion. One method for dealing with a curved RR-background
at the quantum level is to take a Penrose limit of the geometry which leads to a solvable
plane-wave background and then to include curvature corrections perturbatively. Penrose
limits of the AdS4 ×CP3 background were studied in [48,11,12,49,50]. The near plane-
wave Hamiltonian was derived in a truncation7 to the bosonic sector in [51], for a sector
including fermions in [52], and for the full theory in [49].

Alternative approaches. The pure spinor formulation of the superstring on AdS4 ×
CP3 was developed in [53]. This approach is suitable for the covariant quantization of
the string. Another possibility to obtain an action for the AdS4 × CP3 string is to start
from the supermembrane on AdS4×S7 and perform a double dimensional reduction [54].

5 From AdS4 × CP3 to the integrable model

Evidence for integrability. The purely bosonic sigma-model on AdS4×CP3 is inte-
grable at the classical level, though quantum corrections spoil the integrability [55]. For

7This truncation is not consistent and the absence of the fermions yields divergences, which were
regularized using ζ-function regularization. Up to so-called “non-analytic” terms, the result is correct.
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field mass dispersion relation
t, ψ 0 ωn = n

x1,2,3, ξ κ ωn =
√
κ2 + n2

θ1,2, ϕ1,2 κ/2 ωn =
√

(κ/2)2 + n2 ± κ/2

Table 6: Spectrum of fluctuations about the point-like string. Two
linear combinations of θ1,2 and ϕ1,2 possess the dispersion relation with +κ/2,
and two other linear combinations the one with −κ/2.

the super-coset model, classical integrability is also proven [41,42]. The Lax connection
found in [56] for the AdS5 × S5 case as a means of writing the equations of motion in a
manifestly integrable form is directly applicable here. Moreover, the absence of particle
production in the coset sigma-model has been shown explicitly for bosonic amplitudes at
tree-level [57]. However, we know that the full GS string is more than the coset model.
Therefore, although there are generic arguments in favor of the integrability of the whole
theory, the direct proof of the integrability of the complete AdS4×CP3 superstring still
remains an open problem [40]. Different integrable reductions of the sigma model have
also been studied [58,59].

Matching AdS4 × CP3 to ABJM theory. The metric on AdS4×CP3 has the two
factors

ds2 = R2
[

1
4
ds2

AdS4
+ ds2

CP3

]
, (5.1)

where R is the radius of CP3 which is twice the radius of AdS4. This relative size is
demanded by supersymmetry and comes out automatically when one starts from the
coset action (4.2). The radius R is related to the ’t Hooft coupling λ of ABJM theory
by (1.4). In global coordinates the metric for AdS4 reads

ds2
AdS4

= − cosh2 ρ dt2 + dρ2 + sinh2 ρ
(
dθ2 + sin2 θ dϕ2

)
(5.2)

with coordinate ranges ρ = 0 . . .∞, t = −∞ . . .∞, θ = 0 . . . π, and ϕ = 0 . . . 2π. The
metric on CP3 is the standard Fubini-Study metric and can be written as

ds2
CP3 = dξ2 + cos2 ξ sin2 ξ

[
dψ + 1

2
cos θ1 dϕ1 − 1

2
cos θ2 dϕ2

]2

+ 1
4

cos2 ξ
[
dθ2

1 + sin2 θ1 dϕ
2
1

]
+ 1

4
sin2 ξ

[
dθ2

2 + sin2 θ2 dϕ
2
2

]
. (5.3)

The coordinates (θ1, ϕ1) and (θ2, ϕ2) parameterize two two-spheres, the angle ξ = 0 . . . π
2

determines their radii, and the angle ψ = 0 . . . 2π corresponds to the U(1)R isometry.
The background admits five Killing vectors

E = −i∂t , S = −i∂ϕ , Jϕ1 = −i∂ϕ1 , Jϕ2 = −i∂ϕ2 , Jψ = −i∂ψ (5.4)

leading to the five conserved charges: the worldsheet energy E, the AdS-spin S and the
CP3 momenta Jϕ1 , Jϕ2 , and Jψ. Note that this is one conserved charge less than in the
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AdS5 × S5 case where there are two AdS-spins. This shows that AdS4 × CP3 is less
symmetric. The charges (5.4) are one choice of Cartan generators of SO(3, 2) × SU(4).
The angular momenta Jϕ1 and Jϕ2 correspond to the Cartan generators of two SU(2)
subgroups that on the gauge theory side transform (Y 1, Y 2) and (Y 3, Y 4), respectively.
The angular momentum Jψ is the U(1)R generator. Thus, the angular momenta are
related to the charges in Tab. 3 according to

Jϕ1 = 1
2
p1 , Jϕ2 = 1

2
p2 , Jψ = q + 1

2
(p1 + p2) . (5.5)

These relations are important for identifying classical strings with gauge theory oper-
ators. It also suggests a parametrization of CP3 inside C4 in terms of the embedding
coordinates

y1 = cos ξ cos θ1
2
e i(+ϕ1+ψ)/2 y3 = sin ξ cos θ2

2
e i(+ϕ2−ψ)/2 (5.6)

y2 = cos ξ sin θ1
2
e i(−ϕ1+ψ)/2 y4 = sin ξ sin θ2

2
e i(−ϕ2−ψ)/2

which can be identified one-to-one with the scalar fields Y A of ABJM theory.

Worldsheet spectrum. In order to relate the string description to the spin-chain
picture, we need to quantize the worldsheet theory. It is only known how to do this by
semiclassical means, i.e. by expanding the string about a classical solution and quantizing
the fluctuations. As can be seen from the charges, the classical string solution that
corresponds to the vacuum spin-chain, or in other words to the gauge theory operator
tr(Y 1Y †4 )L (with L large so that the string becomes classical), is a point-like string that
moves along the geodesic parametrized by t = κτ , ψ = κτ , located at the center of AdS4

(ρ = 0) and the equator of CP3 (ξ = π/4), and furthermore sitting at the north pole of
the first sphere (θ1 = 0) and at the south pole of the other sphere (θ2 = π). Expanding
the fields in fluctuations of order λ−1/4 yields the mass spectrum given in Tab. 6.

The massless fluctuations t̃ and ψ̃ can be gauged away, i.e. set to zero. This is the
usual light-cone gauge, t + ψ ∼ τ , with one light-cone direction in AdS4 and one in
CP3. We are left with 4 light excitations (θ1,2, ϕ1,2) from CP3 and 4 heavy excitations
of which one (ξ) comes from CP3 and the other three (x1,2,3) from AdS4. For the eight
physical fermions the same pattern is found: 4 light excitations of mass κ/2 and 4 heavy
excitations of mass κ.

These worldsheet modes transform in definite representations of the residual symme-
try group SU(2|2)×U(1)extra that is left after fixing the light-cone gauge [60]. The light
fields form two (2|2)-dimensional supermultiplets [47]

“A”-particles: (Xa, ψα) , (5.7a)

“B”-particles: (X†a, ψ
†α) , (5.7b)

where a = 1, 2 and α = 1, 2 are SU(2)G×SU(2)r indices. The doublet of complex scalars
Xa is a combination of θ1,2 and ϕ1,2, and the fermions are written in terms of a complex
spinor ψα. These two supermultiplets correspond precisely to the A- and B-particles
(3.2) in the spin-chain picture, respectively!
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The heavy fields form one (1|4|3)-dimensional supermultiplet (ξ, χaα, x1,2,3) [47]. The
bosonic components are literally the coordinates used above, and the fermionic compo-
nent is a doublet of Majorana spinors. These heavy fields, however, do not count as
independent excitations in the spin-chain description, they are rather an artifact of the
above analysis which is done at infinite coupling λ. When going to finite coupling they
“dissolve” into two light particles [47]. At the technical level this is seen by looking at
which particle poles appear in Green’s functions at not strictly infinite coupling [47,52].
The first observation is that in the free theory the pole for the heavy particles with mass
κ coincides with the branch point of the branch cut that accounts for the pair production
of two light modes with mass κ

2
each. When interactions are turned on, i.e. when 1/

√
λ

corrections are considered, the pole moves into the branch cut, and the statement is that
the exact propagator has a branch cut only.

Giant magnons. As we have just seen, the worldsheet fluctuations match the spin-
chain excitations, but only as far as their charges are concerned. The dispersion relation
of the worldsheet excitations is relativistic rather than periodic as in (1.7). In order
to see the periodic dispersion relation also on the string theory side, macroscopically
many quanta must be excited. The result are classical string solutions known as giant
magons [61], or dyonic giant magnons [62,63] if they have at least two non-zero angular
momenta. The dispersion relation of all dyonic giant magnons are of the form (1.7) for
appropriate values for Q.

The variety of giant magnons in CP3 is somewhat larger than in S5. The simplest
types are obtained by embedding the HM giant magnon [61] into subspaces of CP3 [11]
(see also [64]). There are two essentially different choices: one may either pick a proper
two-sphere inside CP3 or a two-sphere with antipodes identified. According to these
subspaces the former choice leads to what is called the CP1 (∼= S2) giant magnon [11]
and the latter choice to the so-called RP2 (∼= S2/Z2) giant magnon [11,12].

The RP2 giant magnon is in fact a threshold bound state of two HM giant magnons,
one inside each of the S2s parametrized by (θ1, ϕ1) and (θ2, ϕ2) in (5.3) [12]. Therefore
this kind of giant magnon is sometimes referred to as the S2 × S2 magnon or as the
SU(2) × SU(2) magnon. This is, however, somewhat misleading as the two constituent
magnons do not move independently.

The dyonic generalization of the CP1 giant magnon moves in a CP2 subspace of CP3

and was found for momentum p = π in [65] and for general momenta in [66]. This
giant magnon does not have an analogue in AdS5 × S5. The CP2 dyonic giant magnons
are in one-to-one correspondence with the elementary spin chain excitations (3.2): the
polarizations of the giant magnons match the flavors of the excitations [67]. In [67] it
has also been shown, that the classical phase shifts in the scattering of these dyonic
giant magnons are consistent with the S-matrix proposed by [68]. The general scattering
solutions of N giant magnons have also been known since very recently [69], in fact for
the much wider context of giant magnons on CPn, SU(n) and Sn [70].

The dyonic generalization of the RP2 giant magnon moves in a RP3 subspace of CP3

and was found in [58]. This giant magnon is the CDO dyonic giant magnon on S3 [63]
embedded into RP3. It can be regarded as a composite of two CP2 dyonic magnons with
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equal momenta [67]. Finally, by the dressing method one can also find a two-parameter
one-charge solution [66,71].

6 Solving AdS4/CFT3 using integrability

In this section, we will briefly discuss those aspects of the methods employed to solve the
AdS4/CFT3 model that differ from the ones in the AdS5/CFT4 case. For an introduction
to these tools, we refer to the other chapters of this review. For the Bethe ansatz see [72],
for the S-matrix see [73], for the algebraic curve see [74], and for the thermodynamic
Bethe ansatz and the Y-system see [75].

Asymptotic Bethe equations. The Bethe equations for the two-loop SU(4) sector
were derived within the algebraic Bethe ansatz scheme in [10], where also the extension
of the Bethe equations to the full theory, though still at one loop, were conjectured. The
form of these equations is quite canonical and the couplings between the Bethe roots is
encoded in the Dynkin diagram of OSp(6|4), see Tab. 1. The all-loop extension of the
Bethe equations was conjectured in [15].

The fact that we now have two types of momentum carrying roots—call them u and
v—means that the conserved charges are given by sums over all roots of both of these
kinds

Qn =
Ku∑
j=1

qn(uj) +
Kv∑
j=1

qn(vj) , (6.1)

where qn is the charge carried by a single root. The spin-chain energy, or anomalous
dimension, or string light-cone energy, is the second charge E = h(λ)Q2. The other
Bethe roots—call them r, s, and w—are auxiliary roots and influence the spectrum only
indirectly through their presence in the Bethe equations.

The SU(2) × SU(2) sector is given by only exciting the momentum carrying roots.
The SU(4) sector uses the roots u, v, r, though this sector is only closed at two loops.
The four components of an A-particle, cf. (3.2) and (5.7), correspond to the states with
one u root and excitation numbers {Kr, Ks, Kw} = {0, 0, 0}, or {1, 0, 0}, or {1, 1, 0},
or {1, 1, 1} for the auxiliary roots. The same holds for the B-particle if the u-root is
replaced by one of type v. This accounts for all light excitations. The heavy excitations
are given by a stack of one of each kind of the momentum carrying roots. This is the
Bethe ansatz way of seeing that the heavy excitations are compounds.

This Bethe ansatz has been put to a systematic test by comparing the predicted
eigenvalues to the direct diagonalization of the spin-chain Hamiltonian for various length-
4 and length-6 states at two loops [76].

S-Matrix. It has been shown that the proposed all-loop Bethe ansatz can be derived
from an exact two-particle S-matrix [68]. The alternating nature of the spin-chain, nat-
urally breaks the S-matrix up into pieces: interactions between two A-particles, between
two B-particles, and between one of each kind [68], where each piece is proportional
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to the old and famous SU(2|2) S-matrix [7, 77] from AdS5/CFT4. Crossing symmetry
relates AA- and BB- to AB-scattering and therefore does not fix the overall scalar factor
for any of them uniquely. A solution that is consistent with the Bethe equations was
made in [68] and uses the BES dressing phase [78].

This S-matrix does not have poles that correspond to the heavy particles, which is
in line with them not being asymptotic states. The heavy particles occur, however, as
intermediate states. That is seen from the fact that they appear as internal lines in
the Feynman diagrams that are used to derive the worldsheet S-matrix from scattering
amplitudes [47].

The S-matrix has the peculiarity that the scattering of A- and B-particles is reflection-
less [79]. Though at first unexpected, this property has been confirmed perturbatively
at weak [80] and at strong coupling [47]. This reflectionlessness would follow straight-
forwardly if one assumes that the two terms in (6.1) were individually conserved [81].

Algebraic curve. The algebraic curve for the AdS4/CFT3 duality was constructed
from the string coset sigma-model in [82]. It is a ten-sheeted Riemann surface q(x) whose
branches—or quasi-momenta—are pairwise related q1,2,3,4,5 = −q10,9,8,7,6. The physical
domain is defined for spectral parameter |x| > 1. The values of the quasi momenta
within the unit circle are related to their values outside it by an inversion rule [82].
Branch cut and pole conditions are identical to the ones in the AdS5/CFT4 case. The
Virasoro constraints demand that the quasi momenta q1, . . . , q4 all have a pole with the
same residue at x = 1 and another one at x = −1, while the quasi momentum q5 cannot
have a pole at x = ±1.

For a given algebraic curve, the charges of the corresponding string solution are
encoded in the large x asymptotics. E.g. the curve

q1(x) = . . . = q4(x) =
L

2g

x

x2 − 1
, q5(x) = 0 . (6.2)

carries the charges (∆0, S, Jϕ1 , Jϕ2 , Jψ) = (L, 0, L
2
, L

2
, L) and δ∆ = 0 of tr(Y 1Y †4 )L and

thus corresponds to the vacuum. String excitations are represented by additional poles
that connect the various branches. A dictionary between the polarizations of the exci-
tations and the different branch connections is given in [82]. The light modes can be
recognized as those which connect a non-trivial sheet with a trivial sheet in (6.2), and
the heavy modes are those which connect two non-trivial sheets.

Thermodynamic Bethe ansatz and Y-system. The Y-system for the OSp(6|4)
spin-chain was conjectured along with the corresponding equations for AdS5/CFT4 in
[83]. A derivation of the Y-system, i.e. writing down the asymptotic Bethe ansatz at
finite temperature for the mirror theory, formulating the string hypothesis, and Wick
rotating back to the original theory, was performed in [84] and [85], and a modification
of the original conjecture was found.
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1Unité de Recherche Associée au CNRS URA 2306

http://arxiv.org/abs/1012.4000
http://arxiv.org/abs/1012.3982


Chapter IV.4: Integrability in QCD and N < 4 SYM

1 Introduction

QCD is a four-dimensional gauge theory describing strong interaction of quarks and
gluons. There is a growing amount of evidence that QCD (and Yang-Mills theories in
general) possess a hidden symmetry. This symmetry has a dynamical origin in the sense
that it is not seen at the level of classical Lagrangian and manifests itself at quantum
level through remarkable integrability properties of effective dynamics.

The simplest example which allows us to explain integrability phenomenon is a
process of deeply inelastic scattering (DIS) of an energetic hadron off virtual photon,
γ∗(q) + h(p) → everything. This process played a distinguished rôle in early days of
QCD development and it led, in particular, to important discoveries such as QCD fac-
torization and formulation of parton model for hard processes (see e.g. [1]). The total
cross-section of of DIS process is related by the optical theorem to imaginary part of the
forward scatteting amplitude γ∗(q) + h(p) → γ∗(q) + h(p) (see Fig. 1). It is parame-
terized by the so-called structure functions F (x, q2) depending on the photon virtuality
q2 < 0 and dimensionless Bjorken variable 0 < x < 1. The latter is related to the total
center-of-mass energy of the process as s = (p+ q)2 = −q2(1− x)/x.

. . .
F (x, q2) = Im

h(p)h(p)

γ∗(q)γ∗(q)

Figure 1: The total cross-section of deep inelastic scattering γ∗(q) + h(p) →
everything is related by the optical theorem to imaginary part of the forward
scatteting amplitude. Solid and wavy lines denote quarks and gluons, respec-
tively.

The integrability has been first discovered in Refs. [2–4] in the study of high-energy,
s � −q2 (or equivalently x → 0) asymptotics of F (x, q2). Experimental data in-
dicate that the structure functions increase in this limit as a power of the energy,
F (x, q2) ∼ (1/x)ω, in a quantitative agreement with the Regge theory prediction. At
weak coupling, the same behavior can be obtained through resummation of perturba-
tive corrections to the structure functions enhanced by logarithm of the energy [5]. The
structure functions obtained in this way satisfy nontrivial multi-particle Bethe-Salpeter
like evolution equations [6, 7]. These equations have resisted analytical solution but a
breakthrough occurred after it was found [2–4] that, in multi-color limit, these equations
can be mapped into a Schödinger equation for a completely integrable quantum (non-
compact) Heisenberg SL(2,C) spin chain. This opened up the possibility of applying
the quantum inverse scattering methods for the construction of the exact solution to the
evolution equation in planar QCD.

Later, similar integrable structures have been found in Refs. [8–10] in the study of
dependence of the structure functions F (x, q2) on the momentum transfered q2. At large
Q2 = −q2, the operator product expansion can be applied to expand the moments of the
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structure functions in powers of a hard scale 1/Q∫ 1

0

dx xN−1F (x, q2) =
∑
L≥2

cN,L(αs(Q
2))

QL
〈p|ON,L|p〉µ2=Q2 . (1.1)

Here the expansion runs over local composite gauge invariant operators (Wilson opera-
tors) of Lorentz spin N and twist L. The corresponding coefficient functions cN,L(αs(Q

2))
can be computed at weak coupling as a series in the QCD coupling constant αs(µ

2) =
g2/(4π) normalized at µ2 = Q2. At the same time, the matrix element of the Wilson
operator with respect to hadron state 〈p|ON,L|p〉µ2=Q2 is a nonperturbative quantity. Its
absolute value can not be computed perturbatively whereas its dependence on the hard
scale Q2 is governed by the renormalization group (Callan-Symanzik) equations

µ2 d

dµ2
〈p|O(α)

N,L|p〉 = −γ(α)
N,L(αs)〈p|O(α)

N,L|p〉 . (1.2)

Here we introduced the superscript (α) to indicate that for given N and L there are
a few Wilson operators parameterized by the index α. The Callan-Symanzik equation
(1.2) has the meaning of a conformal Ward identity for the Wilson operators with the

anomalous dimension γ
(α)
N,L(αs) being the eigenvalue of the QCD dilatation operator (see

e.g. review [11]).
The Wilson operators are built in QCD from elementary quark and gluon fields and

from an arbitrary number of covariant derivatives. In general, such operators mix under
renormalization with other operators carrying the same Lorentz spin and twist. Diag-
onalizing the corresponding mixing matrix we can find the spectrum of the anomalous
dimensions γ

(α)
N,L(αs). For the Wilson operators of the lowest twist, L = 2, the anomalous

dimensions can be obtained in the closed form [12], whereas for higher twist operators
the problem becomes extremely nontrivial already at one loop due to a complicated form
of the mixing matrix [13]. Quite remarkably, the spectrum of the anomalous dimensions
can be found exactly in QCD in the sector of the so-called maximal-helicity Wilson op-
erators. The reason for this is that the one-loop mixing matrix in QCD in this sector can
be mapped in the multi-color limit into a Hamiltonian of the Heisenberg SL(2,R) spin
chain [8–10]. The twist of the Wilson operator L determines the length of the spin chain
while the spin operators in the each site are defined by the generators of the ‘collinear’
SL(2,R) subgroup of the full conformal group [14, 15]. As a result, the exact spectrum
of one-loop anomalous dimensions can be computed with a help of Bethe Ansatz [16].

Let us now examine the relation (1.1) for large Lorentz spin, N � 1. This limit
has important phenomenological applications in QCD [17,18]. It is known [12] that the
anomalous dimensions of Wilson operators grow as their Lorentz spin increases. As a
consequence, the dominant contribution to (1.1) only comes from the operators with

the minimal anomalous dimension γ
(0
N,L = minα γ

(α)
N,L. Quite remarkably, this anomalous

dimension has a universal (twist L independent) logarithmic scaling behavior at large N
to all loops [19,20]

γ
(0)
N,L = 2Γcusp(αs) lnN +O(N0) , (1.3)
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where Γcusp(αs) is the cusp anomalous dimension [21].
By definition, Γcusp(αs) governs the scale dependence of Wilson lines with light-like

cusps [22, 23] and its relation to anomalous dimensions of large spin Wilson operators
is by no means obvious. It can be understood [19] by invoking the physical picture of
deep inelastic scattering at large N . In terms of the moments (1.1), large N corresponds
to the region of x → 1. For x → 1 the final state in the deep inelastic scattering has
a small invariant mass, s = Q2(1 − x)/x � Q2, and it consists of a collimated jet of
energetic particles accompanying by soft gluon radiation. Interacting with soft gluons,
the particles inside the jet acquire the eikonal phases given by Wilson line operators
P exp(i

∫∞
0
dt p · A(pt)) evaluated along semi-infinite line in the direction of the particle

momenta. In this way, for x→ 1, complicated QCD dynamics in deep inelastic scattering
admits an effective description in terms of Wilson lines [24]. The relation (1.3) between
anomalous dimensions and cusp singularities of light-like Wilson lines is just one of the
application of this formalism. Another examples include the relation between light-like
Wilson loops with on-shell scattering amplitudes, Sudakov form factors, gluon Regge
trajectories etc (see Ref. [25] and references therein).

At present, integrability of the dilatation operator in planar QCD has been verified to
two loops in the SL(2;R) sector of maximal helicity operators [26]. In other sectors, the
dilatation operator receives additional contribution that breaks integrability already to
one loop. This contribution vanishes however for large values of the Lorentz spin N � 1
thus suggesting that integrability in planar QCD gets restored to all loops in the leading
large N limit [27]. Indeed, as was shown in Ref. [20], the all-loop dilatation operator in
QCD in the SL(2;R) sector can be mapped in the large N limit into a Hamiltonian of
a classical Heisenberg SL(2;R) spin chain. In this manner, the Wilson operators with
large N are described by the so-called finite-gap solutions and the spectrum of anomalous
dimension can be found through their semiclassical quantization. In particular, the
relation (1.3) naturally appears as describing the ground state energy of the classical
SL(2;R) spin chain of an arbitrary length L and total spin N .

The above mentioned integrability structures (those of the scattering amplitudes in
the Regge limit and of the dilatation operator) are not specific to QCD. They are also
present in generic four-dimensional gauge theories including supersymmetric Yang-Mills
models with N = 1, 2, 4 supercharges. Supersymmetry enhances the phenomenon by
extending integrability to a larger class of observables. In this context, the maximally
supersymmetric N = 4 Yang-Mills theory is of a special interest with regards to the
AdS/CFT correspondence [28]. The gauge/string duality hints that these structures
should manifest themselves through hidden symmetries of the scattering amplitudes and
of anomalous dimensions in dual gauge theories to all loops.

2 Integrability of dilatation operator in QCD

In this section, we review a hidden integrability of the dilatation operator in a generic
four-dimensional Yang-Mills theory describing the coupling of gauge fields to fermions
and scalars. Depending on the representation in which the latter fields are defined, we
can distinguish two different types of the gauge theories: QCD and supersymmetric
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extensions of Yang-Mills theory (SYM).
In QCD, the gauge fields are coupled to quarks in the fundamental representation of

the SU(Nc) gauge group. The quarks are described by four-component Dirac fermions
ψ and the gauge field strength Fµν = i

g
[Dµ, Dν ] is determined in terms of the covariant

derivatives Dµ = ∂µ − igAaµt
a with generators ta in the fundamental representation of

the SU(Nc) normalized conventionally as tr (tatb) = 1
2
δab. In SYM theory, the gauge

fields are coupled to fermions (gauginos) and scalars belonging to the adjoint represen-
tation of the SU(Nc) group. The supersymmetric Yang-Mills theories with N = 1, 2
and 4 supercharges are obtained from the Lagrangian of generic Yang-Mills theory by
adjusting the number of gaugino and scalar species. The gauginos are described by the
Weyl fermion λA which belongs to the fundamental representation of an internal SU(N )
symmetry group with its complex conjugate λ̄A = (λA)∗. The scalars are assembled
into the antisymmetric tensor φAB = −φBA, with its complex conjugate (φAB)∗ = φ̄AB.
As we explain below, integrability is not tied to supersymmetry and the phenomenon
persists in the generic Yang-Mills theory for arbitrary N , to two loop order at least.

2.1 Light-ray operators

Let us first consider renormalization of local gauge invariant operators in QCD. As
the simplest example, we examine the following twist-two operator contributing to the
moments of DIS structure function (1.1)

〈p|ON,L=2(0)|p〉 = 〈p|ψ̄ γ+D
N−1
+ ψ(0)|p〉 . (2.1)

It is built from two quark fields and (N − 1) covariant derivatives D+ = (n · D) pro-
jected onto light-like vector nµ = qµ − pµq2/(2pq) and γ+ = (n · γ) being the projected
Dirac matrix. Discussing renormalization properties of Wilson operators like (2.1) it is
convenient to switch from infinite set of local operators (2.1) parameterized by positive
integer N to a single nonlocal light-ray operator

O(z1, z2) = ψ̄(z1n)γ+[nz1, nz2]ψ(z2n) =
∑
N≥1

[
ψ̄ γ+D

N−1
+ ψ

] (z1 − z2)N−1

(N − 1)!
+ . . . (2.2)

Here z1 and z2 are scalar variables defining the position of quark fields on the light-
cone and the gauge link [nz1, nz2] ≡ P exp(ig

∫ z2
z1
dtA+(nt)) is inserted to ensure gauge

invariance of O(z1, z2). Also, ellipses in the right-hand side of (2.2) stand for terms
involving total derivatives of the twist-two operators and, therefore, providing vanishing
contribution to the forward matrix element 〈p|O(z1, z2)|p〉.

We recall that local gauge invariant operators satisfy the evolution equation (1.2).
The same is true for the light-ray operators (2.2) although the explicit form of the evo-
lution equation is different due to nonlocal form of the light-ray operators. In particular,
for the operators (2.2) the evolution equation takes the following form [29,13,30,31](

µ
∂

∂µ
+ β(g2)

∂

∂g2

)
O(z1, z2) = −[H2(g2) ·O](z1, z2) , (2.3)
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with the evolution kernelH2 to be specified below. The evolution equation (2.3) expresses
the conformal Ward identity in QCD and the beta-function term takes into account
conformal symmetry breaking contribution. The evolution operator H2 in the right-hand
side of (2.3) defines a representation of the dilatation operator on the space spanned by
nonlocal light-ray operators (2.2). In general, H2 has a matrix form as the light-ray
operators with different partonic content could mix with each other.

The evolution kernel H2 has a perturbative expansion in powers of the coupling con-
stant and admits a representation in the form of an integral operator acting on light-cone
coordinates z1 and z2 of O(z1, z2). To the lowest order in the coupling, its explicit form
has been found in QCD in Ref. [30] and its generalization to Yang-Mills theories with
an arbitrary number of supercharges has been derived in Ref. [32]. The corresponding
expressions for H2 are given below in Eq. (2.11) . The main advantage of (2.3) compared
with the conventional approach based on explicit diagonalization of the mixing matrix
for local Wilson operators is that the problem of finding the spectrum of anomalous di-
mensions can be mapped into spectral problem for one-dimensional quantum mechanical
Hamiltonian H2. As we will see in a moment, the same happens in QCD for Wilson
operators of high twist L ≥ 3, in which case the corresponding evolution operator HL in
the sector of maximal helicity operators turns out to be equivalent for a Hamiltonian of
Heisenberg SL(2;R) spin chain of length L.

2.2 Light-cone formalism

Discussing integrability of the dilatation operator in QCD and in SYM theories, it is con-
venient to employ the “light-cone formalism” [33–35]. In this formalism one integrates
out non-propagating components of fields and formulates the (super) Yang-Mills action
in terms of “physical” degrees of freedom. Although the resulting action is not mani-
festly covariant under the Poincaré transformations, the main advantage of the light-cone
formalism for SYM theories is that the N−extended supersymmetric algebra is closed
off-shell for the propagating fields and there is no need to introduce auxiliary fields. This
allows us to design a unifying light-cone superspace formulation of various N−extended
SYM, including the N = 4 theory for which a covariant superspace formulation does not
exist.

In the light-cone formalism, one quantizes the Yang-Mills theory in a noncovariant,
light-cone gauge (n ·A) ≡ A+(x) = 0. Introducing an auxiliary complimentary light-like
vector n̄µ, such that n̄2 = 0 and (n · n̄) = 1, we split three remaining components of the
gauge field into longitudinal, A−(x), and two transverse holomorphic and antiholomor-
phic components, A(x) and Ā(x), respectively,

A− ≡ (n̄ · A) , A ≡ 1√
2
(A1 + iA2) , Ā ≡ A∗ = 1√

2
(A1 − iA2) . (2.4)

In the similar manner, the fermion field ψ(x) can be decomposed with a help of projectors
Π± = 1

2
γ±γ∓ as

ψ = Π+ψ + Π−ψ ≡ ψ+ + ψ− , (2.5)

where the fermion field ψ+ has two nonzero components

q↑ =
1

2
(1− γ5)ψ+ , q↓ =

1

2
(1 + γ5)ψ+ . (2.6)
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Then, one finds that the fields ψ−(x) and A−(x) can be integrated out and the resulting
action of the Yang-Mills theory is expressed in terms of “physical” fields: complex gauge
field, A(x) and Ā(x), two components of fermion fields, q↑(x) and q↓(x), and, in the case of
supersymmetric gauge theory, complex scalar fields φ(x). When applied to the vacuum
states, the fields (A, q↓, φ, q↑, Ā) create massless particles of helicity (−1,−1

2
, 0, 1

2
, 1),

respectively.
Taking the product of ‘physical’ fields and light-cone derivatives D+ = ∂+, we can

construct the set of local gauge invariant operators. Such operators define the represen-
tation of the so-called collinear SL(2;R) subgroup of the conformal group and they are
known in QCD literature as quasipartonic operators. A distinguished feature of these
operators is that their twist equals the number of constituent physical fields [13]. In
analogy with (2.2), we can replace an infinite number of Wilson operators of a given
twist L with a few nonlocal light-ray operators O(z1, . . . , zL). The latter can be thought
of as generating functions for the former. Due to different SU(Nc) representation of
fermions (fundamental in QCD and adjoint in SYM), the definition of such operators is
slightly different in the two theories.

In QCD, in the simplest case of twist two, we can distinguish four different light-ray
operators (plus complex conjugated operators)

O(0)
qq (z1, z2) = q̄↑(nz1)q↑(nz2) , O(0)

gg (z1, z2) = tr
[
∂+Ā(nz1)∂+A(nz2)

]
,

O(1)
qq (z1, z2) = q̄↓(nz1)q↑(nz2) , O(2)

gg (z1, z2) = tr [∂+A(nz1)∂+A(nz2)] , (2.7)

where the subscript (qq and gg) indicates particle content of the operator and the su-
perscript defines the total helicity. In this basis, the operator (2.2) is given by a linear

combination of O(0)
qq (z1, z2) and complex conjugated operator. The operators O(0)

qq and

O(0)
gg have the same quantum numbers and mix under renormalization. At the same time,

the operators O(1)
qq and O(2)

gg carry different helicity and have an autonomous scale depen-
dence. In what follows we shall refer to them as maximal helicity operators. The reason
why we distinguish such operators is that the one-loop dilatation operator in QCD is
integrable in the sector of maximal helicity operators only.

For higher twist L ≥ 3 we can define three different types of maximal helicity opera-
tors in QCD:

O(3/2)
qqq (z1, z2, z3) = εijk q

i
↑(z1n)qj↑(z2n)qk↑(z3n) , (2.8)

O(L−1)
qg...gq(z1, . . . , zL) = q̄↓(nz1)∂+A(nz2) . . . ∂+A(nzL−1)q↑(nzL) , (2.9)

O(L)
g...g(z1, . . . , zL) = tr [∂+A(nz1) . . . ∂+A(nzL)] , (2.10)

to which we shall refer as baryonic (L = 3) operators, mixed quark-gluon operators and
gluon operators, respectively. We remind that since quark fields belong to the funda-
mental representation of the SU(Nc) group, the length of the operator (2.8) ought to be
Nc = 3. At the same time, gluon fields are in the adjoint representation and the single
trace operator (2.10) is well-defined for arbitrary Nc and twist L. The same applies
to the mixed quark-gluon operators (2.9). The operators (2.8) and (2.9) have a direct
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phenomenological significance: their matrix elements determine the distribution ampli-
tude of the delta-isobar [36] and higher twist contribution to spin structure functions,
respectively.

2.3 Evolution kernels

The light-ray operators (2.7) – (2.10) satisfy the evolution equation (2.3). Let us first

examine twist-two quark operators O(0)
qq and O(1)

qq defined in (2.7). The operator O(0)
qq

can mix with the gluon operator O(0)
gg . To simplify the situation, we can suppress the

mixing by choosing the two quark fields inside O(0)
qq to have different flavor. To one-loop

order, the evolution kernel receives the contribution from one-gluon exchange between
two quark fields and from self-energy corrections. The latter one is the same for the two
operators while the former one is different

H(1)
qq =

g2CF
8π2

[H12 + 2γq] ,

H(0)
qq =

g2CF
8π2

[H12 + V12 + 2γq] . (2.11)

Here CF = tata = (N2
c − 1)/(2Nc) is the quadratic Casimir of the SU(Nc) in the fun-

damental representation, γq = 1 is one-loop anomalous dimension of quark field in the
axial gauge A+ = 0 and H12 and V12 are integral operators

[H12 ·O](z1, z2) =

∫ 1

0

dα

α
ᾱ
[
2O(z1, z2)−O(ᾱz1 + αz2, z2)−O(z1, αz1 + ᾱz2)

]
,

[V12 ·O](z1, z2) =

∫ 1

0

dα1

∫ ᾱ1

0

dα2O(α1z1 + ᾱ1z2, α2z2 + ᾱ2z1) , (2.12)

where ᾱi ≡ 1 − αi. These operators have a transparent physical interpretation: they
displace two particles along the light-cone in the direction of each other.

To find the spectrum of anomalous dimensions of twist-two quark operators generated
by light-ray operators (2.7), we have to diagonalize the operators H(1)

qq and H(0)
qq . This

can be done with a help of conformal symmetry. We recall that the conformal symmetry
is broken in QCD at loop level. However the dilatation operator receives conformal
symmetry breaking contribution only starting from two loops and, as a consequence,
the one-loop evolution kernels in QCD have to respect conformal symmetry of QCD
Lagrangian. For nonlocal light-ray operators built from fields X(nz), the full SO(2, 4)
conformal symmetry reduces to its collinear SL(2;R) subgroup acting on one-dimensional
light-cone coordinates of fields [14,15]

z → az + b

cz + d
, X(zn)→ (cz + d)−2jX

(
az + b

cz + d
n

)
(2.13)

with ad− bc = 1. The generators of these transformations are

L− = −∂z , L+ = 2jz + z2∂z , L0 = j + z∂z . (2.14)
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Here j is the conformal weight of the field. For ‘physical’ components of fermions, ψ+,
it equals jq = 1, for transverse components of gauge field, ∂+A and ∂+Ā, it is jg = 3/2
and for scalars js = 1/2.

In application to light-ray quark operators, O(0)
qq (z1, z2) and O(1)

qq (z1, z2), the conformal
symmetry dictates that the one-loop evolution kernels (2.11) have to commute with the

two particle conformal spin Lα1 + Lα2 (with α = −,+, 0). As a consequence, H(h=0,1)
qq is a

function of the corresponding two-particle Casimir operator

L2
12 =

∑
α=+,−,0

(Lα1 + Lα2 )2 = J12(J12 − 1) . (2.15)

To find the explicit form of this dependence, it suffices to examine the action of the
two operators, H(h)

qq and L2
12, on the same test function (z1 − z2)n, which is just the

lowest weight in the tensor product of two SL(2;R) representations carrying the spin
J12 = n+ 2. Replacing O(z1, z2)→ (z1 − z2)J12−2 in (2.12) we find

H12 = 2 [ψ(J12)− ψ(2)] , V12 = 1/(J12(J12 − 1)) , (2.16)

where ψ(x) = d ln Γ(x)/dx is Euler psi-function. Together with (2.11) these relations
determine the spectrum of anomalous dimensions of twist-two quark operators.

2.4 Relation to Heisenberg SL(2;R) spin chain

As the first sign of integrability, we notice that H12 coincides with the known expression
for two-particle Hamiltonian of Heisenberg spin chain [37,38]

HL = H12 + . . .+HL1 , Hi,i+1 = ψ(Ji,i+1)− ψ(2j) , (2.17)

where the spin operators are identified as SL(2;R) conformal generators (2.14). As fol-

lows from (2.11), the one-loop dilatation operator H(1)
qq depends on H12 and, therefore,

it is mapped into Heisenberg SL(2;R) spin chain of length 2. At the same time, the

dilatation operator H(0)
qq receives the additional contribution V12. It preserves the confor-

mal symmetry but breaks integrability. Notice that V12 vanishes for large values of the
conformal spin J12 � 1 so that the two evolution kernels, H(0)

qq and H(1)
qq , have the same

asymptotic behavior at large J12. This suggests that for the operator H(0)
qq integrability

is restored in the limit of large conformal spin only.
For twist-two operators, the anomalous dimensions are uniquely determined by their

conformal spin. To appreciate the power of integrabilty, we have to consider Wilson
operators of high twist L ≥ 3. For example, for the maximal helicity baryonic operators
(2.8) the one-loop dilatation operator has the form [10]

H(3/2)
qqq =

αs
2π

[
(1 + 1/Nc)(H12 +H23 +H31) +

3

2
CF

]
(2.18)

with Nc = 3 and H12 given by (2.16). Comparing this relation with (2.17) we recognize

that H(3/2)
qqq can be mapped into Heisenberg spin chain of length L = 3. The spin at each

site j = 1 is determined by the conformal spin of quark field.
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For gluon operators of the maximal helicity (2.10) the dilatation operator receives
contribution from self-energy corrections to gluon fields and from one-gluon exchange
between any pair of gluons. The latter produces both planar and nonplanar corrections
(for L > 3). In the planar limit, the one-loop dilatation operator has the following
form [39]

H(L)
g...g =

g2Nc

8π2
(H12 + . . .+HL1) , (2.19)

where two-particle kernel Hi,i+1 acts locally on light-cone coordinates of gluons with
indices i and i + 1. The conformal symmetry implies that Hi,i+1 is a function of the
conformal spin of two gluons Ji,i+1. Quite remarkably, the dependence of Hi,i+1 on
Ji,i+1 has the same form as in (2.17). As a consequence, the one-loop planar dilatation
operator for maximal helicity gluon operator (2.10) coincides with the Hamiltonian of
the Heisenberg SL(2;R) spin chain. The length of the spin chain equals the twist of the
operator L and the spin in each site j = 3/2 coincides with the conformal spin of the
gluon field.

For mixed quark-gluon operators of the maximal helicity (2.9), the quark fields can
interact in the planar limit with the adjacent gluon fields only while quark-quark inter-
action is suppressed in this limit. As a consequence, the one-loop dilatation operator has
the following form in the planar limit

H(L−1)
qg...gq =

g2Nc

8π2
(U12 +H23 + . . .+HL−1,L + UL−1,L) . (2.20)

Here Hi,i+1 describes the interaction of two gluons with aligned helicities and it is the
same as in (2.17). The kernels U12 and UL−1,L describes quark-gluon interaction and

their explicit form can be found in Ref. [40,41]. Notice that the operator H(L−1)
qg...gq has the

form of a Hamiltonian of open spin chain of length L. The spin in sites 1 and L coincides
with the conformal spin of quark jq = 1 and the spin in all remaining sites is given by
gluon conformal spin jg = 3/2. As was shown in Ref. [40,41], the open spin chain (2.20)
is integrable.

2.5 Exact solution

Integrability of the one-loop dilatation operator allows us to find the exact spectrum of
anomalous dimensions with a help of the Bethe Ansatz [8–10]

γN,L =
g2Nc

8π2
EN,L +O(g4) ,

EN,L =
N∑
k=1

2j

u2
k + j2

= i
d

du
ln
Q(u+ ij)

Q(u− ij)

∣∣∣∣
u=0

. (2.21)

Here j is the conformal spin in each site (j = 1 for quark operators and j = 3/2 for
gluon operators), uk are Bethe roots and Q(u) is a polynomial of degree N of the form

Q(u) =
N∏
j=1

(u− uj) . (2.22)
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The function Q(u) defined in this way has the meaning of the eigenvalue of the Baxter
operator for the SL(2,R) magnet [4,42]. It satisfies the finite-difference Baxter equation

tL(u)Q(u) = (u+ ij)LQ(u+ i) + (u− ij)LQ(u− i) , (2.23)

where tL(u) is the transfer matrix of the spin chain

tL(u) = 2uL + q2u
L−2 + . . .+ qL (2.24)

and q2, . . . , qL are the conserved charges.
The Baxter equation (2.23) alone does not specify Q(u) uniquely and it has to be

supplemented by additional condition for analytical properties of Q(u). For the SL(2;R)
spin chains describing the anomalous dimensions, Q(u) has to be a polynomial in the
spectral parameter. Being combined with the Baxter equation (2.23), this condition
determines Q(u) up to an overall normalization and, as a consequence, allows us to
establish the quantization conditions for the q−charges and to compute the exact energy
EN,L.

Solving the Baxter equation (2.23) for N = 0, 1, . . . one finds the eigenspectrum of the
Hamiltonian HL and, as a consequence, determines the exact spectrum of the anomalous
dimensions of the maximal helicity baryon operators (for j = 1 and L = 3) and of
maximal helicity gluon operators (for j = 3/2 and L ≥ 2). The spectrum obtained in
this way exhibits remarkable regularity: almost all eigenvalues are double degenerate and
for large N they belong to the set of trajectories [4, 43]. Both properties are ultimately
related to integrability of the dilatation operators and can be served to test integrability
at high loops.

For the SL(2;R) spin chains under consideration, the Baxter equation approach and
conventional Bethe Ansatz are equivalent. Indeed, substituting (2.22) into the Baxter
equation (2.23), one finds that the roots uj satisfy the conventional SU(2) Bethe equa-
tions for spin (−j). The fact that the spin is negative leads to a number of important
differences as compared to “compact” SU(2) magnets. In particular, the Bethe roots
take real values only and the number of solutions is infinite [4, 43].

2.6 Semiclassical limit

The Baxter operator approach becomes advantageous when one studies the properties
of anomalous dimensions at large spin N and/or twist L. The reason for this is that
the Baxter equation (2.23) takes the form of discretized Schrödinger equation. After
rescaling of the spectral parameter, u → (N + Lj)x, we can seek for solution to (2.23)
in the WKB form [44,45,43]

Q(Nx) = exp

(
i

~
S(x)

)
, ~ = 1/(N + Lj) , (2.25)

where the action function S(x) admits an expansion in powers of ~. Substitution of
(2.25) into the Baxter equation (2.23) yields the equation for S(x) which can be solved
as a series in ~. To leading order we have

S(x) =

∫ x

x0

dx p(x) +O(~) , (2.26)
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where the momentum p(x) is defined on the spectral curve (“equal energy” condition)
of the classical SL(2;R) magnet y(x) = 2xL sinh p(x) with [46]

ΓL : y2 = (tL(x))2 − 4x2L . (2.27)

The classical dynamics on this spectral curve has been studied in detail in Refs. [47,27].
Using (2.25) we can compute the asymptotic behavior of the energy as [43,48]

E (as)
N,L = 2 ln 2 +

L∑
n=1

[ψ(j + iδn) + ψ(j − iδn)− ψ(2j)] + . . . , (2.28)

where ellipses denote terms subleading at large (N+jL). Here δn are roots of the transfer
matrix defined in (2.24), tL(δn) = 0. They depend on the conserved charges q2, . . . , qL
whose values satisfy the WKB quantization conditions∮

αk

dx p(x) = 2π~(`k + 1
2
) , (for k = 1, . . . , L− 1) . (2.29)

Here integration goes over the cycles αk on the complex curve (2.27) encircling intervals
on the real axis satisfying y2(x) > 0 and integers `k enumerate the quantized values of
the charges q2, . . . , qL and the energy EN,L = EN,L(`1, . . . , `L−2). For large spin N and

twist L, the minimal energy E (0)
N,L = min`k EN,L has the following scaling behavior [48]

E (0)
N,L = f(ρ) lnN +O(N0) , ρ =

L

lnN
= fixed , N, L� 1 (2.30)

where f(ρ) is the so-called generalized scaling function. Detailed analysis of the relations
(2.28) and (2.29) can be found in Refs. [43,10,39,27,48]. For recent development in the
generalized scaling function in N = 4 SYM see review Ref. [49].

So far we have discussed the exact solution for the one-loop anomalous dimensions
of quark and gluon maximal helicity operators. For the anomalous dimensions of mixed
quark-gluon operators (2.9), similar analysis of the spin chain (2.20) can be carried out
using Bethe Ansatz for open SL(2;R) spin chains [39,40].

2.7 Integrability of dilatation operators in SYM theories

In this subsection, we extend consideration to supersymmetric Yang-Mills theories. Dis-
cussing integrability of dilatation operator in these theories, it is convenient to employ
supersymmetric version of light-cone formalism due to Mandelstam [35] and Brink et
al. [34]. In this formalism, all symmetries of SYM theory become manifest and cal-
culations can be performed in a unified manner for different numbers of supercharges
N = 0, 1, 2, 4. The maximally-supersymmetric N = 4 SYM theory is a finite, four-
dimensional conformal field theory [35, 34, 50, 51], while the N = 0 theory corresponds
to pure gluodynamics.

Defining a SYM theory on the light-cone, one starts with the component form of the
action, fixes the light-cone gauge A+(x) = 0, decompose all propagating, “physical” fields
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into definite helicity components. In the case of N = 4 SYM, they include helicity (±1)
fields, A(x) and Ā(x), built from two-dimensional transverse components of the gauge
field, complex scalar fields φAB of helicity 0 and helicity ±1/2 components of Majorana–
Weyl fermions, λA and λ̄A, all in the adjoint representation of the SU(Nc) gauge group.
An important property of the light-cone formalism, which makes it advantageous over
the covariant one, is that the latter fields have only one non-vanishing component. As
a consequence, one can describe helicity (±1/2) fermions by Grassmann-valued complex
fields without any Lorentz index. Introducing four fermionic coordinates θA (with A =
1, . . . , 4) possessing the helicity (−1

2
) and their conjugates θ̄A with helicity 1

2
, we can

assemble the above fields into a single, complex chiral N = 4 superfield [34]

Φ(x, θA) = ∂−1
+ A(x) + θA∂−1

+ λ̄A(x) +
i

2!
θAθBφ̄AB(x)

− 1

3!
εABCDθ

AθBθCλD(x)− 1

4!
εABCDθ

AθBθCθD∂+Ā(x). (2.31)

It embraces all particle helicities, from −1 to 1 with half-integer step, and, therefore,
Φ(x, θA) describes a CPT self-conjugate supermultiplet.

Gauge theories on the light-cone with less or no supersymmetry can be deduced from
the maximally supersymmetric N = 4 theory by removing “unwanted” physical fields.
In the superfield formulation this amounts to a truncation of the N = 4 superfield, or
equivalently, reduction of the number of fermionic directions in the superspace [52]. For
instance, to get the N = 1 superfields one removes three odd coordinates θ2 = θ3 =
θ4 = 0, whereas for N = 0 all θ’s in (2.31) have to be set to zero. Notice that under this
procedure the truncated N = 2, N = 1 and N = 0 theories involve only half of the fields
described by the N−extended SYM theory and the other half of the needed particle
content arises from the complex conjugated superfields Φ̄ ≡ Φ∗. Explicit expressions
for the action of the SYM theory in terms of the light-cone superfields can be found in
Ref. [32].

In a close analogy with (2.10), we can introduce multiparticle single-trace operators
built from light-cone superfields

O(Z1, . . . , ZL) = tr {Φ(Z1)Φ(Z2) · · ·Φ(ZL)} , (2.32)

where Φ(Z) ≡ Φa(Z)ta is a matrix (SU(Nc)) valued superfield and Z = (x, θA) denotes
its position in the superspace with four even coordinates, xµ, and N odd coordinates,
θA with A = 1, . . . ,N . In addition, we choose all superfields to be located along the
light-cone direction in the four-dimensional Minkowski space defined by the light-like
vector nµ (with n2 = 0), so that n · A = A+ = 0. Similarly to the QCD case, the posi-
tions of the superfields on the light-cone are parameterized by real numbers xµ = znµ,
Φ(Zk) ≡ Φ(zkn, θ

A
k ) . The single-trace operators (2.32) represent a natural generalization

of nonlocal light-ray operators in QCD, cf. Eq. (2.10). To obtain the latter it is sufficient
to expand O(Z1, . . . , ZL) in powers of odd variables θA1

1 . . . θALL . As in QCD, nonlocal
operators (2.32) serve as generating functions for Wilson operators with the maximal
Lorentz spin and minimal twist equal to the number of constituent fields L. Such oper-
ators define a representation of the SL(2|N ) subgroup of the full superconformal group.
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Examining light-ray operators (2.32) in SYM theories with different number of su-
percharges, we find that N = 4 case is special. In N = 4 SYM theory there is only one
independent chiral superfield Φ(Z) and, as a consequence, the operators (2.32) generate
all Wilson operators of twist−L built from L fundamental fields. For N ≤ 2, the su-
perfield Φ(Z) and its conjugate Φ̄(Z) are independent of each other and, in addition to
the operators in (2.32), one can introduce “mixed” operators built from both superfields.
This means that in the N = 0, 1 and 2 SYM theories, the operators (2.32) only generate
a certain subset of the existing Wilson operators in the SL(2|N ) subsector.

The light-ray operators (2.32) play a special role as far as integrability is concerned.
Namely, as was shown in Refs. [32], the one-loop dilatation operator acting on the space
of single-trace operators (2.32) can be mapped in the multicolor limit into a Hamiltonian
of a completely integrable Heisenberg SL(2|N ) spin chain. As before, the length of the
spin chain coincides with the number of superfields in (2.32) and spin operators are
generators of a collinear SL(2|N ) subgroup of the full superconformal group [32].

We recall that in SYM theories with N ≤ 2 supercharges the operators (2.32)
only generate a subsector of Wilson operators of twist L. To describe the remaining
operators, one has to consider single-trace operators built from both superfields, like
tr {Φ(Z1)Φ̄(Z2) · · ·Φ(ZL)}. For such operators, the one-loop dilatation operator involves
the additional term describing the exchange interaction between superfields on the light-
cone ΦΦ̄ → Φ̄Φ. It breaks integrability symmetry and generates a mass gap in the
spectrum of the anomalous dimensions [10]. At the same time, for large values of the
superconformal spin the exchange interaction vanishes and integrability gets restored in
the leading large spin asymptotics of the anomalous dimensions.

2.8 Integrability in QCD and SYM beyond one loop

It is well-known that the conformal symmetry is broken in QCD and SYM theories with
N < 4 supercharges while in the maximally supersymmetric N = 4 model it survives
on the quantum level. However the conformal anomaly modifies anomalous dimensions
starting from two loops only and, therefore, the one-loop dilatation operator inherits the
conformal symmetry of the classical theory [11,53].

Starting from two-loop order, the dilatation operator in the SL(2) sector acquires
several new features. First, it receives conformal symmetry breaking corrections arising
both due to a nonzero beta-function and a subtle symmetry-violating effect induced by
the regularization procedure [54]. Second, the form of the dilatation operator starts to
depend on the representation of the fermion fields, i.e., fundamental SU(3) in QCD and
adjoint SU(Nc) in SYM theories. The difference between the two is that it is only in the
latter case that one can select planar diagrams by going over to the multi-color limit,
while in the former case the large-Nc counting is inapplicable and the two-loop dilata-
tion operator receives equally important contributions from both planar and nonplanar
Feynman graphs. Thus, by studying the two-loop dilatation operator in the SL(2) sec-
tor we can identify what intrinsic properties of gauge theories (conformal symmetry,
supersymmetry and/or planar limit) are responsible for the existence of the integrability
phenomenon per se.

For an all-loop dilatation operator H(λ), depending on ’t Hooft coupling constant
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λ = g2Nc/(8π
2) and acting on a Wilson operator built from L constituent fields and

an arbitrary number of covariant derivatives, integrability would require, in general, the
existence of L conserved charges. Two of the charges—the light-cone component of the
total momentum of L fields and the scaling dimension of the operator—follow immedi-
ately from Lorentz covariance of the gauge theory. However, the identification of the
remaining charges qk(λ) with k = 3, . . . , L is an extremely nontrivial task. The eigen-
values of the charges qk define the complete set of quantum numbers parameterizing the
eigenspectrum of the dilatation operator. Integrability imposes a nontrivial analytical
structure of anomalous dimensions of Wilson operators and implies the double degen-
eracy of eigenvalues with the opposite parity [4, 55, 10]. At the same time, breaking
of integrability leads to lifting of the degeneracy in the eigenspectrum of the one-loop
dilatation operator.

Explicit two-loop calculation of the anomalous dimensions of the aforementioned
aligned-helicity fermionic operators in all SYM theories showed that the same relation
between integrability and degeneracy of the eigenstates holds true to two loops. Namely,
as was found in Refs. [26], the desired pairing of eigenvalues occurs for three-gaugino
operators in SYM theories with N = 1, 2 supercharges and the SU(Nc) gauge group.

The two-loops dilatation operator in SYM theories receives conformal symmetry
breaking contribution and, in addition, it depends on the number of supercharges N .
The latter dependence comes about through the contribution of 2(N−1) real scalars and
N gaugino fields propagating inside loops. Both contributions to two-loop dilatation op-
erator can be factored out (modulo an additive normalization factor) into a multiplicative
c-number. This property makes the eigenspectrum of the two-loop dilatation operator
alike in all gauge theories including the N = 4 SYM in which case the dilatation operator
is believed to be integrable to all loops [56]. Summarizing the results of two-loop cal-
culations of the anomalous dimension in QCD and in SYM theories, integrability of the
dilatation operator only requires the planar limit but it is sensitive neither to conformal
symmetry, nor to supersymmetry [26]. For recent discussion of integrability in relation to
non-planar corrections to the anomalous dimensions in N = 4 SYM see review Ref. [57].

In this section, discussing the properties of anomalous dimensions we restricted our-
selves to the SL(2) sector. There have been several developments that we cannot address
here in detail. In particular, an important observation was made in Ref. [58], where it
was shown that the diagonal part of one-loop QCD evolution kernels governing the scale
dependence of Wilson operators of arbitrary twist, can be written in a Hamiltonian form
in terms of quadratic Casimir operators of the full conformal SO(2, 4) group. This obser-
vation was used in Ref. [59] to work out the non-diagonal parts of the evolution kernels
for generic twist-four operators.

3 Integrability in high energy scattering

In the previous section, we described how integrability emerges in the problem of finding
the dependence of the structure functions F (x,Q2) on the hard scale Q2. In this section,
we explain that yet another integrability symmetry arises in the high-energy limit.

In application to the structure function F (x,Q2) this limit corresponds to x→ 0 for
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fixed Q2. At small x, the invariant energy s = Q2(1−x)/x of colliding virtual photon and
hadron becomes large and the structure function is expected to have Regge-like scaling
behavior F (x,Q2) ∼ (1/x)ω. In terms of moments (1.1), this corresponds to appearance
of the Regge pole at N = ω

F̃N(q2) =

∫ 1

0

dx xN−1F (x, q2) ∼ 1

N − ω
. (3.1)

It is well-known [5] that perturbative corrections to F (x, q2) are enhanced at small x by
large logarithms ∼ (αs ln(1/x))p. This raised the hope that the Regge behavior (3.1) can
be derived in QCD from resummation of such corrections to all loops. Going to moments,
the expansion over (αs ln s)p is traded for the expansion of F̃N(q2) over (αs/N)p.

3.1 Evolution equation

Careful study of asymptotic behavior of Feynman diagrams describing interaction be-
tween virtual photon and hadron shows that the dominant contribution to F (x, q2) only
comes t−channel exchange of particles of maximal spin, i.e. gluons (see Fig. 2). More-
over, in the center-of-mass frame of γ∗(q) and h(p), due to hierarchy of the scales, s� Q2,
interaction takes place in the two-dimensional plane orthogonal to the plane defined by
the momenta of scattered particles, pµ and qµ. This implies that in generic Yang-Mills
theory the leading high-energy asymptotic behavior of the scattering amplitudes is driven
by t−channel exchange of an arbitrary number of gluons. In the so-called generalized
leading logarithmic approximation, their contribution to the moments (3.1) takes the
form

F̃N(q2) =
∑
L≥2

∫
[d2k]

∫
[d2k′] Φγ∗({k})TL({k}, {k′};N) Φh({k′}) , (3.2)

where integration goes over two-dimensional momenta of L gluons propagating in the
t−channel, [d2k] =

∏L
1 d

2ki and similarly for [d2k′]. Here, the wave functions Φγ∗({k})
and Φh({k′}) describe the coupling of L gluons to virtual photon and hadron, respectively.
Also, TL({k}, {k′};N) describes elastic scattering of L gluons in the t−channel (see
Fig. 2) and is the main object of our consideration.

It is convenient to rewrite (3.2) as the following matrix element

F̃N(q2) =
∑
L≥2

〈Φγ∗|TL(N)|Φh〉 , (3.3)

where the minimum number of two gluons, L = 2, is required in order to get a colorless
exchange. The transition operator TL(N) describes the elastic scattering of L gluons. In
the generalized leading logarithmic approximation, the Feynman diagrams contribution
to TL(N) have ladder structure as shown in Fig 2. They can be resummed leading to
the following Bethe-Salpeter equation [6, 7]

NTL(N) = T
(0)
L +

αs
2π
HL TL(N) , (3.4)
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....1 2 L
h(p)h(p)

γ∗(q)γ∗(q)

Figure 2: The Feynman diagrams contributing to the deep inelastic scatter-
ing in the generalized leading logarithmic approximation. Wavy lines denote
(reggeized) gluons. They couple to virtual photons through a quark loop.

where T
(0)
L corresponds to the free propagation of L gluons in the t−channel and the

evolution operator HL describes their pair-wise interaction. The operator HL acts both
on two-dimensional momenta and on colors of L gluons and has the following two-particle
form

HL =
∑

1≤i<j≤L

Hij t
a
i t
a
j . (3.5)

Each term in this sum is given by the product of the color factor involving color charges
of two gluons and two-particle kernel Hij acting locally on the tranverse momenta of
gluons with indices i and j. The kernel Hij is known as BFKL operator [5] and it is
defined below in (3.19).

Combining together (3.4) and (3.3) we obtain the following expression for F̃N(q2)

F̃N(q2) =
∑
L≥2

〈Φγ∗|
(
N − αs

2π
HL

)−1

T
(0)
L |Φh〉 . (3.6)

We observe that F̃N(q2) has (Regge) singularities in N which are determined by the
eigenspectrum of the operator Hn, the so-called BKP equation [6, 7],

HLΨL,{q}(k1, . . . , kL) = EL,{q}ΨL,{q}(k1, . . . , kL) . (3.7)

The solutions to (3.7) define color singlet compound states of L gluons and we introduced
{q} to denote the set of quantum numbers parameterizing all solutions. Having solved
Schrödinger like equation (3.7), we can compute the moments of the structure function
as [4]

F̃N(q2) =
∑
L≥2

∑
{q}

(
N − αs

2π
EL,{q}

)−1

βL,{q} . (3.8)

Here the impact factor βL,{q} = 〈Φγ∗|ΨL,{q}〉〈ΨL,{q}|T (0)
L |Φh〉 measures the projection

of the eigenstates onto the wave functions of scattered particles. The double sum in
(3.8) runs over the possible number of gluons L ≥ 2 and over all eigenstates of the
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BKP Hamiltonian (3.7) parameterized by the conserved charges q. We observe that this
relation has an expected Regge form (3.1). Moreover, the leading Regge behavior of the
structure function is controlled by right-most singularity of F̃N(q2) in complex N plane.
According to (3.8), it corresponds to the maximal value of the ‘energy’ EL,{q}.

3.2 Conformal SL(2;C) symmetry

We recall that ki in the BKP equation (3.7) describe two-dimensional transverse momenta
of ith gluon and the relation (3.7) can be interpreted as two-dimensional Schrödinger
equation for n particles carrying SU(Nc) color charges.

As was found in [60, 2, 3], the BKP equation (3.7) becomes integrable in the multi-
color limit. In this limit, the relevant ladder Feynman diagrams contributing to F̃N(q2)
have the topology of a cylinder and, as a consequence, the evolution operator HL reduces
to the sum of terms corresponding to pairwise nearest-neighbor BFKL interactions:

HL =
1

2

L∑
k=1

Hk,k+1 +O(1/N2
c ) (3.9)

with periodic boundary conditions HL,L+1 = HL,1. Notice that this relation is exact for
L = 2.

The BFKL operator Hk,k+1 has a number of remarkable properties which allow us to
solve the Schrödinger equation (3.7) exactly [61, 60]. To elucidate these properties it is
convenient to switch from two-dimensional momenta ki to two-dimensional coordinates bi
via Fourier transform and, then, introduce complex holomorphic and the antiholomorphic
coordinates

~ki 7→ ~bi = {xi, yi} 7→ (zi = xi + iyi , z̄i = xi − iyi) . (3.10)

Quite remarkably, H12 is invariant under the conformal SL(2;C) transformations of the
gluon coordinates on the plane [61,60]

zk →
azk + b

czk + d
, (ad− bc = 1) , (3.11)

and similarly for antiholomorphic coordinates z̄k. The generators of these transforma-
tions are

Lk,− = −∂zk , Lk,0 = zk∂zk , Lk,+ = z2
k∂zk , (3.12)

and the corresponding antiholomorphic generators L̄k,−, L̄k,0 and L̄k,+ are given by sim-
ilar expressions with zk replaced by z̄k, with k = 1, 2 enumerating particles. Then, H12

commutes with all two-particle generators

[H12, L1,a + L2,a] = [H12, L̄1,a + L̄2,a] = 0 (3.13)

with a = +,−, 0. This implies that, firstly, H12 only depends on the two-particle Casimir
operators of the SL(2,C) group

L2
12 = −(z1 − z2)2∂z1∂z2 , L̄2

12 = −(z̄1 − z̄2)2∂z̄1∂z̄2 , (3.14)
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and, secondly, the eigenstates of H12 have to diagonalize the Casimir operators

L2
12Ψn,ν = h(h− 1)Ψn,ν , L̄2

12Ψn,ν = h̄(h̄− 1)Ψn,ν . (3.15)

Here a pair of complex conformal spins is introduced

h =
1 + n

2
+ iν , h̄ =

1− n
2

+ iν (3.16)

with a non-negative integer n and real ν that specify the irreducible (principal series)
representation of the SL(2,C) group to which Ψn,ν belongs. The solutions to Eqs. (3.15)
are [61]

Ψn,ν(b1, b2) =

(
z12

z10z20

)(1+n)/2+iν (
z̄12

z̄10z̄20

)(1−n)/2+iν

, (3.17)

where zjk = zj−zk and b0 = (z0, z̄0) is the collective coordinate, reflecting the invariance
of H12 under translations. The corresponding eigenvalue of H12 reads [5, 61]

En,ν = 2ψ(1)− ψ
(
n+ 1

2
+ iν

)
− ψ

(
n+ 1

2
− iν

)
. (3.18)

Its maximal value, maxEn,ν = 4 ln 2, corresponds to n = ν = 0, or equivalently h = h̄ =
1/2. It defines the position of the right-most singularity ω = 4 ln 2αsNc/π in (3.1) known
as the BFKL pomeron [5]. The relations (3.17) and (3.18) define the exact solution to
the Schrödinger equation (3.7) for n = 2, that is for the color-singlet compound state
built from two reggeized gluons.

3.3 Heisenberg SL(2;C) spin chain

Using (3.18) one can reconstruct the operator form of the BFKL kernel H12 on the
representation space of the principal series of the SL(2,C) group

H12 =
1

2

[
H(J12) +H(J̄12)

]
, H(J) = 2ψ(1)− ψ(J)− ψ(1− J) , (3.19)

where, as before, the two-particle spins are defined as L2
12 = J12(J12 − 1) and L̄2

12 =
J̄12(J̄12− 1). Notice that we already encountered the similar Hamiltonian in Sect. 2 (see
Eq. (2.17)) and found that it gives rise to integrability for the dilatation operator.

Most remarkably, the Hamiltonian (3.9) has the same hidden integrability as the
dilatation operator (2.17) and it coincides in fact with the Hamiltonian of the SL(2,C)
Heisenberg magnet [2, 3]. The important difference between the two operators is that
they are defined on the different space of functions: the operator (2.17) acts on the
nonlocal light-ray operators (2.2) which are polynomials in the light-cone coordinates
while the eigenfunctions of the operator (3.19) are single-valued functions on the two-
dimensional plane, Eq. (3.17). This leads to a dramatic change in the properties of the
two evolution kernels.

The number of sites in the Heisenberg SL(2,C) spin chain (3.9) equals the number of
particles and the corresponding spin operators are identified as six generators, L±k , L

0
k and
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L̄±k , L̄
0
k, of the SL(2,C) group. It possesses a large-enough set of mutually commuting

conserved charges qn and q̄n (n = 2, ..., L) such that q̄n = q†n and [HL, qn] = [HL, q̄n] = 0.
The charges qn are polynomials of degree n in the holomorphic spin operators. They
have the following form [2,3]

qn =
∑

1≤j1<j2<...<jn≤L

zj1j2zj2j3 ...zjnj1pj1pj2 ...pjn (3.20)

with zjk = zj − zk and pj = i∂zj . The “lowest” charge q2 is related to the total spin of
the system h. For the principal series of the SL(2,C) it takes the following values

q2 = −h(h− 1) , h =
1 + nh

2
+ iνh , (3.21)

with nh integer and νh real. The eigenvalues of the integrals of motion, q2, ..., qL, form
the complete set of quantum numbers parameterizing the L−gluon states (3.7).

Identification of (3.9) as the Hamiltonian of the SL(2,C) Heisenberg magnet allows
us to map the L−gluon states into the eigenstates of this lattice model. In spite of the
fact that the Heisenberg SL(2,C) magnet represents a generalization of the SL(2,R)
spin chain, finding its exact solution is a much more complicated task. The principal
difficulty is that, in distinction with SL(2,R) magnet, the quantum space of the SL(2,C)
magnet does not possess a highest weight – the so-called “pseudo-vacuum state” – and,
as a consequence, conventional methods like the Algebraic Bethe Ansatz method [16] are
not applicable. The eigenproblem (3.9) has been solved exactly in Refs. [62–64] using
the method of the Baxter Q−operator [65,45,66,44] which does not rely on the existence
of a highest weight. In this approach, it becomes possible to establish the quantization
conditions for the integrals of motion q3, ..., qL and to obtain an explicit form for the
dependence of the energy EL on the integrals of motion.

In this manner, the spectrum of the L−gluon state has been calculated for L ≥ 3
particles: For L = 3 few low-lying states have been found in [67, 68] and the complete
spectrum of states for 3 ≤ L ≤ 8 was determined in [63, 64] (see also [69]). The ob-
tained eigenspectrum has a very rich structure. The quantized values of the conserved
q−charges and the energy EL depend on the integer nh and the real number νh defining
the total SL(2,C) spin of the state, Eq. (3.16). In addition, they also depend on the
“hidden” set of integers ` = (`1, `2, ..., `2(L−2)). As a function of νh, the charges form
a family of trajectories in the moduli space q = (q2, q3, ..., qL) labelled by integers nh
and `. Each trajectory in the q−space induces a corresponding trajectory for the energy
EL = EL(νh;nh, `). The origin of these trajectories and the physical interpretation of
the integers ` can be understood by solving the Schrödinger equation (3.7) within the
semiclassical approach described in the next subsection.

3.4 Semiclassical limit

In the semiclassical approach [70], we assume that the SL(2;C) spins h and h̄ are large
and apply the WKB methods to construct the asymptotic solution to (3.7). One might
expect a priori that this approach could be applicable only for highly-excited states.
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Nevertheless, as was demonstrated in [70], the semi-classical formulae work with good
accuracy throughout the whole spectrum.

From the viewpoint of classical dynamics, the multi-gluon states (3.7) are describe

by a chain of interacting particles ‘living’ on the two-dimensional ~b−plane [47, 27]. The
classical model inherits the complete integrability of the quantum noncompact spin mag-
net. Its Hamiltonian and the integrals of motion are obtained from (3.9), (3.19) and
(3.20) by replacing the momentum operators by the corresponding classical functions.
Since the Hamiltonian (3.9) is given by the sum of holomorphic and antiholomorphic
functions, from point of view of classical dynamics the model describes two copies of
one-dimensional systems defined on the complex z− and z̄−lines. The solutions to the
classical equations of motion have a rich structure and turn out to be intrinsically re-
lated to the finite-gap solutions to the nonlinear equations [71,72]; namely, the classical
trajectories have the form of plane waves propagating in the chain of L particles. Their
explicit form in terms of the Riemann θ−functions was established in [47] by the methods
of finite-gap theory [71,72].

In the semiclassical approach, the eigenfunctions in (3.9) have the standard WKB
form, ΨWKB(~z1, . . . , ~zL) ∼ exp(iS0/~) where the Planck constant ~ = |q2|−1/2 is related
to the lowest charge (3.21) and the action function S0 satisfies the Hamilton-Jacobi
equations in the classical SL(2;C) spin chain. It turns out that the solutions to these
equations are determined by the same spectral curve (2.27) as for the SL(2;R) spin
chain. The charges q define the moduli of this curve and take arbitrary complex values
in the classical model. Going over to the quantum model, we find that charges q are
quantized.

The quantization conditions for the charges q follow from the requirement that
ΨWKB(~z1, . . . , ~zL) has to be a single-valued function of ~zi. As was shown in Refs. [27,70],
these conditions can be expressed in terms of the periods of the “action” differential over
the canonical set of the α− and β−cycles on the Riemann surface corresponding to the
complex curve (2.27)

Re

∮
αk

dx p(x) = π `2k−1 , Re

∮
βk

dx p(x) = π `2k , (3.22)

with k = 1, . . . , L − 2 and ` = (`1, . . . , `2L−4) being the set of integers. The relations
(3.22) define the system of 2(L−2) real equations for (L−2) complex charges q3, ..., qL (we
recall that the eigenvalues of the “lowest” charge q2 are given by (3.21)). Their solution
leads to the semiclassical expression for the eigenvalues of the conserved charges. In
turn, the energy of the L−gluon states EL,q can be expressed as a function of q3, ..., qL.
In the semiclassical approach, the corresponding expression is

E
(as)
L = 4 ln 2 (3.23)

+ 2 Re
L∑
k=0

[
ψ(1 + iRe δk + | Im δk|) + ψ(iRe δk + | Im δk|)− 2ψ(1)

]
,

where δk are roots of the polynomial tL(u) defined in (2.24).
The expression in Eq. (3.23) is similar to the energy of the SL(2,R) magnet in

Eq. (2.28) although the properties of the two models are different. As was demonstrated
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in [70], the resulting semiclassical expressions for q3, ..., qL and EL are in good agreement
with exact results [63, 64]. A novel feature of the quantization conditions (3.22) is that
they involve both the α− and β−periods on the Riemann surface. This should be
compared with the situation in the Heisenberg SL(2,R) magnet discussed in Section 2.6.
There, the WKB quantization conditions involve only the α−cycles, Eq. (2.29), since
the β−cycles correspond to classically forbidden zones. For the SL(2,C) magnet, the
classical trajectories wrap over an arbitrary closed contour on the spectral curve (2.27)
leading to (3.22). This fact allows us to explore the full modular group [73] of the complex
curve (2.27) and explain the fine structure of the exact eigenspectrum of the SL(2;C)
magnet. More details can be found in Ref. [70].

4 Concluding remarks

In this review, we have described integrability symmetry in application to the deeply
inelastic scattering in QCD. Due to space limitations, we did not review various impor-
tant topics and we refer the interested reader to Ref. [53] for a comprehensive review on
the subject. We would like to emphasize that integrability is not of a mere academic
interest in QCD as it offers a powerful technique for solving important phenomenological
problems such as finding the scale dependence of hadronic structure functions of higher
twist and describing their high-energy (Regge) asymptotic behaviour. On theory side,
the very fact that QCD evolution equations exhibit integrability property provides yet
another indication that QCD possesses some hidden (integrable) structures waiting to
be uncovered.
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Chapter V.1: Scattering Amplitudes – a Brief Introduction

1 Introduction

The scattering amplitudes of on-shell excitations are perhaps the most basic quantities
in any quantum field theory. They provide the only link between models of Nature and
experimental data, being thus an indispensable tool for testing theoretical ideas about
high energy physics. They also contain a wealth of off-shell information, such as certain
anomalous dimensions of composite operators, making their evaluation an important
alternative approach to direct off-shell calculations.

Scattering amplitudes may exhibit larger symmetries than the Lagrangian1. For
example, as reviewed in [1] in this volume, it was shown that the tree-level S-matrix of
the N = 4 super-Yang-Mills theory (sYM) is invariant [2] under the Yangian of the four-
dimensional superconformal group, even though this is not a symmetry of the Lagrangian.
Part of this invariance was initially observed as symmetries of higher-loop amplitudes [3].
Thus, in this theory, (tree-level) scattering amplitudes realize the symmetries responsible
for the integrability of its dilatation operator and of the worldsheet theory of its string
theory dual. With more symmetry, one may hope that scattering amplitudes have simpler
structure than one may naively expect.

Textbook approaches to scattering amplitude calculations make use of Feynman di-
agrams. Symmetries, however, even those of the Lagrangian, are obscured in this ap-
proach, re-emerging only after all Feynman diagrams are assembled. For this reason,
even at tree level, the evaluation of multi-leg amplitudes can become quite involved.
Multi-loop amplitudes have similar features. Nevertheless, the fact that scattering am-
plitudes to any loop order are computable in terms of Feynman diagrams is an invaluable
guide for identifying new techniques bypassing their difficulties.

Here we review the basics of modern on-shell methods for the evaluation of scat-
tering amplitudes – the (super)MHV vertex expansion, on-shell recursion relations and
the generalized unitarity-based method. Other methods and developments are briefly
mentioned in the concluding section.

2 Organization, presentation, relations between am-

plitudes

Whether carried out in terms of Feynman diagrams or by other means, a good notation
and a transparent organization of the calculation and results are indispensable ingredients
of an efficient calculation of scattering amplitudes. Color ordering separates the color
flow from momentum flow and thus separates amplitudes into smaller gauge-invariant
parts – the color-ordered amplitudes. Projection of these parts onto definite helicity
configurations leads to partial amplitudes with useful properties and simple structure.
An enlightening discussion of these topics may be found in [4]. Here we briefly summarize
the salient points.

1At tree-level it is possible to argue that they have the same symmetries as the equations of motion.
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2.1 Spinor helicity and color ordering

In a massless theory, solutions of the chiral Dirac equation provide an parametrization of
momenta and polarization vectors [5] which allows e.g. the construction of physical polar-
ization vectors without fixing noncovariant gauges. At the basis of this parametrization
lies the well-known relation

(kµσ̄
µ)α̇αu−α(k) = 0 ; u−(k)ū−(k) = −kµσµ , (2.1)

where as usual σ = (1,σ) and σ̄ = (1,−σ) are the Pauli matrices . This factorization also
follows more formally from the fact that the matrix on the right-hand-side of equation
(2.1) has unit rank if the momentum k is null. It is common2 to denote u−(k) and ū−(k)
by λ and λ̃, respectively. Multiplication of spinors is dictated by Lorenz invariance:

〈ij〉 = εαβλiαλjβ [ij] = −εα̇β̇λ̃iα̇λ̃jβ̇ . (2.2)

Gauge invariance constrains the physical polarization vectors; they must also be
transverse and take the standard form of circular polarization vectors in the relevant
frame. They can be constructed in terms of λ, λ̃ and arbitrary fixed spinors ξ and ξ̃:

ε−αα̇(k, ξ) = −
√

2
λαξ̃α̇
[ξk]

ε+αα̇(k, ξ) =
√

2
ξαλ̃α̇
〈ξk〉

. (2.3)

The freedom of choosing independently reference spinors for each of the gluons partici-
pating in the scattering process makes it easy to prove that tree-level gluon amplitudes
with less than two gluons of the same helicity vanish identically. The first nonvanishing
tree-level amplitudes have two gluons of the same helicity opposite from the other ones;
they are known as maximally helicity-violating (MHV) amplitudes. In supersymmetric
theories this pattern holds to all orders in perturbation theory.

A clean organization of scattering amplitudes is a second useful ingredient in the
construction of scattering amplitudes at any fixed loop order L. Besides the organization
following the helicity of external states, at each loop order an organization following the
color structure is also possible and desirable, if only because, for n-point amplitudes,
there are at most (n − 1)! gauge invariant components. For an SU(N) gauge theory
with gauge group generators denoted by T a, any L-loop amplitude may be decomposed
as follows [6]:

A(L)
n = NL

∑
ρ∈Sn/Zn

Tr[T aρ(1) . . . T aρ(n) ]A(L)
n (kρ(1) . . . kρ(n), N

−1) + multi−traces , (2.4)

where the sum extends over all non-cyclic permutations ρ of (1 . . . n). The coefficients
A(kρ(1) . . . kρ(n), N

−1) are called color-ordered amplitudes. The (n − 1)! color-ordered

2In Minkowski signature λ and λ̃ are complex conjugate of each other and the factorization (2.1)
exhibits a rephasing invariance λ 7→ Sλ, λ̃ 7→ S−1λ̃ with S∗ = S−1. It is useful to promote momenta to
(holomorphic) complex variables and the Lorentz group to SL(2,C)×SL(2,C). Then, λ and λ̃ become
independent complex variables and rephasing by S becomes rescaling by an arbitrary complex number.
Scattering amplitudes have definite scaling properties under this transformation.
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amplitudes in (2.4) are not independent; in [7] and [8] it was shown how to express them
in terms of (n− 2)! and (n− 3)! basic amplitudes, respectively.

In the limit of large number of colors, N → ∞, the multi-trace terms left unspec-
ified in the equation above drop out. The same is true for all N -dependent terms in
An(kρ(1) . . . kρ(n), N

−1), reducing them to planar partial amplitudes An(kρ(1) . . . kρ(n)). In
this limit we will normalize the loop expansion parameter as

a =
g2N

8π2
(2.5)

Color ordered scattering amplitudes have definite transformation properties under
cyclic permutation of (subsets of) external legs. They also have definite factorization
properties in limits in which external momenta reach certain singular configurations.
E.g. the tree-level collinear and multi-particle factorization formulae are

A(0)
n (1 . . . (n− 1)hn−1 , nhn)

kn−1||kn
−−−−→

∑
h

A
(0)
n−1(1 . . . kh)Split

(0)
−h((n− 1)hn−1 , nhn) , (2.6)

A(0)
n (1, . . . , n)

k2
1,m→0

−−−−→
∑
h=±

A
(0)
m+1(1, . . . ,m, kh1,m)

i

k2
1,m

A
(0)
n−m+1(−k−h1,m,m+ 1, . . . , n) (2.7)

where Split(0) is a universal function known as the tree-level splitting amplitude. These
properties, and their higher-loop generalizations, provide stringent tests on the direct
evaluation of higher-loop amplitudes and the validity of new methods proposed for this
purpose. For a thorough discussion we refer the reader to the original literature [9–11].

2.2 Superspace and supersymmetry relations

Supersymmetric field theories are more constrained than their non-supersymmetric coun-
terparts. Through supersymmetric Ward identities [12], supersymmetry implies nontriv-
ial relations between scattering amplitudes to all orders in perturbation theory. For
example, the vanishing of all gluon amplitudes with less than two gluons of helicity
different form the rest may be understood as a consequence of supersymmetry. Tree-
level supersymmetry relations between gluon scattering amplitudes hold in all theories,
regardless of their amount of supersymmetry or of their field content.

Supersymmetric Ward identities imply that not all amplitudes are independent;
rather, most of them are generated from certain ”basic” amplitudes by repeated ap-
plication of supersymmetry transformations. E.g., MHV amplitudes, differing by the
position of the negative helicity gluons, are all related by supersymmetry transforma-
tions. The next-to-MHV amplitudes (involving three negative helicity gluons) and their
superpartners, are generated by three independent amplitudes [13, 14]. A general solu-
tion to the relations imposed by supersymmetry Ward identities in N = 4 sYM theory
and in N = 8 supergravity was discussed in [14].

Chiral superspace provides an efficient organization of the scattering amplitudes of
the N = 4 sYM theory. The physical states are assembled into a single superfield

Φ(x, η) =
1

4!
g+
abcdη

aηbηcηd +
1

3!
f+
abcη

aηbηc +
1

2!
sabη

aηb + f−a η
a + g− , (2.8)
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where η denote the anticommuting superspace coordinates, transforming in the funda-
mental representation of the R-symmetry group SU(4); g± and f± are, respectively, the
positive and negative helicity gluons and gluinos and sab are scalars. Component am-
plitudes are repackaged into superamplitudes and can be extracted by multiplication
with a superfield containing only the desired component field for each external leg and
integration over all anticommuting superspace coordinates.

The fact that all MHV amplitudes are related by a suitable chain of supersymmetry
transformations is reflected by the fact that all MHV amplitudes may be assembled into
a single-term superamplitude proportional to the conservation constraint for the chiral
supercharge Qαa =

∑
i λ

α
i η

a
i :

A(0),MHV
n (1, 2, . . . , n) ≡ i∏n

j=1〈j (j + 1)〉
δ(8)
( n∑
j=1

λjαη
a
j

)
. (2.9)

The MHV superamplitudes in chiral superspace is more complicated [15,16]:

A(0),MHV
n (1, 2, . . . , n) =

i∏n
j=1[j (j + 1)]

∫ 4∏
a=1

d8ωa
n∏
i=1

δ(4)(ηai − λ̃α̇i ωaα̇) . (2.10)

Supersymmetric Ward identities imply that, to all orders in perturbation theory, MHV
and MHV superamplitudes are proportional to the corresponding tree-level superampli-
tude. The proportionality coefficient, henceforth called scalar factor and denoted by M

(l)
n

where n is the number of external legs and l is the loop order, is a completely symmet-
ric scalar function of momentum invariants which naturally splits into parity-even and
a parity-odd components. The superamplitude containing the gluon amplitudes with
(k + 2) negative helicity gluons (the so-called NkMHV amplitudes) contains 4(k + 2)
delta functions whose arguments are linear combinations of anticommuting coordinates.
Examples for k = 1 may be found in [17].

The dual superspace, in which the superfield is related to (2.8) by a fermionic Fourier
transform is also extensively used [17, 18]. While the superamplitude is unchanged, one
extracts component amplitudes by applying suitable fermionic differential operators.
For example, to extract a gluon amplitude one differentiates solely with respect to the η
parameters corresponding to the negative helicity gluons.

2.3 Factorization of infrared divergences

A general feature of on-shell scattering amplitudes in massless theories is the presence of
infrared divergences.3 Unlike ultraviolet divergences they cannot be renormalized away;
rather, they cancel in infrared-safe quantities, such as cross sections of color-singlet states,
anomalous dimesions, etc.

There are two sources of infrared divergences in a massless theory: the small energy
region of some virtual particle and the region in which some virtual particle is collinear

3While absent in the N = 4 sYM theory, in general massless theories ultraviolet divergences are, of
course, present as well.
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with some external particle, respectively:∫
dω

ω1+ε
∝ 1

ε

∫
dkT

k1+ε
T

∝ 1

ε
. (2.11)

Since they can occur simultaneously, the leading infrared singularity at L-loops is an
1/ε2L pole in dimensional regularization.

The structure of soft and collinear singularities in a massless gauge theory in four
dimensions has been extensively studied and understood [19–22]. The realization that
soft and virtual collinear effects can be factorized in a universal way, together with the
fact [23] that the soft radiation can be further factorized from the (harder) collinear one,
led to a three-factor structure for gauge theory scattering amplitudes [22,24]:

Mn =

[
n∏
i=1

Ji

(
Q

µ
, αs(µ), ε

)]
× S

(
k,
Q

µ
, αs(µ), ε

)
× hn

(
k,
Q

µ
, αs(µ), ε

)
. (2.12)

Here the product runs over all the external lines, Q is the factorization scale, separating

soft and collinear momenta, µ is the renormalization scale and αs(µ) = g(µ)2

4π
is the

running coupling at scale µ. Both hn(k,Q/µ, αs(µ), ε) and the amplitudeMn are vectors
in the space of color configurations available for the scattering process. The soft function
S(k,Q/µ, αs(µ), ε) is a matrix acting on this space; it is defined up to a multiple of the
identity matrix. It captures the soft gluon radiation, it is responsible for the purely
infrared poles and it can be computed in the eikonal approximation in which the hard
partonic lines are replaced by Wilson lines. The “jet” functions Ji(Q/µ, αs(µ), ε) are
color-singlets and contain the complete information on collinear dynamics of virtual
particles. Finally, hn(k,Q/µ, αs(µ), ε) contains the effects of highly virtual fields and is
finite as ε → 0. The jet and soft functions can be independently defined and evaluated
in terms of specific matrix elements.

In the planar limit all except one color structure are subdominant; the soft function
is then proportional to the identity matrix and may be absorbed into the definition
of the jet functions reducing equation (2.12) to a two-factor expression. In this limit,
the jet function may be given a physical interpretation by using the factorized form of
the amplitude for the decay of a color-singlet state into two gluons of momenta ki and
ki+1. This is, by definition, the Sudakov form factorM[gg→1](si,i+1/µ, λ(µ), ε). With this
information the factorized form of a general planar amplitude is

Mn =

[
n∏
i=1

M[gg→1]

(
Q

µ
, λ(µ), ε

)]1/2

× hn
(
k,
Q

µ
, λ(µ), ε

)
, (2.13)

where λ(µ) = g(µ)2N is the ’t Hooft coupling. HereMn denotes the unique single-trace
structure relevant in the planar limit.

Independence on the factorization scale Q implies that the Sudakov form factor obeys
certain renormalization group type equations which relate it to the cusp anomalous
dimension as well as to another function — the ”collinear anomalous dimension” —
whose physical interpretation is less transparent (see however [25]). For their derivation
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and analysis we shall refer the reader to the original literature [20, 26]. Their solution
for N = 4 sYM is [27]:

Mn = exp

[
−1

8

∞∑
l=1

al

(
γ

(l)
K

(lε)2
+

2G(l)
0

lε

)
n∑
i=1

(
µ2

−si,i+1

)lε]
× hn , (2.14)

where the cusp anomaly (universal scaling function) and the collinear anomalous dimen-

sion are constructed from the coefficients γ
(l)
K and G(l)

0 as:

f(λ) ≡ γK(λ) =
∑
l

alγ
(l)
K G0 =

∑
l

G(l)
0 al . (2.15)

In writing (2.14) it was assumed that the factorization scale of IR divergences associated
to the external legs carrying momenta ki and ki+1 is Q = si.,i+1.

The detailed structure of IR divergences of scattering amplitudes described above
used to great effect [28] for the evaluation of the 4-loop cusp anomaly which tests the
detailed structure of the BES equation [29] and thus of integrability for N = 4 sYM the-
ory. The BES equation provides all-order results for γK ; no such all-order determination
of the collinear anomalous dimension is available, though its relation to other anomalous
dimensions [25] may remedy this situation.

3 Tree level amplitudes

All symmetries of the Lagrangian of a quantum field theory are visible in its on-shell
scattering amplitudes. Scattering amplitudes may however have more symmetries than
the Lagrangian. New presentations of scattering amplitudes may thus expose hitherto
unsuspected hidden properties of the theory.

An enigmatic presentation of tree-level scattering superamplitudes of N = 4 sYM
followed [30] from Witten’s interpretation of the theory as a topological string theory in
the super-twistor space of super-Minkowski space. The generating function of tree-level
amplitudes with n external legs is

An =
n−3∑
d=2

∫
dM1,d 〈J1 . . . Jn〉 (3.1)

where dM1,d is the integration measure over the moduli space of maps of degree d from
S2 to CP 3|4 and Ji are certain free fermion currents. Recently, the properties of this
presentation of amplitudes started being understood [31] through the Grassmannian
interpretation of the tree-level amplitudes.

Witten’s interpretation of N = 4 sYM theory as a topological string theory also
led to the MHV vertex rules [32] subsequently generalized to the super-MHV vertex
rules.4 They are effective rules expressing general amplitudes as sums of products of
MHV superamplitudes. The following (super)steps generate the n-point NkMHV gauge
theory superamplitude:

4The MHV (super)vertex rules were proven from a Lagrangian standpoint in [33].
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• draw all tree graphs with (k + 1) vertices, on which the n external legs are dis-
tributed in all possible inequivalent ways while maintaining the color order.

• to each vertex associate an MHV superamplitude (2.9). The holomorphic spinor
λP of an internal line is constructed from the off-shell momentum P of that line
using a fixed arbitrary reference anti-holomorphic spinor ζ α̇:

λPα ≡ Pαα̇ζ
α̇ . (3.2)

Alternatively, the holomorphic spinor λP = |P [〉 is constructed from the null pro-
jection of the off-shell momentum P along a reference null vector ζµ common for
all legs [34]:

P [ = P − P 2

2ζ · P
ζ . (3.3)

• to each internal line associate a super-propagator, i.e. a standard scalar Feynman
propagator i/P 2 and a factor which equates the fermionic coordinates η of the
internal line in the two vertices connected by it.5

• integrate over all the anticommuting coordinates associated to internal lines.

Upon application of these rules, the NkMHV superamplitude is given by

ANkMHV
n = im

∑
all graphs

∫ [ k∏
j=1

d4ηj
P 2
j

]
AMHV

(1) AMHV
(2) · · · AMHV

(k) AMHV
(k+1) , (3.4)

where the integral is over the 4k internal Grassmann parameters (d4ηj ≡
∏4

a=1 dη
a
j ) and

each Pj is the off-shell momentum of the j’th internal leg of the graph.
Each integration

∫
d4ηi in (3.4) selects the configurations with exactly four distinct

η-variables η1
i η

2
i η

3
i η

4
i on each of the internal lines. Since a particular ηai can originate from

either of two MHV amplitudes connected by the internal line i, there are 24 possibilities
that may give non-vanishing contributions. However, for a given choice of external states,
each term corresponding to a distinct graph in (3.4) receives nonzero contributions from
exactly one state for each internal leg.

The observation that integrating over the common η variables yields a sum over the
16 states in the N = 4 multiplet will be important also in the following sections in
evaluating similar sums (called ”supersums”) appearing in generalized unitarity cuts.

The simplest example illustrating the MHV (super)vertex rules is the construction of
the MHV gluon amplitude; its split helicity configuration is simply:

A
(0)
5 (1−,2−,3−,4+,5+) = (3.5)

〈23〉4

〈23〉〈34〉〈4P1〉〈P12〉
1

P 2
1

〈1P1〉4

〈51〉〈1P1〉〈P15〉
+

〈3P2〉4

〈P23〉〈34〉〈4P2〉
1

P 2
2

〈12〉4

〈2P2〉〈P25〉〈51〉〈12〉

+
〈3P3〉4

〈34〉〈45〉〈5P3〉〈P33〉
1

P 2
3

〈12〉4

〈P31〉〈12〉〈2P3〉
+

〈23〉4

〈23〉〈3P4〉〈P42〉
1

P 2
4

〈1P4〉
〈1P4〉〈P44〉〈45〉〈51〉

5For the superfields (2.8) this factor is just
∫
d4η′δ(4)(η − η′).
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The momenta Pi follow from momentum conservation at each MHV vertex; their null
components assumed above are obtained as in (3.3).

While much more efficient than Feynman diagrams, the MHV supervertex expansion
is not recursive and the number of contributing graphs grows quite fast with the number
of external legs; it also exhibits an artificial lack of covariance at intermediate stages
due to the presence of the fixed spinors ζ. The BCFW recursion relation [35] recon-
struct covariantly tree-level amplitudes from this pole structure and their multi-particle
factorization properties.

Their direct derivation [35] uses only complex analysis. One singles out two momenta
pi and pj (the choice of momenta is, to a large extent, arbitrary; we will discuss shortly
the origin of constraints on the choice of i and j) and shifts them as

pi → p̂i = pi + zζij pj → p̂j = pj − zζij (ζ ij)αα̇ = λiαλ̃jα̇ (3.6)

where the vector (ζ ij) is chosen such that the shifted momenta are still null. More
elaborate shifts have also been discussed. By tuning the parameter z it is possible to
expose one by one all poles of the amplitude. As the relevant values of z are complex,
equation (3.6) is interpreted as an analytic continuation to complex momenta.

The fact that the only poles of the shifted amplitude arise from the z dependence of
propagators implies that none of them is at z = 0. 6 The original (unshifted) amplitude
may them be recovered by integrating the shifted amplitude on a small contour C0 around
z = 0. Reinterpreting it as a contour around z = ∞ implies that the amplitude may
be rewritten in terms of the residues of the shifted amplitude. Since the corresponding
poles are in one to one correspondence with multi-particle factorization limits of the
shifted amplitude, it follows from eq. (2.7) that their residues are themselves products
of amplitudes. We are finally led to [35]

A(1...n) =
1

2πi

∮
C0

dz

z
A(1̂,2...n̂;z) = − 1

2πi

∮
C∞

dz

z
A(1̂,2...n̂;z)

=
∑
l,h

AL(1̂,2...l,q̂h;z0l)
1

P 2
1,...,l

AR(−q̂−h,(l+1),...n̂;z0l) + C∞ , (3.7)

where h denotes the helicity of the intermediate leg. For definiteness and ease of notation
we chose to shift the external momenta p1 and pn; the momentum q̂ of the internal line is
determined by momentum conservation and depends on z. The value of z0l is determined
from the on-shell condition for the intermediate line:

z0l =
P 2

1,...,l

2 ζ1n · P1,...,l

. (3.8)

The term denoted by C∞ represents the contribution of the pole at z =∞. It is possible
to argue [35] using either Feynman diagrammatics or the MHV vertex rules that this
contribution is absent for the shift (3.6) for all choices of helicity for the legs (i, j) except
(hi, hj) = (+,−).

6Poles on the z-plane may drift close to the origin only in multi-particle factorization limits of the
unshifted amplitude.
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1 4+

5+6+
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+
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?
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1 2
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5+ 4+

+

(b) (c)(a)

Figure 1: The diagrammatic presentation of the terms in equation (3.7) for
A(1−2−3−4+5+6+).

Some of the terms in the sum in equation (3.7) contain three-particle amplitudes.
The analytic continuation to complex momenta (i.e. λ 6= (λ̃)∗) makes these terms
nonvanishing.7

The six-point amplitude in split helicity configuration A(1−2−3−4+5+6+) provides a
simple illustration of the BCFW recursion relations. Choosing to shift the momenta
p3 and p4, the diagrams representing the terms in equation (3.7) are shown in figure 1.
Diagram (b) vanishes identically; the other two contribute as follows:

Ta =
〈23̂〉3

〈3̂p̂23〉〈p̂232〉
1

p2
23

〈1p̂23〉3

〈p̂234̂〉〈4̂5〉〈56〉〈61〉
z01 =

p2
23

〈4|P23|3]

Tc =
[p̂456]3

[p̂236][61][12][23̂][3̂p̂23]

1

p2
45

[4̂5]3

[5p̂45][p̂454̂]
z03 =

p2
45

〈4|p45|3]
(3.9)

Combining them and making use of the corresponding shifts leads to

A(1−2−3−4+5+6+) =
1

〈5|p34|2]

[
〈1|p23|4]3

[23][34]〈56〉〈61〉p2
234

+
〈3|p45|6]3

[61][12]〈34〉〈45〉p2
345

]
. (3.10)

This is indeed the correct answer for the six-point split-helicity tree-level gluon amplitude,
as may be verified by direct comparison with the classic results of [9].

BCFW recursion relations have been generalized [36, 37, 18] to chiral on-shell super-
space. By solving them explicit expressions for all tree-level amplitudes of N = 4 sYM
have been obtained in [38].

4 Generalized unitarity and loop amplitudes

As explained in the previous section, the MHV vertex rules and the on-shell recursion
relations may be understood as procedures for reconstructing a function of many variables
from its singularities and behavior at infinity.

Historically, through the optical theorem, such a strategy was first used to construct
loop amplitudes. Unitarity of the scattering matrix implies that its interaction part

7 Either the MHV or the MHV three-particle amplitude may be chosen nonvanishing, but not both.
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S = 1 + iT obeys the equation:

i(T † − T ) = T †T . (4.1)

Expanding both sides in the coupling constant implies that, at loop order L, the dis-
continuity8 – or cut – of T in some multi-particle invariant is given by the product of
lower order terms in the perturbative expansion of the T matrix, i.e. lower order on-shell
amplitudes.

For bookkeeping purposes it is useful to separate cuts in two classes: singlet and
non-singlet. In the former only one type of field crosses the cut. In the latter several
types of particles – complete multiplets in a supersymmetric theory – cross the cut.
The summation over all such states can be tedious; at low orders it may be explicitly
carried out using the component version of the supersymmetric Ward identities. General
procedures, based on chiral superspace, for effortlessly carrying out such sums – called
supersums – have been described in detail in [18,16].

Reconstructing an amplitude from its unitarity cuts is not completely straightforward.
One of the main difficulties is that the emerging integrals – dispersion integrals – are not
of the type usually found in Feynman diagram calculations. A reinterpretation of the
equation (4.1) bypasses this issue, expresses the result in terms of Feynman integrals and
allows use of the recent sophisticated techniques for their evaluation: integral identities,
modern reduction techniques, differential equations, reduction to master integrals, etc.

To reinterpret the L-loop component of eq. (4.1) we notice that, due to the Feynman
diagrammatics underlying the amplitude calculation, it is possible to identify on the
left-hand side of this equation all the terms with a prescribed set of cut propagators.
Equation (4.1) expresses the sum of these terms as a product of lower-loop amplitudes.
Thus, at the level of the amplitudes’ integrand, a unitarity cut may be interpreted as
isolating the terms containing a prescribed set of (cut) propagators.

These observations, originally due to Bern, Dixon, Dunbar and Kosower [10] and
improved at one-loop level by Britto, Cachazo and Feng [39], allow “cutting” more
than (L + 1) propagators for an L-loop amplitude, generalizing the unitarity relation
(4.1). These generalized cuts9 do not have the interpretation of the imaginary part
of some higher-loop amplitude. Rather, they should be interpreted as isolating the
terms that contain a prescribed set of propagators. The Feynman rules underlying
the calculation guarantee that the totality of generalized cuts contains the complete
information necessary to reconstruct the amplitude to any order in perturbation theory.
Indeed, each term in the integrand of the amplitude contains (perhaps after integral
reduction) some subset of the propagators required by Feynman rules and each such
term is captured by at least one generalized cut.

These arguments assume that the generalized cuts are constructed in the regularized
theory. In the following dimensional regularization with d = 4 − 2ε is assumed. 10 In
practice it is convenient to start by analyzing four-dimensional cuts, as one can saturate

8This interpretation is a consequence of the iε prescription: 1
l2+iε −

1
l2−iε = −2πiθ(l0)δ(l2).

9Similarly to regular cuts, generalized cuts can be either of singlet and non-singlet types.
10In planar N = 4 sYM specific patterns of breaking of gauge symmetry also provide successful IR

regularization [40]. We will comment on their features in the concluding section.
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them with four-dimensional helicity states and also make use of the supersymmetric Ward
identities. The terms arising from the (−2ε)-dimensional components of the momenta in
momentum-dependent vertices that are potentially missed by four-dimensional cuts are
separately found either by a comparison with d-dimensional cuts or by other means. In
supersymmetric theories it can be argued [41] based on the improved power-counting of
the theory that, through O(ε0), one-loop amplitudes follow from four-dimensional cuts.

In [42] a generalized unitarity approach was proposed for theories that may be con-
tinued to six dimensions. This construction, which is based on a six-dimensional version
of spinor helicity [43], provides a natural context form the O(ε) components of momenta
and allows a Coulomb-branch regularization of IR divergences.

An L-loop n-point amplitude has (very) many generalized cuts; it is important to
evaluate them such that the maximum number of terms is determined with the least
amount of effort. A strategy initially advocated in [44] and extensively used in [45,46] is
to begin with the generalized cuts imposing 4L cut conditions (maximal cuts) and then
proceed by releasing the on-shell condition for one propagator at a time (near-maximal
cuts). This is known as ”the method of maximal cuts”.

5 One loop amplitudes

Quite generally in four dimensions, such one-loop scattering amplitudes in a massless
supersymmetric theory may be shown to be a linear combination of scalar box, triangle
and bubble integrals (see Figure 2) with coefficients depending on the external momenta.
11 In N = 4 sYM it is possible to argue [10] that amplitudes with external states belong
to the same N = 1 vector multiplet may be written as a sum of box integrals:12

A(1)
n =

∑
ijk

cijklIijkl . (5.1)

Experience shows that the same holds for other external states as well. In eq. (5.1)
(i, j, k, l) are cyclic labels of the first external leg at each corner of the box (counting
clockwise), Iijkl is the corresponding integral and the sum runs over all ways of choosing
the labels (i, j, k, l). These integrals are linearly independent (over rational, momentum
dependent coefficients) so this decomposition is unique.

Since each box integral has an unique set of four propagators, a quadruple cut (i.e.
the result of eliminating four propagators and using the on-shell condition for their
momenta) isolates an unique box integral and its coefficient [39]. Following the previous
discussion, the quadruple cut of the amplitude is simply given by the product of four tree
amplitudes evaluated on the solution of the on-shell conditions for the four propagators:

cijkl =
1

2

∑
hqi

A(q1,i...j−1,−q2)A(q2,j...k−1,−q3)A(q3,k...l−1,−q4)A(q4,l...i−1,−q1)

∣∣∣
q2
i=0

(5.2)

11Non-supersymmetric theories contain additional rational terms. Their determination is beyond the
scope of this review. See however [47] and references therein.

12 The box integrals, represented graphically in Figure 2(a), are defined and given in reference [48]
(with the four-mass boxes from ref. [49]).
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n3
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n3 n1 n2

Figure 2: Box, triangle and bubble integrals with arbitary numbers of external
legs n1,2,3,4 at each vertex.
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Figure 3: Contributions to the one-loop five-point MHV amplitude.

The sum runs over all possible helicity assignments on the internal lines. The factor of
1/2 above is due to the four on-shell conditions having two solutions with equal values
of the quadruple-cut box integrals. The sum over these solutions is implicit in the sum
in equation (5.2). It is important to realize that any amplitude contains at least one box
integral with one three-point corner. To construct its coefficient through this method it
is necessary to analytically continue momenta to complex values.

The calculation of the five-point amplitude, initially computed by other means [50]
in both in N = 4 sYM and QCD, is a simple illustration of the quadruple cut approach.
The five possible integral contributions are shown in Figure 3. Let us comment on the
fourth one. Of the two possible helicity assignments to the cut propagators, one does not
have solutions for the on shell conditions. The other yields the coefficient of the fourth
box integral in Figure 3:

[l2l1]3

[1l2][l11]
× 〈2l2〉3

〈2l3〉〈l3l2〉
× [3l4]3

[l4l3][l33]
× 〈l1l4〉3

〈l44〉〈45〉〈5l1〉
= − s12s23 〈12〉3

〈23〉〈34〉〈45〉〈51〉
(5.3)

The coefficients of the other integrals may be computed in a similar fashion. They are
related to the coefficient evaluated here by the obvious relabeling the factor s12s23.

The quadruple cut technique described and illustrated above may equally well be
used to construct non-planar one-loop amplitudes. Alternatively and perhaps less calcu-
lationally intensive, in theories with only adjoint fields and only antisymmetric structure
constant couplings one-loop leading and subleading color contributions are algebraically
related [6] by U(1) decoupling identities.

6 Higher loops

Higher loop calculations in N = 4 sYM enjoy similar simplifications, though to a lesser
extent. An important difference from one-loop calculations within the generalized uni-
tarity method is that the natural integrals form only an over-complete basis. Complete
bases may be identified on a case by case basis13. Since, in general, not all higher loop in-

13See the two-loop examples [51] and [52] and the general strategy [53].
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tegrals can be frozen by cutting all their propagators, a naive higher-loop generalization
of the quadruple cuts is problematic. The leading singularity method [54] bypasses the
latter difficulty by making use of additional propagator-like singularities in the remaining
variables, which are specific to four dimensions.

Generalized cuts can nevertheless be used to great effect to isolate parts of the full
amplitude containing some prescribed set of propagators. The previous arguments con-
tinue to hold and imply that the complete amplitude can be reconstructed from its
d-dimensional generalized cuts. A detailed, general algorithm for assembling the ampli-
tude was described in [55]. In a nutshell, starting from one (generalized) cut, one corrects
it iteratively such that all the other cuts are correctly reproduced.

While fundamentally all cuts are equally important, some of them exhibit more struc-
ture than other, which makes them useful starting points for the reconstruction of the
amplitude. In some cases they also have a simple iterative structure and thus lead to
effective rules for determining their contribution to the full amplitude.

6.1 Effective rules

Two-particle cuts are the simplest to analyze as they involve cutting the smallest number
of propagators. For MHV amplitudes they exhibit special properties. As mentioned
in section 2.2, to all loop orders MHV amplitudes are proportional in a natural way
to the tree-level amplitude. At the level of generalized cuts this translates into the
observation [56, 57] that sewing two tree-level MHV amplitudes leads in a natural way
to another tree-level MHV amplitude factor:

A(0),MHV
n1

× A(0),MHV
n2

∝ A
(0),MHV
n1+n2−4 . (6.1)

The operation may be repeated, leading to what is known as ”iterated two-particle cuts”.
For four-particle amplitudes, the higher-loop terms detected by iterated two-particle cuts
are effectively given by the rung-rule [56]. It states that the L-loop integrals which
follow from iterated two-particle cuts can be obtained from the (L− 1)-loop amplitudes
by adding a rung in all possible (planar) ways while in each instance also inserting the
numerator factor

i(l1 + l2)2 (6.2)

where l1 and l2 are the momenta of the lines connected by the rung. 14 For higher-point
amplitudes the rung rule is less effective and a direct evaluation of generalized cuts is
typically necessary.

The box substitution identity [44] and its generalizations [46] relate further terms in
higher-loop amplitudes to terms in lower loop amplitudes. The idea is to organize terms
in an L-loop amplitude to expose an L′-loop four-point sub-amplitude. A contribution to
the (L+ `)-loop amplitude is then obtained by literally replacing this L′-loop four-point
sub-amplitude with its (L′ + `)-loop counterpart.

14 The rung rule can generate integrals which do not exhibit any two-particle cuts. Such contributions
must be checked by a direct evaluation of other cuts. Examples in this direction first appear in the planar
four-loop four-gluon amplitude [28].
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Certain non-planar contributions to scattering amplitudes turn out to be related to
planar ones at the same loop order by a Jacobi-like identities [46,58]. Such manipulations
can be carried out pictorially. We will not describe them in detail here, but refer the
reader to the original literature for a detailed discussion (see also [59] for a string theory
based argument for these relations).

Quite generally, effective rules do not yield all contributions to amplitudes. Their
usefulness should not, however, be underestimated: it is easier to correct an existing
ansatz rather than construct it from scratch starting from generalized cuts. To determine
the missing terms and confirm the ones obtained through effective rules it is necessary
to directly evaluate certain judiciously chosen set of the generalized cuts.

6.2 An example: two-loop four-point amplitude in N = 4 sYM
theory

Perhaps the simplest example that illustrates the higher-loop discussion in the previous
subsections is the calculation [56] of the two-loop four-point amplitude. Direct evaluation
of the s-channel iterated 2-particle cut (the t-channel cut may be obtained by simple
relabeling) leads to:
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Together with the loop expansion parameter (2.5), this leads to the following ansatz:

A
(2)
4 (k1,k2,k3,k4)

A
(0)
4 (k1,k2,k3,k4)

= −1

4
s12s23

 s12

1

2

4

3

+ s23

2

1 4

3

 . (6.4)

This ansatz turns out to be complete, as can be verified by evaluating the three-particle
cut [56]. In less supersymmetric theories additional contributions are necessary.

The same ansatz (6.4), to be checked through a three-particle cut calculation, may
be obtained either through the rung rule (by inserting a rung in the s- and the t-channel
in a one-loop box integral) and the box insertion identity.

In general, the evaluation of a complete (spanning) set of cuts is always necessary.
The power of effective rules lies in that they provide a fast and rather effortless way
of obtaining a large number of terms (and sometimes all terms) in the amplitude. It
is technically much more convenient to test and complete an existing ansatz than to
construct it starting from the expressions of generalized unitarity cuts.
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6.3 An interesting integral basis; dual conformal invariance

An interesting over-complete basis (at least for MHV amplitudes) may be conjectured
based on the observation [3] that the integrals appearing in the two- and three-loop
four-gluon planar amplitudes exhibit a momentum space conformal symmetry known as
dual conformal symmetry. 15 Curiously, this symmetry is exhibited separately by each
integral appearing in the amplitude, when regularized in a specific way. In dimensional
regularization they are known as pseudo-conformal integrals. Dual conformal symmetry
was shown to also be present in certain higher-loops and for higher-point amplitudes; it
has been conjectured [28, 3] that, to all orders in perturbation theory, planar scattering
amplitudes exhibit this symmetry and that each integral in their expressions is pseudo-
conformal. Since only the infrared regulator breaks dual conformal invariance, extraction
of the known infrared divergences (2.14) should lead yield a dual conformally invariant
quantity. For MHV amplitudes this conjecture applies to the parity-even part of the
scalar factor. For non-MHV amplitude it has been proposed [17] that the ratio between
the resumed amplitude and the MHV amplitude with the same number of external legs
is invariant under dual conformal transformations. This conjecture was successfully
tested for the (appropriately defined) even part of the six-point NMHV amplitude at
two loops [60].

The even part of planar MHV amplitudes is expected to be a sum of pseudo-confomal
integrals with constant coefficients:

M(L)
n =

∑
i

ci Ii ; (6.5)

the coefficients ci may be determined by comparing cuts of this ansatz to direct evaluation
of generalized cuts of the amplitude. In certain cases maximal cuts are sufficient. This
strategy was used to determine the five-loop four-point amplitude [44] as well as the
two-loop MHV amplitudes with any number of external legs [61].

7 Comments on other methods and outlook

Other methods have been put forward for the construction of scattering amplitudes in
N = 4 sYM theory and, more generally, in maximally-supersymmetric theories. A no-
table one, which captures the spirit of the complete localization of one-loop integrals
under quadruple cuts, is the so-called leading singularity conjecture [37]. As previously
discussed, evaluating the maximal cuts of an amplitude does not lead to a complete local-
ization of integrals. In certain cases the result however exhibits further propagator-like
singularities which may also be cut. The result is known as the ”leading singularity”.
The conjecture states that scattering amplitudes in maximally supersymmetric theories
are completely determined by their leading singularities. Two-loop results based on this
conjecture agree with the results of the unitarity method calculation. It was also used to
construct [62] the odd part of the six-point MHV amplitude at two-loops as well as [63]

15This symmetry, which appears to be related to the higher nonlocal symmetries of the dilatation
operator of N = 4 sYM is reviewed in detail in [1].
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the three-loop five-gluon amplitude. Together with the assumption that the supercon-
formal and dual superconformal symmetries are realized to all orders in perturbation
theory, it led to a proposal [64] for the all-loop all-point planar scattering amplitudes
of the N = 4 sYM theory; a specific regularization prescription is required. The six-
point MHV amplitude is correctly reproduced by this proposal [65]; this calculation also
emphasizes that, in this proposal, the natural integrals are technically simpler than stan-
dard Feynman integrals. It has been suggested that this is related to them having only
unit leading singularities.

All-order expressions of scattering amplitudes are in general hard to construct. Based
on explicit two-loop [66] and three-loop calculations [27] as well as on the collinear prop-
erties of amplitudes it was conjectured that the scalar factor of n-point MHV amplitudes
has, to all loop orders, a simple iterative structure in terms of the corresponding one-loop
amplitude [27] to all orders in d = 4− 2ε dimensions:

Mn = exp

[
∞∑
l=1

alf (l)(ε)M(1)
n (lε) + C(l) +O(ε)

]
(7.1)

where f (l)(ε) = f
(l)
0 + εf

(l)
1 + ε2f

(l)
2 with f

(l)
0 and f

(l)
1 determined in terms of the similar

coefficients appearing in the Sudakov form factor (2.14), (2.15).
For n = 4, 5 this expression appears to hold [67] if dual conformal invariance is present

to all orders in perturbation theory. At higher-points dual conformal invariance is no
longer sufficient to fix the expression of the amplitude. Direct calculations [68] of the
six-point amplitudes show a departure from this expression, initially anticipated from
a strong coupling analysis [69] based on the proposed relation between planar MHV
scattering amplitudes and certain null polygonal Wilson loops [70] in this regime (see
also [71]). The so-called “remainder function” quantifies this difference; its analytic form
was found in [72] and simplified in [73].

The proposed relation between planar MHV scattering amplitudes and Wilson loops
[70] led to the conjecture [67,74] that a similar relation may holds order by order in weak
coupling perturbation theory. This topic is reviewed in detail in [1]. The comparison of
the six-point MHV amplitude at two loops with the relevant Wilson loop was discussed
in [68, 75]. Expectation values of Wilson loops relevant for higher-point amplitudes
have been computed in [76]; comparison with the corresponding scattering amplitude
calculations [61,77] awaits further developments in the calculation of higher-loop higher-
point Feynman integrals.

Throughout our discussion we assumed that IR divergences are regularized in dimen-
sional regularization. Ultraviolet divergences not being an issue in N = 4 sYM, infrared
divergences may also be regularized by letting fields acquire masses through spontaneous
breaking of the gauge symmetry [40] (Higgs regularization). Much like the original (all-
massive) regularization of [3], this regularization has the advantage of preserving dual
conformal invariance up to transformation of the mass parameter(s). This regularization
was used to great effect to test the exponentiation (7.1) of the four-point amplitude at
two- and three-loops [40,78]. Diagrammatic rules, based on the color flow, may be devised
to avoid repeating the unitarity-based construction in the presence of mass parameters.
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The Higgs-regularized amplitude may also be obtained from the dimensionally regular-
ized one by simply treating as mass parameters the (−2ε)-dimensional components of
loop momenta. A calculation is necessary to ascertain whether the Higgs-regularized
amplitude contains terms proportional to the regulator which yield non-vanishing con-
tributions upon integration.

Being somewhat outside the main theme of the collection, we glossed over the very
important techniques developed specifically for the calculation of nonplanar scattering
amplitudes, in particular the Bern-Carrasco-Johansson relations [58] and the connection
between N = 4 sYM theory and N = 8 supergravity.

The full consequences and implications of the developments outlined in this review
(as well as of those that were not) are yet to emerge and many questions, which will
undoubtedly contribute in this direction, remain to be addressed. Despite substantial
progress in the calculation of multi-loop and multi-leg amplitudes there is room for
improvement. It is clear that further structure is present in N = 4 sYM theory and
that it may be sufficiently powerful to completely determine, at least in some sectors,
the kinematic dependence of the scattering matrix of the theory.
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Chapter V.2: Dual Superconformal Symmetry

1 Introduction

The aim of this article is to give an overview of the role of extended symmetries in the
context of scattering amplitudes in N = 4 super Yang-Mills. We will begin by examining
the structure of the loop corrections in perturbation theory. The scattering amplitudes
are typically described in terms of scalar loop integrals. The integrals contributing in
the planar limit turn out to reveal a remarkable property, namely that when exchanged
for their dual graphs they exhibit a new conformal symmetry, dual conformal symmetry.

This symmetry of scattering amplitudes is also revealed if one considers the strong
coupling description which is given in terms of minimal surfaces in AdS5. More detail
on this subject can be found in [V.3]. A T-duality transformation of the classical string
equations of motion then relates scattering amplitudes to Wilson loops defined on polyg-
onal light-like contour. The T-dual space where the Wilson loop is defined is related
to the momenta of the particles in the scattering amplitude. The relation to Wilson
loops has been observed for certain amplitudes also in the perturbative regime. From
the symmetry point of view the most important consequence of this is that the con-
formal symmetry naturally associated to the Wilson loop also acts as a new symmetry
of the amplitudes. Thus the dual conformal symmetry is at least partially explained
by the duality between amplitudes and Wilson loops. The explanation is by no means
complete as the dual description only applies to the special class of maximally-helicity-
violating (MHV) amplitudes. However it turns out that the notion of dual conformal
symmetry seems to apply to all amplitudes and furthermore naturally extends to a full
dual superconformal symmetry. In particular tree-level amplitudes of all helicity types
are covariant under dual superconformal symmetry. We will describe the formulation
of the these symmetries and discuss to what extent the symmetry is controlled beyond
tree-level.

The combination of the original Lagrangian superconformal symmetry and the dual
superconformal symmetry yields a Yangian structure. This structure arises in many
regimes of the planar AdS/CFT system and can be thought of as the indicator of the inte-
grability of the model. A natural question which arises with such an infinite-dimensional
symmetry to hand is whether one can classify all of its invariants. It turns out that a
remarkable integral formula which gives all possible leading singularities of the perturba-
tive scattering amplitudes also fills the role of providing all possible Yangian invariants.
In some sense this indicates that the planar amplitude is being determined by its sym-
metry at the level of its leading singularities. More concretely one can say that the
integrand of the amplitude is Yangian invariant up to a total derivative. It remains to
be seen to what extent these ideas can be extended to determine the loop corrections
themselves, i.e. after doing the loop integrations.

2 Amplitudes at weak coupling

We will begin our discussion by examining perturbative scattering amplitudes in N = 4
super Yang-Mills theory in the planar limit. Further details on scattering amplitudes
in perturbation theory can be found in [V.1]. A lot can be learned from the simplest
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case of the four-gluon scattering amplitudes. Due to supersymmetry, the only non-
zero amplitudes are those for two gluons of each helicity type. These amplitudes are
examples of the so-called maximally-helicity-violating or MHV amplitudes which have
a total helicity of (n − 4). For four particles this quantity vanishes and so by applying
a parity transformation one can see that the amplitudes are also anti-MHV or MHV
amplitudes. MHV amplitudes are particularly simple in that they can naturally be
written as a product of the rational tree-level amplitude and a loop-correction function
which is a series in the ‘t Hooft coupling a,

AMHV
n = AMHV

n,tree Mn(p1, . . . , pn; a). (2.1)

One can write any amplitude in this form of course, but the special property of MHV
amplitudes is that the function Mn is a function which produces a constant after taking
2l successive discontinuities at l loops. In other words, all leading singularities of MHV
amplitudes are proportional to the MHV tree-level amplitude. Strictly speaking the
amplitude is infrared divergent and the function Mn also depends on the regularisation
parameters. The operation of taking 2l discontinuities at l loops yields an infrared finite
quantity however and the regulator can therefore then be set to zero.

The function Mn is given by a perturbative expansion in terms of scalar loop integrals.
If we consider the four-particle case then the relevant planar loop integral topologies
appearing up to three-loop order are of the form shown in Fig. 1 [1, 4] The integrals

Figure 1: Integral topologies up to three loops. The external momenta flow in
at the four corners in each topology.

contributing toM4 all have a remarkable property - they exhibit an unexpected conformal
symmetry called ‘dual conformal symmetry’ [8]. The way to make this symmetry obvious
is to make a change of variables from momentum parametrisation of such integrals to a
dual coordinate representation,

pµi = xµi − x
µ
i+1 ≡ xµi,i+1, xµn+1 ≡ xµ1 . (2.2)

We will illustrate this here on the example of the one-loop scalar box integral which is
the one-loop contribution to M4,

I(1) =

∫
d4k

k2(k − p1)2(k − p1 − p2)2(k + p4)2
. (2.3)
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In this case the change of variables takes the form,

p1 = x12, p2 = x23, p3 = x34, p4 = x41. (2.4)

The integral can then be written as a four-point star diagram (the dual graph for the
one-loop box) with the loop integration replaced by an integration over the internal
vertex x5 as illustrated in Fig. 2. In the new variables a new symmetry is manifest. If

x1

x2

x3

x4

p1

p2 p3

p4

x5

Figure 2: Dual diagram for the one-loop box. The black lines denote the original
momentum space loop integral. The propagators can equivalently be represented
as scalar propagators in the dual space, denoted by the blue lines.

we consider conformal inversions of the dual coordinates,

xµi −→ −
xµi
x2
i

, (2.5)

then we see that the integrand, including the measure factor d4x5, is actually covariant,

d4x5

x2
15x

2
25x

2
35x

2
45

−→ (x2
1x

2
2x

2
3x

2
4)

d4x5

x2
15x

2
25x

2
35x

2
45

. (2.6)

The property of dual conformal covariance of the integral form is not restricted to one
loop but continues to all loop orders so far explored [18, 26]. For example, at three
loops one of the relevant integrals requires a precise numerator factor to remain dual
conformally covariant (see Fig. 3). Note that the operation of drawing the dual graph
is only possible for planar diagrams. This is the first indication that the dual conformal
property is something associated with the integrability of the planar theory.

Beyond tree-level the scattering amplitudes are infrared divergent. This can be seen
at the level of the integrals, e.g. as defined in (2.3). We therefore need to introduce
an infrared regulator. One choice is to use dimensional regularisation. This breaks
the dual conformal symmetry slightly since the integration measure is then no longer
four-dimensional,

d4x5 −→ d4−2εx5. (2.7)

Alternatively one can regularise by introducing expectation values for the scalar fields
[35]. The mass parameters then play the role of radial coordinates in AdS5. This

464



Chapter V.2: Dual Superconformal Symmetry

Figure 3: Dual diagrams for the three-loop box and for the ‘tennis court’ with its
numerator denoted by the dashed line corresponding to a factor in the numerator
of the square distance between the two points.

Coulomb branch approach has the advantage that the corresponding action of dual con-
formal symmetry transforms the regularised integral covariantly. If all the integrals ap-
pearing in the amplitude are dual conformal it implies that amplitudes on the Coulomb
branch of N = 4 super Yang-Mills in the planar limit exhibit an unbroken dual confor-
mal symmetry. For further details on this idea see [43,53,56] and for work relating it to
higher dimensional theories see [2].

To discuss the consequences of dual conformal symmetry further it is very convenient
to introduce a dual description for the scattering amplitudes. In the dual description
planar amplitudes are related to Wilson loops defined on a piecewise light-like contour
in the dual coordinate space. The dual conformal symmetry of the amplitude is simply
the ordinary conformal symmetry of the Wilson loop. Since the conformal symmetry of
a Wilson loop has a Lagrangian origin, it is possible to derive a Ward identity for it.
This will show us more precisely the constraints that dual conformal symmetry places
on the form of the scattering amplitudes.

3 Amplitudes and Wilson loops

Let us consider the general structure of a planar MHV amplitude in perturbation theory.
As we have discussed we can naturally factorise MHV amplitudes into a tree-level factor
and a loop-correction factorMn. The factorMn contains the dependence of the amplitude
on the regularisation needed to deal with the infrared divergences. Here we will use
dimensional regularisation. the amplitudes will therefore depend on the regulator ε and
some associated scale µ.

Since we are discussing planar colour-ordered amplitudes it is clear that the infrared
divergences will involve only a very limited dependence on the kinematical variables.
Specifically, the exchange of soft or collinear gluons is limited to sectors between two
adjacent incoming particles and thus the infrared divergences will factorise into pieces
which depend only on a single Mandelstam variable si,i+1 = (pi + pi+1)2.

Moreover the dependence of each of these factors is known to be of a particular
exponentiated form [3, 5] where there is at most a double pole in the regulator in the
exponent. Combining these two facts together it is most natural to write the logarithm
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of the loop corrections Mn,

logMn =
∞∑
l=1

al
[

Γ
(l)
cusp

(lε)2
+

Γ
(l)
col

lε

]∑
i

(
µ2
IR

−si,i+1

)lε
+ FMHV

n (p1, . . . , pn; a) +O(ε). (3.1)

The leading infrared divergence is known to be governed by Γcusp(a) =
∑
alΓ

(l)
cusp, the

cusp anomalous dimension [6], a quantity which is so-called because it arises as the
leading ultraviolet divergence of Wilson loops with light-like cusps. This is the first
connection between scattering amplitudes and Wilson loops.

In [4] Bern, Dixon and Smirnov (BDS) made an all order ansatz for the form of the
finite part of the n-point MHV scattering amplitude in the planar limit. Their ansatz
had the following form,

FBDS
n (p1, . . . , pn; a) = Γcusp(a)Fn(p1, . . . , pn) + cn(a). (3.2)

The notable feature of this ansatz is that the dependence on the coupling factorises
into a single function, the cusp anomalous dimension, while the momentum dependence
is contained in the coupling-independent function Fn. The latter could therefore be
defined by the one-loop amplitude, making the ansatz true by definition at one loop.
The formula (3.2) was conjectured after direct calculations of the four-point amplitude
to two loops [1] and three loops [4]. It was found to be consistent with the five-point
amplitude at two loops [7] and three loops [9]. As we will see the results for four and five
points can be explained by dual conformal symmetry. which also permits for a deviation
from the form (3.2) starting from six points. Indeed the ansatz breaks down at six points
and as we will see this is in agreement with dual conformal symmetry and the relation
between amplitudes and Wilson loops.

In planar N = 4 super Yang-Mills theory the connection between amplitudes and
Wilson loops runs deeper than just the leading infrared divergence. As we have seen
one can naturally associate a collection of dual coordinates xi with a gluon scattering
amplitude. Each dual coordinate is light-like separated from its neighbours,

(xi − xi+1)2 = 0 (3.3)

as the difference xi − xi+1 is the momentum pi of an on-shell massless particle. The col-
lection of points {xi} therefore naturally defines a piecewise light-like polygonal contour
Cn in the dual space. A natural object that one can associate with such a contour in
gauge theory is the Wilson loop,

Wn = 〈Pexp
∮
Cn

A〉. (3.4)

Here, in contrast to the situation for the scattering amplitude, the dual space is being
treated as the actual configuration space of the gauge theory, i.e. the theory in which
we compute the Wilson loop is local in this space.

A lot is known about the structure of such Wilson loops. In particular, due to the
cusps on the contour at the points xi the Wilson loop is ultraviolet divergent. The
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divergences of such Wilson loops are intimately related to the infrared divergences of
scattering amplitudes [6,10]. Indeed the leading ultraviolet divergence is again the cusp
anomalous dimension and one can write an equation very similar to that for the loop
corrections to the MHV amplitude,

logWn =
∞∑
l=1

al
[

Γ
(l)
cusp

(lε)2
+

Γ(l)

lε

]∑
i

(−µ2
UV x

2
i,i+2)lε + FWL

n (x1, . . . , xn; a) +O(ε). (3.5)

The objects of most interest to us here are the two functions FMHV
n from (3.1) and

FWL
n from (3.5) describing the finite parts of the amplitude and Wilson loop respectively.

In fact there is by now a lot of evidence that in the planar theory, the two functions are
identical up to an additive constant,

FMHV
n (p1, . . . , pn; a) = FWL

n (x1, . . . , xn; a) + dn(a) (3.6)

upon using the change of variables (2.2).
The identification of the two finite parts was first made at strong coupling [11] where

the AdS/CFT correspondence can be used to study the theory. In this regime the
identification is a consequence of a particular T-duality transformation of the string
sigma model which maps the AdS background into a dual AdS space. Shortly afterwards
the identification was made in perturbation theory, suggesting that such a phenomenon
is actually a non-perturbative feature. The matching was first observed at four points
and one loop [12] and generalised to n points in [13]. Two loop calculations then followed
[14–17]. In each case the duality relation (3.6) was indeed verified.

An important point is that dual conformal symmetry finds a natural home within
the duality between amplitudes and Wilson loops. It is simply the ordinary conformal
symmetry of the Wilson loop defined in the dual space. Moreover, since this symmetry is
a Lagrangian symmetry from the point of view of the Wilson loop, its consequences can
be derived in the form of Ward identities [14,15]. Importantly, conformal transformations
preserve the form of the contour, i.e. light-like polygons map to light-like polygons. Thus
the conformal transformations effectively act only on a finite number of points (the cusp
points xi) defining the contour. The generator of special conformal transformations
relevant to the class of light-like polygonal Wilson loops is therefore

Kµ =
∑
i

[
xiµxi ·

∂

∂xi
− 1

2
x2
i

∂

∂xµi

]
. (3.7)

Indeed the analysis of [15] shows that the ultraviolet divergences induce an anomalous
behaviour for the finite part FWL

n which is entirely captured by the following conformal
Ward identity

KµFWL
n =

1

2
Γcusp(a)

∑
i

(2xµi − x
µ
i−1 − x

µ
i+1) log x2

i−1,i+1. (3.8)

A very important consequence of the conformal Ward identity is that the finite part
of the Wilson loop is fixed up to a function of conformally invariant cross-ratios,

uijkl =
x2
ijx

2
kl

x2
ikx

2
jl

. (3.9)
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In the cases of four and five edges, there are no such cross-ratios available due to the
light-like separations of the cusp points (3.3). This means that the conformal Ward
identity (3.8) has a unique solution up to an additive constant. Remarkably, the solution
coincides with the Bern-Dixon-Smirnov all-order ansatz for the corresponding scattering
amplitudes,

F
(BDS)
4 =

1

4
Γcusp(a) log2

(x2
13

x2
24

)
+ const , (3.10)

F
(BDS)
5 = −1

8
Γcusp(a)

5∑
i=1

log
(x2

i,i+2

x2
i,i+3

)
log
(x2

i+1,i+3

x2
i+2,i+4

)
+ const . (3.11)

In fact the BDS ansatz provides a particular solution to the conformal Ward identity
for any number of points. From six points onwards however the functional form is not
uniquely fixed as there are conformal cross-ratios available. At six points, for example
there are three of them,

u1 =
x2

13x
2
46

x2
14x

2
36

, u2 =
x2

24x
2
51

x2
25x

2
41

, u3 =
x2

35x
2
62

x2
36x

2
41

. (3.12)

The solution to the Ward identity is therefore

F
(WL)
6 = F

(BDS)
6 + f(u1, u2, u3; a) . (3.13)

Here, upon the identification pi = xi − xi+1,

F
(BDS)
6 =

1

4
Γcusp(a)

6∑
i=1

[
− log

(x2
i,i+2

x2
i,i+3

)
log
(x2

i+1,i+3

x2
i,i+3

)
+

1

4
log2

( x2
i,i+3

x2
i+1,i+4

)
− 1

2
Li2

(
1−

x2
i,i+2x

2
i+3,i+5

x2
i,i+3x

2
i+2,i+5

)]
+ const ,

(3.14)

while f(u1, u2, u3; a) is some function of the three cross-ratios and the coupling. As we
have discussed the function f is not fixed by the Ward identity and has to be determined
by explicit calculation of the Wilson loop. The calculation of [13] shows that at one loop
f vanishes (recall that at one loop the BDS ansatz is true by definition and the Wilson
loop and MHV amplitude are known to agree for an arbitrary number of points). At
two loops, direct calculation shows that f is non-zero [16]. Moreover the calculation [17]
of the six-particle MHV amplitude shows explicitly that the BDS ansatz breaks down at
two loops and the same function appears there,

FMHV
6 = FWL

6 + const, FMHV
6 6= FBDS

6 . (3.15)

The agreement between the two functions FMHV
6 and FWL

6 was verified numerically to
within the available accuracy. Subsequently the integrals appearing in the calculation of
the finite part of the of the hexagonal Wilson loop have been evaluated analytically in
terms of multiple polylogarithms [19].
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Further calculations of polygonal Wilson loops have been performed. The two-loop
diagrams appearing for an arbitrary number of points have been described in [20] where
numerical evaluations of the seven-sided and eight-sided light-like Wilson loops were
made. These functions have not yet been compared with the corresponding MHV ampli-
tude calculations [21] due the difficulty of numerically evaluating the relevant integrals.
However given the above evidence it seems very likely that the agreement between MHV
amplitudes and light-like polygonal Wilson loops will continue to an arbitrary number
of points, to all orders in the coupling.

While the agreement between Wilson loops is fascinating it is clearly not the end
of the story. Firstly the duality as we have described it applies only to the MHV am-
plitudes. In the strict strong coupling limit this does not matter since all amplitudes
are dominated by the minimal surface in AdS, independently of the helicity configura-
tion [11]. At weak coupling that is certainly not the case and non-MHV amplitudes reveal
a much richer structure than their MHV counterparts. Recently the duality has been
extended to take into account non-MHV amplitudes [22] by introducing an appropriate
supersymmetrisation of the Wilson loop.

Even without regard to a dual Wilson loop, one may still ask what happens to dual
conformal symmetry for non-MHV amplitudes. To properly ask this question one must
first deal with the notion of helicity since non-MHV amplitudes are not naturally written
as a product of tree-level and loop-correction contributions. In considering different
helicity configurations we are led to the notion of dual superconformal symmetry.

4 Superconformal and dual superconformal symme-

try

The on-shell supermultiplet of N = 4 super Yang-Mills theory is conveniently described
by a superfield Φ, dependent on Grassmann parameters ηA which transform in the fun-
damental representation of su(4). The on-shell superfield can be expanded as follows

Φ = G+ + ηAΓA + 1
2!
ηAηBSAB + 1

3!
ηAηBηCεABCDΓ

D
+ 1

4!
ηAηBηCηDεABCDG

−. (4.1)

Here G+,ΓA, SAB = 1
2
εABCDS

CD
,Γ

A
, G− are the positive helicity gluon, gluino, scalar,

anti-gluino and negative helicity gluon states respectively. Each of the possible states

φ ∈ {G+,ΓA, SAB,Γ
A
, G−} carries a definite on-shell momentum

pαα̇ = λαλ̃α̇, (4.2)

and a definite weight h (called helicity) under the rescaling

λ −→ αλ, λ̃ −→ α−1λ̃, φ(λ, λ̃) −→ α−2hφ(λ, λ̃). (4.3)

The helicities of the states appearing in (4.1) are {+1,+1
2
, 0,−1

2
,−1} respectively. If, in

addition, we assign η to transform in the same way as λ̃,

ηA −→ α−1ηA, (4.4)
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then the whole superfield Φ has helicity 1. In other words the helicity generator1,

h = −1
2
λα

∂

∂λα
+ 1

2
λ̃α̇

∂

∂λ̃α̇
+ 1

2
ηA

∂

∂ηA
, (4.5)

acts on Φ in the following way,
hΦ = Φ. (4.6)

When we consider superamplitudes, i.e. colour-ordered scattering amplitudes of the on-
shell superfields, then the helicity condition (or ‘homogeneity condition’) is satisfied for
each particle,

hiA(Φ1, . . . ,Φn) = A(Φ1, . . . ,Φn), i = 1, . . . , n. (4.7)

The tree-level amplitudes in N = 4 super Yang-Mills theory can be written as follows,

A(Φ1, . . . ,Φn) = An =
δ4(p)δ8(q)

〈12〉 . . . 〈n1〉
Pn(λi, λ̃i, ηi) = AMHV

n Pn. (4.8)

The MHV tree-level amplitude,

AMHV
n =

δ4(p)δ8(q)

〈12〉 . . . 〈n1〉
, (4.9)

contains the delta functions δ4(p)δ8(q) which are a consequence of translation invariance
and supersymmetry and it can be factored out leaving behind a function with no helicity,

hiPn = 0, i = 1, . . . , n. (4.10)

The function Pn can be expanded in terms of increasing Grassmann degree (the Grass-
mann degree always comes in multiples of 4 dues to invariance under su(4)),

Pn = 1 + PNMHV
n + PNNMHV

n + . . . + PMHV
n . (4.11)

The explicit form of the function Pn which encodes all tree-level amplitudes was found
in [23] by solving a supersymmetrised version [24, 25] of the BCFW recursion relations
[27].

Maximally supersymmetric Yang-Mills is a superconformal field theory so we should
expect that this is reflected in the structure of the scattering amplitudes. Indeed the
space of functions of the variables {λi, λ̃i, ηi} admits a representation of the superconfor-
mal algebra. The explicit form of the representation acting on the on-shell superspace

1In terms of the superconformal algebra su(2, 2|4), the operator h is the central charge.
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coordinates (λi, λ̃i, ηi) is essentially the oscillator representation [28].

pα̇α =
∑
i

λ̃α̇i λ
α
i , kαα̇ =

∑
i

∂iα∂iα̇ ,

mα̇β̇ =
∑
i

λ̃i(α̇∂iβ̇), mαβ =
∑
i

λi(α∂iβ) ,

d =
∑
i

[1
2
λαi ∂iα + 1

2
λ̃α̇i ∂iα̇ + 1], rAB =

∑
i

[−ηAi ∂iB + 1
4
δABη

C
i ∂iC ] ,

qαA =
∑
i

λαi η
A
i , q̄α̇A =

∑
i

λ̃α̇i ∂iA ,

sαA =
∑
i

∂iα∂iA, s̄Aα̇ =
∑
i

ηAi ∂iα̇ ,

c =
∑
i

[1 + 1
2
λαi ∂iα − 1

2
λ̃α̇i ∂iα̇ − 1

2
ηAi ∂iA] . (4.12)

This realisation of the superconformal algebra also appears in the discussion of gauge-
invariant operators [VI.1]. From the commutation relations of the superconformal algebra
one finds that the algebra is generically su(2, 2|4) with central charge c =

∑
i(1 − hi).

Amplitudes are in the space of functions with helicity 1 for each particle so we have that
c = 0 after imposing the helicity conditions (4.7) and the algebra acting on the space of
homogeneous functions is psu(2, 2|4).

At tree-level there are no infrared divergences and amplitudes are annihilated by the
generators of the standard superconformal symmetry (up to contact terms which vanish
for generic configurations of the external momenta, see [29,30]),

jaAn = 0. (4.13)

Here we use the notation ja for any generator of the superconformal algebra psu(2, 2|4),

ja ∈ {pαα̇, qαA, q̄α̇A,mαβ, m̄α̇β̇, r
A
B, d, s

α
A, s̄

A
α̇ , kαα̇}. (4.14)

As well as superconformal symmetry one can naturally define the action of dual
superconformal symmetry [31] on colour-ordered amplitudes. We have already seen that
one can define dual coordinates xi related to the particle momenta. These variables
implicitly solve the momentum conservation condition imposed by the delta function
δ4(p). The presence of a corresponding δ8(q) due to supersymmetry suggests defining
new fermionic dual variables θi related to the supercharges. Together these variables
parametrise a chiral dual superspace,

xαα̇i − xαα̇i+1 = λαi λ̃
α̇
i = pαα̇i , θαAi − θαAi+1 = λαi η

A
i = qαai . (4.15)

Dual superconformal symmetry acts canonically on the dual superspace variables xi, θi.
It also acts on the on-shell superspace variables {λi, λ̃i, ηi} in order to be compatible with
the defining relations (4.15). In particular one can deduce an action of dual conformal
inversions on λi, λ̃i compatible with (4.15),

I[λαi ] =
(λixi)

α̇

x2
i

, I[λ̃α̇i ] =
(λ̃ixi)

α

x2
i+1

. (4.16)
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Alternatively one may think about infinitesimal dual superconformal transformations. In
this case one should extend the canonical generators on the chiral superspace variables
xi and θi to act on the on-shell superspace variables λi, λ̃i and ηi so that they commute
with the constraints (4.15) modulo the constraints themselves. We give explicitly the
form of the dual conformal generator,

Kαα̇ =
∑
i

[xiα
β̇xiα̇

β∂iββ̇ + xiα̇
βθBiα∂iβB

+ xiα̇
βλiα∂iβ + xi+1α

β̇λ̃iα̇∂iβ̇ + λ̃iα̇θ
B
i+1α∂iB] . (4.17)

The anti-chiral fermionic generators are also of interest,

Q
A

α̇ =
∑
i

[θαAi ∂iαα̇ + ηAi ∂iα̇], Sα̇A =
∑
i

[xiα̇
β∂iβA + λ̃iα̇∂iA] . (4.18)

The remaining generators can be found in [31]. Note that when restricted to the on-
shell superspace, the generators Q̄A

α̇ and S̄α̇A coincide with the generators s̄Aα̇ and q̄α̇A
respectively from the original superconformal algebra.

Now that the symmetry has been defined we must also specify how the amplitudes
transform. In [31] it was conjectured, based on the supersymmetric forms of the MHV
and next-to-MHV (NMHV) tree-level amplitudes, that the full tree-level superamplitude
An,tree is covariant under dual superconformal symmetry. Explicitly, it was conjectured
that the tree-level amplitudes obey

Kαα̇An = −
∑
i

xαα̇i An, (4.19)

SαAAn = −
∑
i

θαAi An, (4.20)

together with the obvious properties DAn = nAn and CAn = nAn. The remaining
generators of the dual superconformal algebra annihilate the amplitudes.

The amplitudes can be expressed in the dual variables by eliminating (λ̃i, ηi) in favour
of (xi, θi). If we relax the cyclicity condition on the dual points so that x1 6= xn+1 and
θ1 6= θn+1 then we have

An =
δ4(x1 − xn+1)δ8(θ1 − θn+1)

〈12〉 . . . 〈n1〉
Pn(xi, θi). (4.21)

From the dual conformal transformations described earlier we can see that the MHV
prefactor itself satisfies the covariance conditions (4.19,4.20). The function Pn must
therefore be dual superconformally invariant. At the MHV level the function Pn is
simply 1 while at NMHV level it is given by [31,32,23]

PNMHV
n =

∑
a,b

Rn,ab (4.22)

where the sum runs over the range 2 ≤ a < b ≤ n−1 (with a and b separated by at least
two) and

Rn,ab =
〈a a− 1〉〈b b− 1〉δ4

(
〈n|xnaxab|θbn〉+ 〈n|xnbxba|θan〉

)
x2
ab〈n|xnaxab|b〉〈n|xnaxab|b− 1〉〈n|xnbxba|a〉〈n|xnbxba|a− 1〉

. (4.23)
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This formula was originally constructed in [31] by supersymmetrising the three-mass
coefficients of NMHV gluon scattering amplitudes at one loop in [33]. It was then derived
from supersymmetric generalised unitarity [32] as the general form of the one-loop three-
mass box coefficient. One can see from the transformations described earlier that each
Rn,ab is by itself a dual superconformal invariant.

The pattern of invariance continues for all tree-level amplitudes. Indeed the conjec-
ture (4.19,4.20) was shown to hold recursively in [24], using the supersymmetric BCFW
recursion relations. Indeed the BCFW recursion relations admit a closed form solution
for all tree-level amplitudes in N = 4 super Yang-Mills theory [23] with each term being
a dual superconformal invariant by itself.

What happens to the symmetry of scattering amplitudes beyond tree-level? Firstly
we expect a breakdown of the original conformal symmetry due to infrared divergences.
One might also expect a breakdown of the dual superconformal symmetry in the same
way. However, at least for the MHV amplitudes we have already seen that the dual
conformal symmetry is broken only mildly in that it is controlled by the anomalous Ward
identity (3.8). Based on analysis of the one-loop NMHV amplitudes it was conjectured
in [31] that the same anomaly controls the breakdown for all amplitudes, irrespective of
the MHV degree. Specifically if one writes the all-order superamplitude as a product of
the MHV superamplitude and an infrared finite ratio function2,

An = AMHV
n Rn, (4.24)

then the conjecture states that, setting the regulator to zero, Rn is dual conformally
invariant,

KµRn = 0. (4.25)

In [32] it was argued that this conjecture holds for NMHV amplitudes at one loop,
based on explicit calculations up to nine points using supersymmetric generalised unitar-
ity. Subsequently [34] it has been argued to hold for all one-loop amplitudes by analysing
the dual conformal anomaly arising from infrared divergent two-particle cuts.

Note that the conjecture (4.25) makes reference only to the dual conformal generator
K and not to the full set of dual superconformal transformations. The reason is that
some of these transformations overlap with the broken part of the original superconformal
symmetry. In particular the generator Q̄ is not a symmetry of the ratio function Rn.
This fact is related to the breaking of the original superconformal invariance by loop
corrections since Q̄ is really the same symmetry as s̄. Indeed, even at tree-level s̄ is
subtly broken by contact term contributions [29, 30]. At one loop unitarity relates the
discontinuity of the amplitude in a particular channel to the product of two tree-level
amplitudes integrated over the allowed phase space of the exchanged particles. The subtle
non-invariance of the trees therefore translates into non-invariance of the discontinuity
and therefore of the loop amplitude itself [30, 36]. In [36] a deformation of the ordinary
and dual superconformal generators is presented which takes into account the one-loop
corrections to the amplitudes. The existence of Wilson loops which take into account the

2The ratio function Rn is infrared finite because the infrared divergences of all planar amplitudes are
independent of the helicity configuration and are thus contained entirely in the factor AMHV

n .
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non-MHV amplitudes [22] suggests that the universality of the dual conformal anomaly
is very natural from the dual perspective.

5 Yangian symmetry

In order to put the dual superconformal symmetry on the same footing as invariance
under the standard superconformal algebra (4.13), the covariance (4.19,4.20) can be
rephrased as an invariance of An by a simple redefinition of the generators [37],

K ′αα̇ = Kαα̇ +
∑
i

xαα̇i , (5.1)

S ′αA = SαA +
∑
i

θαAi , (5.2)

D′ = D − n. (5.3)

The redefined generators still satisfy the commutation relations of the superconformal
algebra, but now with vanishing central charge, C ′ = 0. Then dual superconformal
symmetry is simply

J ′aAn = 0. (5.4)

Here we use the notation J ′a for any generator of the dual copy of psu(2, 2|4),

J ′a ∈ {Pαα̇, QαA, Q̄
A
α̇ ,Mαβ,M α̇β̇, R

A
B, D

′, S ′Aα , S
α̇

A, K
′αα̇}. (5.5)

In order to have both symmetries acting on the same space it is useful to restrict
the dual superconformal generators to act only on the on-shell superspace variables
(λi, λ̃i, ηi). Then one finds that the generators Pαα̇, QαA become trivial while the gen-
erators {Q̄,M, M̄,R,D′, S̄} coincide (up to signs) with generators of the standard su-
perconformal symmetry. The non-trivial generators which are not part of the ja are K ′

and S ′. In [37] it was shown that the generators ja and S ′ (or K ′) together generate
the Yangian of the superconformal algebra, Y (psu(2, 2|4)). The generators ja form the
level-zero psu(2, 2|4) subalgebra3,

[ja, jb] = fab
cjc. (5.6)

In addition there are level-one generators j
(1)
a which transform in the adjoint under the

level-zero generators,
[ja, jb

(1)] = fab
cjc

(1). (5.7)

Higher commutators among the generators are constrained by the Serre relation4,

[j(1)
a , [j

(1)
b , jc]] + (−1)|a|(|b|+|c|)[j

(1)
b , [j(1)

c , ja]] + (−1)|c|(|a|+|b|)[j(1)
c , [j(1)

a , jb]]

= h2(−1)|r||m|+|t||n|{jl, jm, jn}farlfbsmfctnf rst. (5.8)

3We use the symbol [O1, O2] to denote the bracket of the Lie superalgebra, [O2, O1] =
(−1)1+|O1||O2|[O1, O2].

4The symbol {·, ·, ·} denotes the graded symmetriser.
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The level-zero generators are represented by a sum over single particle generators,

ja =
n∑
k=1

jka. (5.9)

The level-one generators are represented by the bilocal formula [38],

ja
(1) = fa

cb
∑
k<k′

jkbjk′c. (5.10)

Thus finally the full symmetry of the tree-level amplitudes can be rephrased as

yAn = 0, (5.11)

for any y ∈ Y (psu(2, 2|4)).
It is particularly simple to describe the symmetry in terms of twistor variables. These

variables will become especially relevant in the next section where we relate the symmetry
to a conjectured formula for all leading singularities of planar N = 4 SYM amplitudes.
In (2, 2) signature the twistor variables are simply related to the on-shell superspace
variables (λ, λ̃, η) by a Fourier transformation λ −→ µ̃. Expressed in terms of the
twistor space variables ZA = (µ̃α, λ̃α̇, ηA), the level-zero and level-one generators of the
Yangian symmetry assume a simple form

jAB =
∑
i

ZAi
∂

∂ZBi
, (5.12)

j(1)A
B =

∑
i<j

(−1)C
[
ZAi

∂

∂ZCi
ZCj

∂

∂ZBj
− (i, j)

]
. (5.13)

Both of the formulas (5.12) and (5.13) are understood to have the supertrace proportional
to (−1)AδAB removed5. In this representation the generators of superconformal symmetry
are first-order operators while the level-one Yangian generators are second order.

In [39] it was demonstrated that there exists an alternative T-dual representation
of the symmetry. The dual superconformal symmetries Ja which play the role of the
level-zero generators, while some of the level-one generators are induced by the ordinary
superconformal symmetries. In this case, the generators act on the function Pn, where
the MHV tree-level amplitude is factored out.

JaPn = 0, J (1)
a Pn = 0. (5.14)

It is possible to rewrite the generators in the momentum (super)twistor representation
defined in [40] WAi = (λαi , µ

α̇
i , χ

A
i ). These variables are algebraically related to the on-

shell superspace variables (λ, λ̃, η) via the introduction of dual coordinates (4.15) and
are the twistors associated to this dual coordinate space,

µα̇i = xαα̇i λiα, χAi = θαAi λiα. (5.15)

5One removes the supertrace of an (m|m)× (m|m) matrix MAB by forming the combination MAB−
1

2m (−1)A+CδABM
C
C . In addition to the supertrace gl(m|m) also has a central element proportional to

the identity δAB . In the present context the trace of (5.12) vanishes due to the homogeneity conditions
while (5.13) is traceless due to the antisymmetrisation in i and j.
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j J

j(1) J (1)

p, q P, Q

K, S k, s

T-duality

Figure 4: The tower of symmetries acting on scattering amplitudes in N = 4
super Yang-Mills theory. The original superconformal charges are denoted by j
and the dual ones by J . Each can be thought of as the level-zero part of the
Yangian Y (psu(2, 2|4)). The dual superconformal charges K and S form part of
the level-one j(1) while the original superconformal charges k and s form part of
the level one charges J (1). In each representation the ‘negative’ level (P and Q
or p and q) is trivialised. T-duality maps j to J and j(1) to J (1).

These variables linearise dual superconformal symmetry in complete analogy with the
twistor variables Zi and the original superconformal symmetry,

JAB =
∑
i

WAi
∂

∂WBi
. (5.16)

The original conformal invariance of the amplitude kαα̇An = 0 induces a second-order
operator which annihilates Pn. When combined with the dual superconformal symmetry
one finds that the following second-order operators annihilate Pn,

J (1)A
B =

∑
i<j

(−1)C
[
WAi

∂

∂WCi
WCj

∂

∂WBj
− (i, j)

]
. (5.17)

As in the case of the original superconformal symmetry, both formulas (5.16) and (5.17)
are understood to have the supertrace removed.

The operation we have performed is summarised in Fig. 4. A very similar picture
also arises in considering the combined action of bosonic and fermionic T-duality in the
AdS sigma model [41]. It can be thought of as the algebraic expression of T-duality in
the perturbative regime of the theory.

Having described the symmetry of the theory, one might naturally ask how one can
produce invariants. This question has been addressed in various papers [42, 39, 44]. It
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turns out to be intimately connected to another conjecture about the leading singularities
of the scattering amplitudes of N = 4 super Yang-Mills theory.

6 Grassmannian formulas

In [45] a remarkable formula was proposed which computes leading singularities of scat-
tering amplitudes in N = 4 super Yang-Mills theory. The formula takes the form of an
integral over the Grassmannian G(k, n), the space of complex k-planes in Cn. The inte-
grand is a specific k(n− k)-form K to be integrated over cycles C of the corresponding
dimension, with the integral being treated as a multi-dimensional contour integral. The
result obtained depends on the choice of contour and is non-vanishing for closed contours
because the form has poles located on certain hyperplanes in the Grassmannian,

L =

∫
C

K. (6.1)

The form K is constructed from a product of superconformally-invariant delta func-
tions of linear combinations of twistor variables. It is through this factor that the integral
depends on the kinematic data of the n-point scattering amplitude of the gauge theory.
The delta functions are multiplied by a cyclically invariant function on the Grassmannian
which has poles. Specifically the formula takes the following form in twistor space

LACCK(Z) =

∫
Dk(n−k)c

M1 . . .Mn

k∏
a=1

δ4|4
( n∑
i=1

caiZi
)
, (6.2)

where the cai are complex parameters which are integrated choosing a specific contour.
The form Dk(n−k)c is the natural holomorphic globally gl(n)-invariant and locally sl(k)-
invariant (k(n−k), 0)-form given explicitly in [46]. The denominator is the cyclic product
of consecutive (k× k) minorsMp made from the columns p, . . . , p+ k− 1 of the (k× n)
matrix of the cai

Mp ≡ (p p+ 1 p+ 2 . . . p+ k − 1). (6.3)

As described in [45] the formula (6.2) has a GL(k) gauge symmetry which implies that k2

of the cai are gauge degrees of freedom and therefore should not be integrated over. The
remaining k(n − k) are the true coordinates on the Grassmannian. This formula (6.2)
produces leading singularities of Nk−2MHV scattering amplitudes when suitable closed
integration contours are chosen. This fact was explicitly verified up to eight points in [45]
and it was conjectured that the formula produces all possible leading singularities at all
orders in the perturbative expansion.

The formula (6.2) has a T-dual version [46], expressed in terms of momentum twistors.
The momentum twistor Grassmannian formula takes the same form as the original

LMS(W) =

∫
Dk(n−k)t

M1 . . .Mn

k∏
a=1

δ4|4
( n∑
i=1

taiWi

)
, (6.4)

but now it is the dual superconformal symmetry that is manifest. The integration vari-
ables tai are again a (k× n) matrix of complex parameters and we use the notationMp

477



Chapter V.2: Dual Superconformal Symmetry

to refer to (k × k) minors made from the matrix of the tai. The formula (6.4) produces
the same objects as (6.2) but now with the MHV tree-level amplitude factored out. They
therefore contribute to NkMHV amplitudes.

The equivalence of the two formulations (6.2) and (6.4) was shown in [47] via a
change of variables. Therefore, since each of the formulas has a different superconformal
symmetry manifest, they both possess an invariance under the Yangian Y (psl(4|4)).
The Yangian symmetry of these formulas was explicitly demonstrated in [39] by directly
applying the Yangian level-one generators to the Grassmannian integral itself.

In [39] it was found that applying the level-one generator to the form K yields a total
derivative,

J (1)A
BK = dΩAB. (6.5)

This property guarantees that L is invariant for every choice of closed contour. Moreover
it has been shown [44] that the form K is unique after imposing the condition (6.5). In
this sense the Grassmannian integral is the most general form of Yangian invariant.
Moreover, replacing δ4|4 −→ δm|m, the formulas (6.2,6.4) are equally valid for generating
invariants of the symmetry Y (psl(m|m)) where one no longer has the interpretation of
the symmetry as superconformal symmetry. Thus the Grassmannian integral formula is
really naturally associated to the series of Yangians Y (psl(m|m)).

It is very striking that the leading singularities seem to be all given by Yangian
invariants and even more striking that they seem to exhaust all such possibilities. The
first of these statements follows from the analysis of leading singularities in [48, 49].
The second still requires rigorous proof but is consistent with all investigations so far
conducted of leading singularities and residues in the Grassmannian. In some sense one
can say that the leading singularity part of the amplitude is being determined by its
symmetry. In fact the invariance of the leading singularities follows from the fact that
the all-loop planar integrand is Yangian invariant up to a total derivative. This was
shown by constructing it via a BCFW type recursion relation in a way which respects
the Yangian symmetry [48].

It is not yet clear if the full Yangian invariance Y (psl(4|4)) exhibits itself on the actual
amplitudes themselves (i.e. after the loop integrations have been performed). As we have
discussed the problem lies in the breakdown of the original (super)conformal symmetry.
At one loop for MHV amplitudes (or Wilson loops) a Y (sl(2)) ⊕ Y (sl(2)) subalgebra
of the full symmetry is present [50] for a special restricted two-dimensional kinematical
setup [51]. It is possible to consider a particular finite, conformally invariant ratio of
light-like Wilson loops, introduced in [52,54] in order to understand the OPE properties
of light-like Wilson loops. The conformal symmetry of this setup is sl(2) ⊕ sl(2) and
on the finite ratio the two commuting symmetries each extend to their Yangians in a
natural way. This is equivalent to the effects of the original conformal symmetry in the
two-dimensional kinematics. It remains to be seen to what extent this statement can
be extended beyond the restricted kinematics and beyond one loop. Since the symme-
try manifests itself as certain second-order differential equations it is possible that the
differential equations found in [55] for certain momentum twistor loop integrals will be
important in understanding whether this can be implemented. If the Yangian structure
does manifest itself on all the loop corrections this would in some sense amount to the
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integrability of the S-matrix of planar N = 4 super Yang-Mills theory.
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Chapter V.3: Scattering Amplitudes at Strong Coupling

1 Introduction

The aim of this review is to study gluon scattering amplitudes of four dimensional pla-
nar maximally super-symmetric Yang-Mills (MSYM). We hope that the study of such
amplitudes would teach us something about scattering amplitudes of QCD, but at the
same time they are much more tractable. The reason for such tractability is twofold. On
one hand, perturbative computations are much simpler than in QCD, due to the high
degree of symmetry. In fact enormous progress has been made in the last few years. On
the other hand, the strong coupling regime of the theory can be studied by means of the
AdS/CFT duality, by studying a weakly coupled string sigma-model.

In this review we focus on how to use the AdS/CFT duality in order to compute
gluon scattering amplitudes of planar MSYM at strong coupling, referring the reader
to [V.1,V.2] for details on the perturbative side of the computation . In section two we
set up the problem of computing scattering amplitudes at strong coupling. The problem
boils down to the computation of the area of certain minimal surfaces in AdS. For the
particular case of four gluons, such surface, and its area, can be explicitly computed.
Furthermore, the strong coupling computation hints at some symmetries that actually
appear to be symmetries at all values of the coupling. This is briefly reviewed at the end
of section two. In section three we focus on the mathematical problem of computing the
area of minimal surfaces in AdS. The integrability of the model allows the introduction
of a spectral parameter. By studying the problem as a function of the spectral parameter
we are able to give a solution in the form of a set of integral equations. These equations
have the precise form of thermodynamic Bethe ansatz (TBA) equations. The area turns
out to coincide with the free energy of such TBA system. Finally, In section four, we
end up with some conclusions and a list of open problems.

2 Gluon scattering amplitudes at strong coupling

Four dimensional MSYM, the theory whose amplitudes we want to consider, turns out
to be dual to type IIB string theory on AdS5 × S5. This duality receives the name of
AdS/CFT duality [1] and is the main focus of this review. A remarkable feature of this
duality is that it allows to compute certain observables of MSYM at strong coupling by
doing geometrical computations on AdS. A well known example is the computation of
the expectation value of super-symmetric Wilson loops, which reduces to a minimal area
problem [2]. In this section we will show that this is also the case for the computation
of scattering amplitudes at strong coupling! 1

As in the gauge theory, we will need to introduce a regulator in order to define
properly scattering amplitudes. In order to set-up our computation we introduce a D-
brane as IR regulator, as we explain in detail below. Another convenient regulator is the
strong coupling/super-gravity analog of dimensional regularization. This regulator will
be used in order to compare our results with expectations from the perturbative side.

1In this section, we follow closely [3], to which we refer the reader for the details.
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Chapter V.3: Scattering Amplitudes at Strong Coupling

2.1 Set-up of the computation

In order to set up the computation at strong coupling, it is convenient to introduce a
regularization as follows. We start from a U(N + k) theory, with k � N , and then
consider a vacuum breaking the symmetry to U(N) × U(k) by giving to a scalar field
a vacuum expectation value mIR which plays the role of an infrared cut-off.2 When we
take the ’t Hooft limit we keep k fixed, so that the low energy U(k) theory becomes free.
We then scatter gluons of this U(k) theory. We are interested in the regime where all
kinematic invariants are much larger than the IR cut-off, sij � m2

IR. It turns out that the
leading exponential behavior at strong coupling can be captured simply by considering
k = 1. At strong coupling this corresponds to consider a D3-brane localized in the radial
direction. More precisely, we start with the AdS5 metric written in Poincare coordinates

ds2 = R2dx
2
3+1 + dz2

z2
(2.1)

and place a D3-brane at some fixed large value of z = zIR and extending along the x3+1

coordinates. The asymptotic states are open strings that end on that D-brane. We then
consider the scattering of these open strings, that will have the interpretation of the
gluons that we are scattering.

The proper momentum of the strings is kpr = kzIR/R, where k is the momentum
conjugate to x3+1, plays the role of gauge theory momentum and will be kept fixed as
we take away the IR cut-off, zIR →∞. Therefore, due to the warping of the metric, the
proper momentum is very large, so we are considering the scattering of strings at fixed
angle and with very large momentum.

Amplitudes in such regime were studied in flat space by Gross and Mende [5]. The
key feature of their computation is that the amplitude is dominated by a saddle point of
the classical action. In our case we need to consider classical strings on AdS. Hence, we
need to consider a world-sheet with the topology of a disk with vertex operator insertions
on its boundary, which correspond to the external states (see fig. 1). A disk amplitude
with a fixed ordering of the open string vertex operators corresponds to a given color
ordered amplitude.

What are the boundary conditions for such world-sheet? since the open strings are
attached to the D-brane, z = zIR at the boundary. Furthermore, in the vicinity of a
vertex operator, the momentum of the external state should fix the form of the solution.

In order to state more simply the boundary conditions for the world-sheet, it is
convenient to describe the solution in terms of T-dual coordinates yµ, defined as follows

ds2 = w2(z)dxµdx
µ + ... → ∂αy

µ = iw2(z)εαβ∂βx
µ (2.2)

The presence of the i is due to the fact that we are considering a Euclidean world-sheet in
Minkowski space-time. Note that we do not T-dualize along the radial direction. After
defining r = R2/z the dual metric takes the form

ds2 = R2dyµdy
µ + dr2

r2
(2.3)

2See [4] for perturbative computations using this regulator.
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Figure 1: World-sheet corresponding to the scattering of four open strings. In
the figure on the left we see four open strings ending on the IR D-brane, the
world-sheet has then the topology of a disk, shown on the right, with four vertex
operator insertions.

Note that this metric is equivalent to the same AdS5 metric we started with! A crucial
difference is that now, in terms of the dual coordinates, the boundary of the world-sheet
is located at r = R2/zIR, which is very small. Furthermore, the T−duality we performed
interchanges Neumann by Dirichlet boundary conditions. This means that the boundary
of the world-sheet sits at a fixed point in the space of the dual coordinates. When a
vertex operator with momentum kµ is inserted, the location of such point gets shifted
by an amount proportional to ∆yµ = 2πkµ.

Summarizing, the boundary of the world-sheet is located at r = R2/zIR and is a
particular line constructed as follows

• For each particle of momentum kµ, draw a segment joining two points separated
by ∆yµ = 2πkµ.

• Concatenate the segments according to the insertions on the disk.

Since gluons are massless, the segments are light-like. Furthermore, due to momen-
tum conservation, the segments form a closed polygon. The world-sheet, when expressed
in T-dual coordinates, will then end in such sequence of light-like segments (see fig. 2)
located at r = R2/zIR.

As we take away the IR cut-off, zIR → ∞, the boundary of the world-sheet moves
towards the boundary of the T-dual metric, at r = 0. This computation would then be
formally equivalent to the computation of the expectation value of a Wilson loop given
by a sequence of light-like segments at strong coupling [2]. 3

Our prescription is that the leading exponential behavior of the N−point scattering
amplitude is given by the area A of the minimal surface that ends on a sequence of
light-like segments on the boundary

AN ∼ e−
√
λ

2π
A(k1,...,kN ) (2.4)

3As explained in detail in [V.2], this remarkable duality between Wilson loops and scattering ampli-
tudes was also observed in perturbative computations.
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Figure 2: Comparison of the world sheet in original and T-dual coordinates.
The hyperplane on the picture to the right should not be interpreted as a D-brane,
but rather as a radial slice where the boundary of the world-sheet it located.

An important comment is in order. Note that the strong coupling computation is blind
to the type or polarization of the external particles. Such information will contribute
to prefactors in (2.4) and will be subleading in a 1/

√
λ expansion, relative to the lead-

ing exponential term4. These differences should be visible once we consider quantum
corrections to the classical area. This is still an open problem.

Some generalizations to the above picture were developed. In [7] finite temperature
was introduced while in [8] the authors considered solutions with non trivial motion
on the S5. Finally, in [9], the scattering of quarks at strong coupling was considered.
Unfortunately, due to space limitations, we wont discuss these interesting developments
here, but refer the reader to the original literature.

We have then reduced the problem of computing scattering amplitudes at strong
coupling to the problem of finding minimal surfaces in AdS. In the following we will
show that such surface can be found for the particular case of the scattering of four
gluons. To find and understand this solution in detail will be quite instructive. Then, in
the next section, we will use the integrability of the problem in order to give a general
solution, for any number of gluons, in the form of a set of integral equations.

2.2 Scattering of four gluons

Consider the scattering of two particles into two particles, k1 + k3 → k2 + k4 and define
the usual Mandelstam variables

s = −(k1 + k2)2, t = −(k2 + k3)2 (2.5)

According to our prescription we need to find the minimal surface ending in the
following light-like polygon

In order to write the Nambu-Goto action it is convenient to use Poincare coordinates
(r, y0, y1, y2), setting y3 = 0 and parametrize the surface by its projection to the (y1, y2)

4As discussed in more detail in [6], when computing the disk amplitude in the saddle point approxi-
mation, one can neglect the polarization of the gluon vertex operators.
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Y1

Y2

Y0

Y1

Y2

Figure 3: Polygon corresponding to the scattering of four gluons

plane. In this case we obtain an action for two fields, r and t, living in the space
parametrized by y1 and y2

S =
R2

2π

∫
dy1dy2

√
1 + (∂ir)2 − (∂iy0)2 − (∂1r∂2y0 − ∂2r∂1y0)2

r2
(2.6)

where r = r(y1, y2) and ∂ir = ∂yir, etc. Our aim is to find a solution to the classical
equations of motion with the appropriate boundary conditions. Let us consider first the
case s = t, where the projection of the polygon lines to the (y1, y2) plane is a square.
By scale invariance we can choose the edges of the square to lie at y1, y2 = ±1. The
boundary conditions are then given by

r(±1, y2) = r(y1,±1) = 0, y0(±1, y2) = ±y2, y0(y1,±1) = ±y1 (2.7)

In [10] the solution corresponding to a single cusp was considered. One can make edu-
cated guesses using such solution as a guidance and propose

y0(y1, y2) = y1y2, r(y1, y2) =
√

(1− y2
1)(1− y2

2) (2.8)

Remarkably this turns out to be a solution of the equations of motion! This is the
solution for the case s = t, how can we obtain the most general solution?

The dual AdS5 space has a SO(2, 4) group of isometries. This symmetry is sometimes
referred to as ”dual conformal symmetry” and should not be confused with the original
SO(2, 4) symmetry associated to the original AdS space. This dual symmetry can be
used in order to map the particular solution we have just found to the most general solu-
tion with four edges, in particular with s 6= t. The general solution can be conveniently
written as

r =
a

coshu1 coshu2 + b sinhu1 sinhu2

, y0 =
a
√

1 + b2 sinhu1 sinhu2

coshu1 coshu2 + b sinhu1 sinhu2

(2.9)

y1 =
a sinhu1 coshu2

coshu1 coshu2 + b sinhu1 sinhu2

, y2 =
a coshu1 sinhu2

coshu1 coshu2 + b sinhu1 sinhu2

(2.10)

where u1,2 parametrize the world-sheet and we have written the surface as a solution to
the equations of motion in conformal gauge. a and b encode the kinematical information
of the scattering as follows
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− s(2π)2 =
8a2

(1− b)2
, − t(2π)2 =

8a2

(1 + b)2
,

s

t
=

(1 + b)2

(1− b)2
(2.11)

According to the prescription, we should now plug the classical solution into the
classical action to compute the area and obtain the four point scattering amplitude at
strong coupling. However, in doing so, we obtain a divergent answer. That is of course
the case, since we have taken the IR regulator away. In order to obtain a finite answer
we need to reintroduce a regulator. Since we want to compare our results to field theory
expectations, it is convenient to introduce the strong coupling analog of dimensional
regularization.

Gauge theory amplitudes are regularized by considering the theory in D = 4 −
2ε dimensions. More precisely, one starts with N = 1 in ten dimensions and then
dimensionally reduce to 4−2ε dimensions. For integer 2ε this is precisely the low energy
theory living on a Dp−brane, where p = 3− 2ε. We regularize the amplitudes at strong
coupling by considering the gravity dual of these theories and then analytically continuing
in ε. The string frame metric is

ds2 = f−1/2dx2
4−2ε + f 1/2

[
dr2 + r2dΩ2

5+2ε

]
, f = (4π2eγ)εΓ(2 + ε)µ2ε λ

r4+2ε
(2.12)

Following the steps described above, we are led to the following action

S =

√
cελµ

ε

2π

∫
Lε=0

rε
(2.13)

Where Lε=0 is the Lagrangian density for AdS5. The presence of the factor rε will have
two important effects. On one hand, previously divergent integrals will now converge
(if ε < 0). On the other hand, the equations of motion will now depend on ε and we
were not able to compute the full solution for arbitrary ε. However, we are interested
in computing the amplitude only up to finite terms as we take ε → 0. In that case, it
turns out to be sufficient to plug the original solution into the ε-deformed action 5. After
performing the integrals and expanding in powers of ε we get the final answer

A = e−
√
λ

2π
A, ,−

√
λ

2π
A = iSdiv +

√
λ

8π

(
log

s

t

)2

+ C̃ (2.14)

Sdiv = 2Sdiv,s + 2Sdiv,t

iSdiv,s = − 1

ε2
1

2π

√
λµ2ε

(−s)ε
− 1

ε

1

4π
(1− log 2)

√
λµ2ε

(−s)ε

This answer has the correct general structure (see e.g. [V.1, V.2]) from field the-
ory expectations. Furthermore, once we use the strong coupling behavior for the cusp

anomalous dimension [11], f(λ) =
√
λ
π

+ ... we see that the leading divergence, as well as
the finite piece, have not only the correct kinematical dependence but also the correct
overall coefficient in order to match the BDS ansatz [V.2,12]. As we will see shortly, this
result is actually a consequence of the symmetries of the problem!

5Up to a contribution from the regions close to the cusps that adds an unimportant additional
constant term.
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2.3 T−duality and dual conformal symmetry at strong cou-
pling

An important ingredient of the previous computation was the existence of a dual SO(2, 4)
symmetry 6, associated to the isometry group of the dual AdS5 space. This symmetry
allowed the construction of new solutions and fixed somehow the finite piece of the
scattering amplitude. 7

To a symmetry we associate a Ward identity and in particular dual conformal sym-
metry will impose some constraints on the amplitudes. Quite remarkably, this duality
was also (actually before!) observed at week coupling and is by now believed to be a
duality of scattering amplitudes at all values of the coupling. You can see [V.2] for a
detailed account of this symmetry and the constraints it imposes on the amplitudes.8

Here we will just mention that dual conformal symmetry fixes the answer for the four-
point function to have the form (2.14), actually, to all values of the coupling! and hence
its agreement with the BDS ansatz. Furthermore, dual conformal symmetry does not
fix the answer for the scattering of more than six gluons, hence, in general, the answer
deviates from the BDS ansatz. The need for such a deviation, usually called remainder
function, was established in [15,16]. See [V.2] for more details.

In the last section we have seen that existence of a dual AdS space, is related to
the fact that AdS5 goes to itself after a sequence of four T-dualities, followed by the
inversion of the radial coordinate, see (2.1) vs (2.3). This set of T-dualities, however,
does not leave the full AdS5×S5 sigma model invariant. For instance, Buscher rules for
T-dualities [17] imply a shift on the dilaton of the form

φ→ φ+ 4× log z (2.15)

where z is the radial coordinate of the original metric (2.1). The factor of 4 is due
to the fact that we are making four T−dualities. In addition to the usual, ”bosonic”,
T−dualities, one can introduce a fermionic T−duality [18]. This duality is a non local
redefinition of the fermionic world-sheet fields, very much like the bosonic T-duality is a
redefinition of the bosonic fields. These T-dualities change the fields of the sigma model
according to precise rules. For instance, each fermionic T−duality shifts the dilaton by
an amount

φ→ φ− 1

2
× log z (2.16)

We see that by doing eight fermionic T−dualities we can undo the shift (2.15) on the
dilaton. Actually, one can check that a combination of the four bosonic T−dualities
plus eight fermionic T−dualities maps the full sigma model to itself! Note also that

6Actually, this symmetry was first noticed in perturbative computations [13] and then independently
in the strong coupling computation described here.

7Naively, this conformal symmetry would imply that the amplitude is independent of s and t, since
they can be sent to arbitrary values by a dual conformal transformation. The whole dependence on s
and t arises due to the necessity of introducing an IR regulator. However after keeping track of the
dependence on the IR regulator, the amplitude is still determined by the dual conformal symmetry.
Hence, this regulator breaks the dual conformal symmetry, but in a controlled way!

8These constraints have also been derived at strong coupling [14].
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this argument does not depend on the value of the coupling. One of the implications
is that the dual model has the same conformal symmetry group as the original, helping
to understand the origin of dual conformal symmetry. Actually, as the construction
suggests, dual conformal symmetry extends to a full dual super conformal symmetry. In
addition, one has a map between the full set of conserved charges of the two models, in
such a way that some of the local charge of one model are mapped to non local charges
of the dual model, and viceversa, see for instance [18].

The structure of dual super conformal symmetry was also seen at weak coupling and
is explained in detail in [V.2], for which we refer the reader for more details.

3 Minimal surfaces on AdS

In the previous section we have seem how the problem of computing gluon scattering
amplitudes at strong coupling reduces to the computation of the area of certain minimal
surfaces in AdS. In this section we show how the integrability of the system can be used
in order to give a solution to the problem, in the form of a set of integral equations. We
will follow closely [19–21], see also [22], to which we refer the readers for the details. 9

For this review, we will focus mostly on a particular kinematic configuration, in which
the minimal surfaces are actually embedded into an AdS3 subspace of the full AdS5.
However, the full problem has been solved and it will be briefly mentioned at the end of
the section.

The mathematical problem is to find the area of the minimal surface ending on the
boundary of AdS at a given polygon of light-like edges. The polygon is parametrized by
the location of its cusps xi, which are null separated, namely x2

i,i+1 = 0.
We will focus on certain regularized area that is invariant under conformal transfor-

mations. As such, it will depend only on cross-ratios, of the form χijkl =
x2
ijx

2
kl

x2
ikx

2
jl

. Given

the cross-ratios, we want to compute the area as a function of those. The full problem
involves minimal surfaces on AdS5, in which case there are 3N − 15 independent cross-
ratios, where N is the number of cusps/gluons. We will restrict to special kinematical
configurations in which the minimal surfaces involved are embedded in AdS3. In this
case, we have N − 6 independent cross-ratios 10 and the polygon is a zig-zaged polygon
living in one plus one dimensions, which correspond to the boundary of AdS3, see figure
4.

Since we want a closed contour, and we are in 1 + 1 dimensions, we can consider only
polygons with an even number of sides, hence N = 2n. As one can see in figure 4, the
contour is parametrized by n coordinates x+

i and n coordinates x−i . With each set of

coordinates we can form n− 3 invariant cross-ratios, of the form χ±ijkl =
x±ijx

±
kl

x±ikx
±
jl

.

9Some of the key ideas used below may be found in relation to the study of wall crossing [23].
Actually, the method of the first paper in [23] where instrumental in deriving the expression for the
eight gluon amplitude at strong coupling in [19].

10For the general scattering in four dimensions we have 4N coordinates, minus N , since the distance
between consecutive points has to be light-like, minus 15, that is the dimension of the conformal group
SO(2, 4). In the case of AdS3, we have 2N −N minus 6, which is the dimension of SO(2, 2).
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Figure 4: A zig-zaged null polygon in 1+1 dimensions is parametrized by n x+
i

coordinates and n x−i coordinates. If you want a closed polygon, you can fold
the figure in a cylinder.

In order to consider minimal surfaces in AdS3 we need to consider the world-sheet of
classical strings on AdS3. This is the subject of the following subsection.

3.1 Strings on AdS3

Classical strings on AdS3 can be described in terms of embedding coordinates, where
AdS3 is the following surface embedded in R2,2

Y.Y ≡ −Y 2
−1 − Y 2

0 + Y 2
1 + Y 2

2 = −1 (3.1)

we take the world-sheet to be the whole complex plane. Since we are interested in
classical solutions, the fields have to satisfy the conformal gauge equations of motion
and the Virasoro constraints

∂∂̄Y − (∂Y.∂̄Y )Y = 0, ∂Y.∂Y = ∂̄Y.∂̄Y = 0 (3.2)

where ∂Y = ∂zY , etc. An efficient way to focus only in the physical degrees of free-
dom, similar to fixing light-cone gauge, is by performing the so-called Pohlmeyer kind of
reduction, see for instance [24], and consider the ”reduced” fields

α = log ∂Y.∂̄Y, p2 = ∂2Y.∂2Y (3.3)

As a consequence of the equations of motion and Virasoro constraints, p can be seen to
be a holomorphic function, p = p(z) while α(z, z̄) can be seen to satisfy a generalized
version of the Sinh-Gordon equation

∂∂̄α− eα + p(z)p̄(z̄)e−α = 0 (3.4)

From the definition of the reduced fields, it is clear that they are invariant under space-
time conformal transformation. This means that they describe only the essential part of
the problem, without redundancies.
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Before proceeding, let us make the following remark. Since p(z) is a holomorphic
function, it is possible to make a change of coordinates from the z−plane to the w−plane,
where dw =

√
p(z)dz. In the w−plane, after a simple field redefinition, the generalized

Sinh-Gordon equation takes the usual form

α = α̂ +
1

2
log pp̄→ ∂w∂̄wα̂ = 2 sinh α̂ (3.5)

It would seem that we got rid of all the information on p(z). However, this is not the
case, since the w−plane will have in general a complicated structure (for instance, it will
have a branch cuts, etc, depending on p(z)). So, we can choose between a complicated
equation on the complex plane, or a simple equation on a more complicated space.
Depending which questions we want to answer, one description may be more convenient
than another. Finally, we are interested in the area of the classical World-sheet. Written
in terms of the reduced fields it becomes

A =

∫
eαd2z =

∫
eα̂d2w (3.6)

3.2 Classical solutions corresponding to minimal surfaces end-
ing on null polygons

What are the properties of the holomorphic function p(z) and α(z, z̄) for solutions corre-
sponding to minimal surfaces ending on null polygons? In order to answer this question
we can start by considering the four cusps solution found in the previous section and
perform the Pohlmeyer reduction. We find

p(z) = 1, α = α̂ = 0 (3.7)

Hence, the four cusps solution simply correspond to the vacuum solution of the Sinh-
Gordon equation! What about solutions with a higher number of cusps? First of all we
propose that the field α is regular everywhere, since we are looking for smooth space-like
solutions. Second, we expect a general solution to be similar to the four cusps solution
when approaching the boundary, so we expect that α̂→ 0 as |z| becomes large.

Finally, if we are interested on a minimal surface ending on a polygon with 2n cusps,
we propose p(z) to be a polynomial of degree n− 2 11

p(z) = zn−2 + cn−4z
n−4 + ...+ c1z + c0 (3.8)

we have used rescalings and translations in order to set the coefficients of zn−2 and zn−3

to one and zero respectively. Such polynomial contains n − 3 complex coefficients, or
2n − 6 real coefficients, which exactly agrees with the amount of expected independent
cross ratios for a polygon with 2n cusps!

Summarizing: minimal surfaces ending on a light-like polygon with 2n cusps corre-
spond to a holomorphic polynomial of degree n − 2 and a field α̂ satisfying the Sinh-
Gordon equations and with boundary conditions such that it decays at infinity and

11The motivation for this proposal, comes from the fact that an homogeneous polynomial of degree
n− 2 possesses all the symmetries to correspond to a symmetric polygon of n edges.
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diverges logarithmically at the zeroes of p(z), which amounts to say that α is regular
everywhere.

Since α̂ decays at infinity, the integral defining the area (3.6) diverges. We define a
regularized area by subtracting the behavior at infinity

Areg =

∫
(eα̂ − 1)d2w (3.9)

As the reduced fields are invariant under space-time conformal transformations, the
regularized area will be a function of the cross-ratios only. 12 The computation of this
regularized area is the main focus of the remaining of this review.

3.2.1 Reconstructing the space-time solution and its behavior at infinity

In the following we would to check that the world-sheet we are considering has the
desired form. In particular, we would like to understand the shape, in space-time, of the
boundary of our world-sheet. For that, we first review a general procedure to reconstruct
the world-sheet from the reduced fields, and then study its boundary.

Given an holomorphic function p(z) and a field α satisfying (3.4) it is possible to
reconstruct a space-time solution satisfying (3.2), and (3.1). The procedure amounts to
solve two auxiliary linear problems, which we denote as left and right

(d+BL)ψLa = 0, (d+BR)ψRȧ = 0 (3.10)

where the flat connections BL,R are two by two matrices constructed from p(z) and
α(z, z̄). For instance

BL
z =

(
∂α/4 1√

2
eα/2

1√
2
pe−α/2 −∂α/4

)
(3.11)

we denote different components of the connections by BL
αβ and BR

α̇β̇
. On the other

hand, the indices a and ȧ in (3.10) denote independent solutions of the auxiliary linear
problems. Each ψLa or ψRȧ is then a doublet. We denote the components of this doublet
by ψLα,a, etc.

Given the solutions of these two auxiliary linear problems, one can show that the
space-time coordinates are simply given by

Ya,ȧ =

(
Y−1 + Y2 Y1 − Y0

Y1 + Y0 Y−1 + Y2

)
a,ȧ

= ψLα,aδ
αβ̇ψR

β̇,ȧ
(3.12)

One can show that Y constructed this way satisfies all the required properties. If we see
ψL and ψR as two by two matrices, then the space-time coordinates would be given by
Y = (ψL)TψR. On the other hand, note that given a solution to the left problem, ψL,
then ψLUT is an equally good solution, and the same happens with the right problem.

12The full answer would include also the integral of the one we have subtracted. In order to compute
it one would need to introduce a physical regulator and this part of the answer will not be conformal
invariant. Anyway, its explicitly form can be worked out and turns out to be quite universal. In this
review we will focus on the ”interesting” part of the answer Areg.
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Hence, given Y , we obtain a family of space-time solutions UY V . These are nothing but
the space-time conformal transformations.

Now we would like to understand the behavior of the solutions of the linear auxiliary
problems for very large values of |z|, or |w|. This will tell us the behavior of the world-
sheet near its boundary. Let us start, by simplicity, with the case of a homogeneous
polynomial, p(z) = zn−2. Hence w ≈ zn/2. As a result, as we go once around the
z−plane, we go around the w−plane n/2 times.

Due to the boundary conditions for the reduced fields, the flat connections BL,R

drastically simplify at infinity and we can solve the auxiliary linear problems. A general
solution will be of the form

ψLa ≈ c+
a

(
1
0

)
ew+w̄ + c−a

(
0
1

)
e−(w+w̄)

ψRȧ ≈ d+
ȧ

(
1
0

)
e
w−w̄
i + d−ȧ

(
0
1

)
e−

w−w̄
i (3.13)

The w-plane is naturally divided into quadrants, see figure 5. In each quadrant one of
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Figure 5: When looking at the left problem, (each sheet of) the w−plane is
naturally divided into two parts, according to the sign of Re(w). In the same
way, when looking at the right problem, the w−plane is naturally divided into
two parts, according to the sign of Im(w). Hence, the w−plane is naturally
divided into four quadrants. Large values of |w| in each of these angular sectors
correspond to a cusp.

the two solutions of each problem (left and right) dominates. For instance, in the upper
right quadrant, the solution proportional to c+

a dominates in the left problem, while the
solution proportional to d+

ȧ dominates in the right problem. This means that for large
values of |w|, the whole quadrant corresponds to a single point in the boundary, given
by Yaȧ ≈ (Large)× c+

a d
+
ȧ .

As we change quadrant, one and only one of the two dominant solutions change and
we jump a light-like distance to the next cusp. In each quadrant/cusp we can write

Ya,ȧ ≈ λaλ̃ȧ (3.14)
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where λ is given by the leading contribution to the left problem and λ̃ by the leading
contribution to the right problem. As we change quadrant, one of the two solutions, λ
or λ̃, changes. As we go around the w−plane n/2 times, we get the expected 2n cusps!

In the general case in which the polynomial is not homogeneous, the picture is very
much the same. In general, the degree of the polynomial determines the number of cusps,
while the coefficients on the polynomial determine the shape of the polygon.

Let us finish this section with a very important observation. Since we know that the
classical equations describing strings on AdS5 × S5 are integrable, see for instance [26],
we expect the present problem to be integrable as well. Indeed, it is possible to introduce
a spectral parameter ζ

Bz → Bz(ζ) =
1

4

(
∂α 0
0 −∂α

)
+

1

ζ

1√
2

(
0 eα/2

pe−α/2 0

)
(3.15)

Bz̄ → Bz̄(ζ) =
1

4

(
−∂̄α 0

0 ∂̄α

)
+ ζ

1√
2

(
0 p̄e−α/2

eα/2 0

)
(3.16)

such that the flat connections are still flat, namely the satisfy ∂Bz̄ − ∂̄Bz + [Bz, Bz̄] = 0,
for all values of ζ. The introduction of the spectral parameter, also allows to study both
linear problems in a unified manner. The left and right connections are just particular
cases of the above flat connection, more precisely

B(ζ = 1) = BL, B(ζ = i) = BR (3.17)

The existence of the spectral parameter played a key role in the spectrum problem, see
for instance [27]. In that context, the key object are the eigenvalues of the monodromy
matrix constructed out of the flat connection. In the present case the key object are
certain cross-ratios constructed from the holonomy of the connections.

3.3 Y-system for minimal surfaces

Let us focus on the left problem. We see that each sheet on the w−plane is naturally
divided into two sectors, one with Re(w) > 0 and the other with Re(w) < 0. In each
sector the small solution is well defined (up to a normalization constant). On the other
hand, the large solution is not, as we can add to it a part of the small solution. Let us
then introduce the following terminology:

• The w−plane is divided into n sectors, since each sheet contains two sectors. We
label this sectors by i = 0, ..., n− 1.

• We call sLi the small solution at the i − th sector. This is the solution with the
fastest decay along the line in the center of the i− th sector, for increasing |w|.

In order to understand why these small solutions are important, we need to introduce a
new element. Given that our connections are SL(2) matrices, we can introduce a SL(2)
invariant product

ψLa ∧ ψLb ≡ εαβψLα,aψ
L
β,b = εab (3.18)
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The second equality corresponds to setting a normalization factor for our solutions. This
can be done since one can check the above product is independent on the world-sheet
coordinate z.

As already seen, the location of the cusps is determined by the large solutions. The
large component of a solution, on a given sector, can be extracted by using the small
solution on such sector and the SL(2) invariant product just introduced, more precisely

ψLa ∧ sLi ≈ λia (3.19)

where the symbol ≈means up to factors that will cancel out in the final expression for the
cross-ratios. How do we construct space-time cross-ratios? we have see that the location
of the cusps is given by Y i

aȧ = λiaλ̃
i
ȧ. The space time cross-ratios involve distances like

Y i.Y j = εabεȧḃY i
aȧY

j

bḃ
=< λiλj >< λ̃iλ̃j >, < λiλj >= εabλiaλ

j
b (3.20)

Given the normalization condition (3.18), one can easily show

< λiλj >≈< (ψLa ∧ sLi )(ψLa ∧ sLj ) >= sLi ∧ sLj (3.21)

Which means that space-time cross-ratios can be constructed from inner products of the
small solutions in the corresponding sectors! more precisely

x+
ijx

+
kl

x+
ikx

+
jl

=
(sLi ∧ sLj )(sLk ∧ sLl )

(sLi ∧ sLk )(sLj ∧ sLl )
(3.22)

Small solutions are defined up to a normalization constant. Note that such normalization
constants cancel out when computing cross-ratios.

The strategy we will follow is to introduce the spectral parameter ζ as shown in the
previous section and study the small solutions of the corresponding connection

(d+B(ζ))si(ζ) = 0 (3.23)

then, we can consider the cross-ratios as a function of such spectral parameter

χijkl(ζ) =
(si ∧ sj)(sk ∧ sl)
(si ∧ sk)(sj ∧ sl)

(3.24)

The physical cross-ratios are then obtained by setting the spectral parameter to appro-
priate values

χijkl(ζ = 1) = χ+
ijkl, χijkl(ζ = i) = χ−ijkl (3.25)

A very important property of the flat connection B(ζ) is that it possesses a Z2 symmetry:
B(eiπζ) = σ3B(ζ)σ3, where σ3 is the usual Pauli matrix. This symmetry allows to
relate small solutions at different values of the spectral parameter, for instance si+1(ζ) =
σ3si(e

iπζ), and in particular, it implies

si ∧ sj(eiπζ) = si+1 ∧ sj+1(ζ) (3.26)
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This identity is crucial in deriving the equations below. Besides, in order to simplify
subsequent expressions, we will assume si ∧ si+1 = 1.

Now we have all the elements to derive the so called Hirota equations and the Y-
system equations. The trick is to choose s0 and s1 as a complete basis of flat sections,
and express two arbitrary consecutive small solutions sk and sk+1 in terms of these

sk = (sk ∧ s1)s0 − (sk ∧ s0)s1 (3.27)

sk+1 = (sk+1 ∧ s1)s0 − (sk+1 ∧ s0)s1 (3.28)

Next, use (3.26) in order to express every wedge as a wedge involving s0 and consider
1 = sk ∧ sk+1, we obtain

− (sk−1 ∧ s0)++(sk+1 ∧ s0) + (sk ∧ s0)++(sk ∧ s0) = 1 (3.29)

where we have introduced the notation f± = f(e±iπ/2ζ), f++ = f(eiπζ), etc. Let us
introduce Tk = s0 ∧ sk+1(e−i(k+1)π/2ζ). In terms of these we obtain

T+
s T

−
s = Ts+1Ts−1 + 1 (3.30)

which has the form of the so called Hirota equations! from the definition of Ts, we see
that it is non trivial for s = 0, ..., n − 2. The Y−system equations can be obtained by
introducing Ys ≡ Ts−1Ts+1

Y +
s Y

−
s = (1 + Ys+1)(1 + Ys−1) (3.31)

Ys is non trivial for s = 1, ..., n− 3. Note that this agrees with the amount of (complex)
cross-ratios of our scattering problem. These are functional equations for Ys(ζ) and are
valid for any value of ζ. Note that they followed from a chain of rather trivial facts!

One could reintroduce the normalized factors si∧si+1 and check that the Y−functions
are given by the usual cross-ratios introduced above. The physical cross-ratios, are then
obtained by evaluating Ys(ζ) at ζ = 1 and ζ = i.

Such equations are not the whole story. In particular, note that that the holomorphic
function p(z) does not enter at all in such equations! The point is the following. There
are many solutions to such equations. The correct solution is then picked by specifying
the analytic properties and boundary conditions of Ys(ζ) as we move on the ζ−plane.
This is how the information about the holomorphic polynomial enters and will be the
subject of the following section.

3.4 Integral equations

In order to pick the appropriate solution to the Y−system equations (3.31) we need to
specify the analytic properties of Ys(ζ). By analyzing the auxiliary linear problems and
the definition of Ys(ζ) one can show that Ys(ζ) are analytic away from ζ = 0,∞. On the
other hand, As ζ → 0,∞, the flat connection simplifies and the inverse problem can be
solved by using a WKB approximation, where the role of ~ is played by ζ or 1/ζ . By
calling ζ = eθ, one can show that for large θ the solution behaves as 13

log Ys ≈ −ms cosh θ + ... (3.32)

13Note that even though we used the WKB approximation, this is the behavior of the exact solution.
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wherema is given by the periods of p(z)1/2 along the cycles γa, namelyma ≈ −
∮
γa

√
p(z)dz.

This is how the information of the polynomial p(z) enters into the problem. This periods
are usually complex, and there are n−3 of them, which exactly agrees with the quantity
of expected cross-ratios. These ma should be seen as the boundary conditions for the
above equations.

The strategy now is well known from the study of integrable systems. We can combine
the Y−system equations with the analytic properties and boundary conditions for the
Y−functions, in order to write a system of integral equations for them. The solutions
to these integral equations will automatically satisfy the Y−system equations and have
the required boundary conditions. The system of integral equations is given by 14

log Ys = −ms cosh θ +
1

2π

∫ ∞
−∞

1

cosh(θ − θ′)
log(1 + Ys+1(θ′))(1 + Ys−1(θ′)) (3.33)

The system of equations (3.33) has the form of TBA equations, that arise when studying
integrable models in finite volume, see e.g. [25]. Even though, for the sake of clarity,
some overall coefficients have been suppressed in the derivation of these equations, the
final form of the equations is given with all the correct coefficients. From the TBA point
of view, the parameters ma enter as masses. Once the masses are given, the solution of
the above system is unique. The physical cross-ratios can the been read off by looking
at Ys(θ) for appropriate values of θ.

These integral equations can also be written in terms of the physical cross-ratios
y+
s = Ys(ζ = 1) and y−s = Ys(ζ = i) only, without resorting to the auxiliary parameters
ms. In order to achieve that, one simple evaluates (3.33) at the physical values of the
spectral parameter in order to eliminate the masses, see [29]. We obtain

log Ys = cosh θ log y+
s −i sinh θ log y−s +

∫
dθ′

sinh 2θ

cosh(θ′ − θ) sinh 2θ′
log(1+Ys+1(θ′))(1+Ys−1(θ′))

(3.34)
Note that having solved (3.34), we could read off the masses from the asymptotic behavior
of the solutions.

How do we compute the regularized area, once we have solved the above system of
integral equations? It turns out that the area can be written in terms of the Y−functions
in a very simple form

Areg =
∑
s

∫
dθ
ms

2π
cosh θ log(1 + Ys(θ)) (3.35)

In order to derive this expression, one expands the Y functions a few orders for small and
for large values of ζ. The expansion coefficients are written in terms of period integrals
that also appear in the expression for the area, see [21] for details. This expression has
exactly the form of the free energy of the TBA system. 15.

14Considering ls ≡ log(Ys/e
−ms cosh θ), which is analytic in the strip Im(θ) < π/2 and vanishes as

θ approaches infinite. The integral equations can be obtained by convoluting the equation l+s + l−s =
log(1 + Ys+1)(1 + Ys−1) with the kernel in (3.33).

15It can be shown [29] that actually this area coincides with the extremum of the Yang-Yang functional
for the modified TBA equations (3.34)
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The strategy to solve the full problem is then clear. For a choice of the cross-ratios we
solve the integral equations (3.34), and from their solution we compute the area (3.35).
Hence, we have the area for these values of the cross-ratios.

In this review we have treated in detail the case of minimal surfaces in AdS3. However,
the general case of minimal surfaces in AdS5 can also be solved [21]. Much of what we
have said can be carried out for the general case. In this case we get a bigger system
of Y−functions, denoted by Ya,s, where a = 1, 23 and s = 1, ..., N − 5. Note that
their number equals the number of independent cross-ratios. Very much as before, one
can obtain Y−system equations, which supplemented with the appropriate boundary
conditions can be written as a system of integral equations. Again, this system of
equations has the form of a TBA system, and the regularized area coincides with the
free energy of such system.

These equations can be solved numerically, see for instance [21]. On the other hand,
it is very hard to find analytical solutions. However, some limits, for instance the so
called small masses/CFT limit and the large masses limit , are more tractable, see [28].

4 Conclusions

We reviewed the computation of scattering amplitudes of planar maximally super-symmetric
Yang-Mills at strong coupling. By using the AdS/CFT duality the problem boils down
to the computation of the area of certain minimal surfaces on AdS.

Then we showed how the integrability of the model can be efficiently used in order
to give an answer for the problem in terms of a set of integral equations. Integrability
allows to introduce a one parameter deformation (the spectral parameter ζ) and study
such deformed problem. One can then write down a system of functional equations, or
Y−system, valid for any value of ζ. One can combine these functional equations with
the knowledge of the analytic behavior of the Y−functions in the ζ − plane, in order
to write a set of integral equations which can be solved iteratively, and give the desired
answer. There are many directions one could try to follow, some of the most interesting
are the following

• It would be nice to find a physical connection between the integrable system that
the TBA equations describe and the original integrable system.

• It would be very interesting to extend the present construction to the full quantum
problem. As a first step, one could try to compute one loop (from the strong
coupling point of view) corrections to the above picture. This would allow, for
instance, to distinguish between different amplitudes.

• It would also be interesting to look for similar structures (for instance, the analo-
gous of the spectral parameter, etc) in perturbative computations. Related to this,
in [29] and subsequent papers, an operator product expansion for Wilson loops
have been developed. This allows to use certain tools of integrability [30] in order
to make predictions at all values of the coupling.
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• One could hope that similar technology can be applied to related problems. One
such problem is the computation of form factors, in which progress have been made
recently, see [15] [31] [32].
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Chapter VI.1: Superconformal Symmetry

1 Introduction

The AdS/CFT correspondence predicts the exact equivalence of N = 4 super Yang–
Mills (SYM) theory with IIB superstrings propagating on the AdS5 × S5 background.
One of the immediate checks is that the two models have coincident global symmetries:
N = 4 superconformal symmetry on the one hand and the isometries of the AdS5 × S5

superspace on the other are both given by the Lie supergroup P̃SU(2, 2|4) or its algebra
psu(2, 2|4).

Symmetry serves as an important organising principle — e.g. for objects with sim-
ilar properties — and leads to structural constraints — e.g. for correlation functions.
Furthermore, supersymmetry often implies that selected quantities are protected from
receiving quantum corrections. Two famous examples are the exact quantum conformal
symmetry of N = 4 SYM due to absence of a beta-function [1] and the exactness of
correlators for certain BPS operators in agreement with a prediction of the AdS/CFT
duality,see the review [2]. Nevertheless, agreement of the symmetry groups is far from
sufficient to prove an exact duality.1 To verify the AdS/CFT conjecture one therefore
needs tests involving dynamical quantities which are not protected by the symmetry.
Much of the activity concerning AdS/CFT integrability is devoted to such tests. Making
use of superconformal symmetry has helped the progress at various stages.

The present paper reviews some aspects of the Lie superalgebra psu(2, 2|4) relevant to
AdS/CFT integrability. The presented facts are by no means restricted to integrability;
they were known long before AdS/CFT integrability was discovered, and little progress
was made in connection with the latter. Nevertheless, many results in AdS/CFT inte-
grability are based on a good knowledge of psu(2, 2|4). This paper therefore serves a
different purpose than the other chapters of the review collection [3]: It is not so much
a review of one particular aspect of AdS/CFT integrability, but should be viewed as a
reference guide to key concepts concerning the underlying global symmetry.

This paper is split into three parts: In Sec. 2 we shall review purely algebraic aspects
of psu(2, 2|4) such as the algebra itself as well as some essential representation theory.
In Sec. 3 we apply it to local operators in N = 4 SYM and their correlation functions.
In Sec. 4 we discuss the AdS5×S5 background on which superstrings can propagate and
which is a particular coset of P̃SU(2, 2|4).

2 The psu(2, 2|4) Algebra

Definition. The algebra psu(2, 2|4) is a real Lie superalgebra of (even|odd) dimension
30|32, see e.g. [4]. In order to define it, it is convenient to start with complex 4|4-
dimensional square supermatrices

X =

(
A B
C D

)
. (2.1)

1In this case the large amount of (super)symmetry at least makes both constituent models essentially
unique and exceptional, which may be viewed as a hint towards the validity of the correspondence.
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Each block A,B,C,D is a 4 × 4 matrix of (non-Graßmannian) complex numbers. The
blocks A,D are considered even and B,C odd. The Lie superalgebra gl(4|4,C) is the
32|32-dimensional vector space of these supermatrices. Its graded Lie bracket [·, ·} is
defined as the graded commutator of supermatrices (in the following Y is the analog of
X in (2.1) with blocks E,F,G,H)

[X, Y } = XY − (−1)XY Y X :=

(
AE +BG− EA+ FC AF +BH − EB − FD
CE +DG−GA−HC CF +DH +GB −HD

)
.

(2.2)
It differs from a conventional commutator through the signs for the odd-odd products
FC and GB. It also satisfies a graded Jacobi-identity

(−1)XZ
[
[X, Y }, Z

}
+ (−1)Y X

[
[Y, Z}, X

}
+ (−1)ZY

[
[Z,X}, Y

}
= 0. (2.3)

This algebra is not simple, it has non-trivial ideals: One is related to the supertrace
STrX := TrA−TrD which is zero for graded commutators STr[X, Y } = 0. Demanding
that STrX = 0 thus removes a derivation from gl(4|4,C), and restricts it to the subalge-
bra sl(4|4,C). Furthermore, the identity supermatrix 1 commutes with all other matrices,
[1, X} = 0. Hence it generates the centre and can be projected out from gl(4|4,C) yield-
ing pgl(4|4,C). The combination of restriction and projection is the 30|32-dimensional
complex Lie superalgebra psl(4|4,C).2

Real Form. To restrict to the real form psu(2, 2|4) one imposes a hermiticity condition
on the supermatrices (

A B
C D

)
=

(
HA†H−1 −iHC†
−iB†H−1 D†

)
, (2.4)

where H is a hermitian matrix of signature (2, 2). There are two natural choices for
H: In the first, H is diagonal, written in terms of 2 × 2 blocks (‘+’/‘−’ denotes the
2 × 2 positive/negative identity matrix; X ′ is a reordering of rows and columns to be
explained)

H =

(
+ 0
0 −

)
, X =

 M1 iN −iQ1

iN̄ M2 +iQ2

Q̄1 Q̄2 R

 , X ′ =

 M1 −iQ1 iN

Q̄1 R Q̄2

iN̄ +iQ2 M2

 . (2.5)

Here the hermitian blocks M1 and M2 generate the maximal compact subalgebra su(2)⊕
su(2) ⊕ u(1) = so(4) ⊕ so(2) of su(2, 2) = so(4, 2). This choice is useful in the context
of the AdS5 spacetime, cf. Sec. 4, and for unitary representations. Equivalently one can
choose an off-diagonal H

H =

(
0 +
+ 0

)
, X =

 L P −iQ
K L̄ −iS̄
S Q̄ R

 , X ′ =

 L −iQ P

S R Q̄

K −iS̄ L̄

 . (2.6)

2It is not possible to restrict to TrA = TrD = 0 because the graded commutator does not close
onto such supermatrices; The centre proportional to the unit supermatrix can only be projected out or
removed by redefining the graded commutator accordingly.
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Figure 1: Two Dynkin diagrams for sl(4|4) = sl(2|4|2).

Now the hermitian conjugate blocks L, L̄ in X generate the Lorentz and scaling trans-
formations in sl(2,C) ⊕ gl(1) = so(3, 1) ⊕ so(1, 1). Obviously, this choice is adapted to
four-dimensional Minkowski space, see Sec. 3. In the context of the real form psu(2, 2|4)
it is often convenient to reorder the 2, 2|4 rows and columns, and move one of the 2’s
past the 4. The supermatrix X reordered in 2|4|2-block form is displayed in (2.5,2.6) as
X ′. From now on we shall use exclusively the 2|4|2-grading.

Simple Generators. A useful presentation of Lie algebras, which is frequently en-
countered in the solution of integrable systems, is through r triplets of simple (raising,
Cartan and lowering) generators Ek,Hk,Fk, (r is the rank of the algebra), see e.g. [5]. For
the Lie algebras sl(n) the elements Ek,Hk,Fk with k = 1, . . . , n − 1, generate the three
main diagonals Xk,k+1, Xk,k −Xk+1,k+1, Xk+1,k. The remaining elements are obtained by
repeated Lie brackets, e.g. [Ek,Ek+1} generates Xk,k+2. Evidently, the algebra generated
by arbitrary repeated brackets is enormous and needs to be reduced by certain relations.
To that end, the simple generators satisfy a set of Chevalley–Serre relations which encode
all the information on the specific Lie algebra, sl(n), in a condensed form

[Hj,Ek} = +AjkEk, [Hj,Fk} = −AjkFk, [Ej,Fk} = δjkHk,[
[Ek,Ek±1},Ek±1

}
=
[
[Fk,Fk±1},Fk±1

}
= 0,

[Ej,Ek} = [Fj,Fk} = 0 for |j − k| > 1. (2.7)

Here Aj,k is the Cartan matrix; for sl(n) the three main diagonals take the values
−1,+2,−1 while the other elements are zero. For a superalgebra sl(n|m) the definition
is similar; the main difference is that some of the raising and lowering elements are odd.
For an odd Ek (k = 2, 6 in our case) one has to replace the relation [[Ek±1,Ek},Ek} = 0
by two new ones3

[Ek,Ek} = 0,
[
[Ek−1,Ek}, [Ek+1,Ek}

}
= 0, (2.8)

and similarly for Fk. Furthermore for this k two Cartan matrix elements are modified:
Ak,k = 0 and Ak,k+1 = +1. Cartan matrices and Chevalley–Serre relations are often
displayed in the form of Dynkin diagrams. Two Dynkin diagrams for su(2, 2|4) are
displayed in Fig. 1: Dots correspond to simple generators Ek,Hk,Fk; crossed dots indicate
odd generators Ek,Fk. Links stand for non-trivial relations between the corresponding
simple generators and non-trivial Cartan matrix elements. If two dots j and k are
unlinked, the generators Ek,Fk,Hk and Ej,Fj,Hj commute and Ajk = 0. Although the
two Dynkin diagrams lead to quite different relations, they describe the same algebra.

3It turns out that in gauge/string applications the latter relations are dropped, see e.g. [6]. The new
generators Gk ∼ [[Ek−1,Ek}, [Ek+1,Ek}} (similarly for Fk) are part of an ideal of a substantially bigger
algebra. The ideal generates gauge transformations acting as the constraint Gk ' 0 for physical states.
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Figure 2: Young diagram corresponding to sl(4) representation with Dynkin
labels [q1, p, q2]: A single block corresponds to a fundamental representation,
rows and columns correspond to symmetrisation and antisymmetrisation.

The point is that for Lie superalgebras there commonly exist inequivalent choices for the
set of simple generators. The two diagrams correspond to the two grading assignments
4|4 and 2|4|2 for the rows and columns of a supermatrix, cf. X vs. X ′ in (2.5,2.6).

Unitary Representations. In physical models, multiplets of states transform under
unitary representations of the symmetry algebra. Let us therefore review unitary repre-
sentations of psu(2, 2|4) [7]. As the (bosonic part of the) superalgebra is non-compact,
unitary representations are necessarily infinite-dimensional. An important class of uni-
tary representations are the lowest-weight (equivalently highest-weight) representations.
Under the maximal compact subalgebra su(2)⊕su(2)⊕su(4)⊕u(1) such representations
decompose into (infinitely many) finite-dimensional irreps, one of which is defined as
the lowest. All states corresponding to this lowest irrep are annihilated by the lowering
generators associated to the lower triangular blocks Q̄1, Q2, N̄ of X ′ in (2.5). The states
of the higher irreps arise from the repeated action of the raising generators associated to
the upper triangular blocks Q1, Q̄2, N of X ′.

Lowest-weight unitary representations of psu(2, 2|4) are thus specified by an irrep
under the maximal compact subalgebra su(2) ⊕ su(2) ⊕ su(4) ⊕ u(1). Irreps of the two
su(2)’s are specified by their non-negative half-integer spin 1

2
s1,2 or equivalently by the

non-negative integer Dynkin labels [s1] and [s2]. Analogously, irreps of su(4) are specified
through three non-negative integer Dynkin labels [q1, p, q2]. An alternative description
uses a Young diagram with no more than three rows, see Fig. 2, cf. [8] Finally, a u(1)
irrep is specified through a number E. Here there is a subtlety: The abelian algebra
u(1) = R can either generate the compact group U(1) or the non-compact additive
group R. For a compact group E is restricted to an integer whereas a non-compact
group merely requires E to be real. The supergroup PSU(2, 2|4) contains the compact
version and hence the spectrum of E is discrete. However, PSU(2, 2|4) has a non-trivial

universal cover P̃SU(2, 2|4) where the abelian subgroup becomes non-compact. It is
this universal cover which has applications to physics, and consequently we shall allow
continuous values for E.

Altogether, a unitary representation is specified by the Dynkin labels [s1], [s2],
[q1, p, q2] and the number E. These combine into su(2, 2|4) Dynkin labels:

[s1; r1; q1, p, q2; r2; s2], rk = 1
2
E + 1

2
sk − 3

4
qk − 1

2
p− 1

4
q3−k. (2.9)

Finally, we should note that the value of E must be above a certain bound which is most
conveniently expressed in terms of the rk

rk ≥ 1 + sk or rk = sk = 0. (2.10)
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If one of the bounds for the first condition is saturated or one of the second conditions is
satisfied, the representation is called atypical or short. In this case certain combinations
of the raising generators annihilate the lowest-weight state. Otherwise there are no addi-
tional restrictions on the representation of the raising generators, and the representation
is called typical or long.

3 Superconformal Symmetry in N = 4 SYM

ForN = 4 supersymmetric gauge theory on four-dimensional Minkowski space the super-
Poincaré algebra extends to the superconformal algebra psu(2, 2|4). In the following we
shall discuss the representation theory of psu(2, 2|4) related to this gauge theory, see
also [2] for an extended review.

Conformal Transformations. Conformal transformations preserve the metric up to
a local rescaling of distances. In four-dimensional Minkowski space conformal symmetry
is based on the Lie algebra so(4, 2) = su(2, 2). It contains the sl(2,C) Lorentz rotations
L, L̄ and translations P which form the Poincaré algebra. In addition, there are the
dilatation D and the conformal boosts K. The extension to the superconformal algebra
consists of the internal su(4) rotations R, the supertranslations Q, Q̄ as well as the
superconformal boosts S, S̄. These generators correspond to the submatrices in (2.6).

The conformal generators P,D,K act on the coordinates xµ of Minkowski space with
metric ηµν as

Pµx
ν = iδνµ, Dxµ = ixµ, Kµxν = ixµxν − i

2
ηµνx·x. (3.1)

The action of the odd generators is rather complicated and requires the introduction of
fermionic coordinates; we refrain from spelling out the explicit form. Fields on Minkowski
space transform according to the above rules, but in addition they have intrinsic trans-
formation properties such as spin and conformal dimension. For example, the conformal
representation on a scalar primary field Φ(x) of dimension d reads

PµΦ = i∂µΦ, DΦ = idΦ+ ix·∂Φ, KµΦ = idxµΦ+ ixµx·∂Φ− i
2
x·x∂µΦ. (3.2)

Representations for fields with spin are slightly more complicated, and representations
of the complete superconformal algebra suggest the use of fields on superspace. Both of
these aspects will not be considered explicitly.

Correlators. The power of conformal symmetry is that it constrains correlation func-
tions in a conformal quantum field theory, see e.g. [9]. In particular, the spacetime
dependence of two- and three-point functions is fully determined〈

Φ1(x)Φ2(y)
〉

=
N

|x− y|2d
, (requires d1 = d2 = d),〈

Φ1(x)Φ2(y)Φ3(z)
〉

=
C123

|x− y|d1+d2−d3|y − z|d2+d3−d1|z − x|d3+d1−d2
. (3.3)
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Indices for fields with spin are typically contracted with suitable tensors, e.g. Iµν =
ηµν − 2(x − y)µ(x − y)ν/(x − y)2. The reason for complete determination is that any
three points can be mapped to any other three points by conformal transformations. The
value of the correlator at one configuration of three points thus determines the value of the
correlator at any other configuration. For four or more points there exist conformally
invariant cross ratios, e.g. |x12||x34|/|x13||x24|, on which the correlation functions can
depend without constraints. Note that there exist superconformal cross ratios of the
fermionic coordinates already for three points in superspace.4

The above constraints on correlators hold for all fields which have well-defined trans-
formation properties under superconformal symmetry. This includes the fundamental
fields (to some extent), but more importantly also composite local operators. The latter
are local products of the fundamental fields and their derivatives. In the free field the-
ory, they transform in tensor products of the fundamental field representation. Let us
therefore discuss the superconformal representations that come to use.

Fundamental Field Representation. Consider first a scalar field Φ in four dimen-
sions. In the free theory Φ obeys the conformal transformation rules (3.2) with d = 1.
For a local operator we shall need Φ and its derivatives at the point x which for conve-
nience we assume to be the origin of spacetime x = 0. In other words, we represent Φ(x)
through its Taylor series around x = 0

Φ(x) = Φ(0) + xµ∂µΦ(0) + 1
2
xµxν∂µ∂νΦ(0) + . . . . (3.4)

We can now see that the conformal representation (3.2) acts on these Taylor components
(we drop the argument x = 0):

PµΦ = i∂µΦ, DΦ = idΦ, KµΦ = 0,

Pµ∂ρΦ = i∂ρ∂µΦ, D∂ρΦ = i(d+ 1)∂ρΦ, Kµ∂ρΦ = idδµρΦ,

. . . . (3.5)

This is a lowest-weight representation, where K serves as the lowering generator to an-
nihilate the primary field Φ. The raising generator P is used to access the descendants
∂µΦ, ∂µ∂νΦ, . . . , while D essentially measures the number of derivatives.

There is one noteworthy peculiarity of the boost acting on ∂ρ∂σΦ

Kµ∂ρ∂σΦ = i(d+ 1)δµσ∂ρΦ+ i(d+ 1)δµρ∂σΦ− iηρσ∂µΦ. (3.6)

When acting on the D’Alembertian derivative ∂·∂Φ one obtains 2i(d − 1)∂µΦ which
vanishes precisely for the physical scaling dimension d = 1. This means that the lowest-
weight representation is reducible, and we should divide out a subrepresentation by
imposing the free equation of motion ∂·∂Φ = 0.

The equation of motion implies the absence of certain components in the Taylor
expansion. The enumeration of non-trivial components is most transparent when using

4The number of invariants is related to the dimension of the group, the dimension of the stabiliser
and the number of coordinates. E.g., three points in superspace have 48 fermionic coordinates, but the
group has only 32. Hence there should be 16 invariant combinations of fermionic coordinates.
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pairs of spinor indices βα̇ instead of the vector indices µ. Now a trace ηµν is replaced by
a pair of antisymmetric sl(2,C) invariants εβδεα̇γ̇. For any pair of derivatives we can thus
exclude antisymmetrisation in both pairs of spinor indices by virtue of the equations of
motion. Furthermore, due to the commutative nature of derivatives, antisymmetrisation
in just one pair of spinor indices is also zero. Effectively it means that all spinor indices
of either kind must be fully symmetrised. Such symmetrisation is automatic for states
of a four-dimensional harmonic oscillator : We can replace

∂βα̇∂δγ̇ . . . Φ ' āβāδ . . . b̄α̇b̄γ̇ . . . |0〉, (3.7)

where the algebra of creation and annihilation operators is defined through the non-trivial
commutation relations

[aα, āγ] = iδαγ , [bα̇, b̄γ̇] = iδα̇γ̇ , {ca, c̄c} = δac . (3.8)

Here we have added a set of four fermionic oscillators c which make the generalisation to
all fields of N = 4 straight-forward: States have up to four excitations of c̄ transforming
in the su(4) representations 1,4,6, 4̄,1, respectively. This matches precisely with the
representations of the chiral part of the gauge field strength Γαγ, the chiral fermions
Ψαc, the scalars Φac, the antichiral fermions Ψ̄ cα̇ and the antichiral field strength Γ̄α̇γ̇.

5

Altogether, for every state of the supersymmetric oscillator, subject to the constraint

Na −Nb + Nc ' 2, (3.9)

there is exactly one Taylor component of the on-shell fundamental fields of N = 4 SYM
[10]. The excitation number operators are defined as Na := −iāαaα, Nb := −ib̄α̇bα̇,
Nc := c̄ac

a.
The oscillator basis is also particularly convenient for the superconformal algebra:

All the generators are represented through bilinears in the oscillators:

Lαγ ' āγa
α − 1

2
δαγ āεa

ε, Ra
c ' c̄cc

a − 1
4
δac c̄ec

e,

L̄γ̇
α̇ ' bα̇b̄γ̇ − 1

2
δα̇γ̇bε̇b̄ε̇, D ' 1

2
āαa

α + 1
2
bα̇b̄α̇,

Pγα̇ ' āγb̄α̇, Kγα̇ ' bα̇aγ,

Qa
γ ' āγc

a, Sγa ' c̄aa
γ,

Q̄γ̇a ' c̄ab̄γ̇, S̄γ̇a ' bγ̇ca. (3.10)

These satisfy the psu(2, 2|4) algebra along with its reality conditions provided that

(āα)† = b̄α̇, (aα)† = bα̇, (c̄a)
† = ca. (3.11)

The algebra extends to u(2, 2|4) by introducing a derivation B ' c̄ac
a and a central

charge C ' −iāαaα + ibα̇b̄α̇ + c̄ac
a. The constraint (3.9) is equivalent to the vanishing

of the central charge, hence the above form a consistent representation of psu(2, 2|4).

5 The field strength Γµν with antisymmetric vector indices decomposes into two complex conjugate
fields Γαγ and Γ̄α̇γ̇ with symmetric spinor indices. Similarly, a real so(6) vector of fields Φm is equivalent
to a field Φac with antisymmetric su(4) indices and reality condition Φac = 1

2εacbdΦ̄
bd.
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Figure 3: Field multiplet [0; 0; 0, 1, 0; 0; 0] (top component Φ at d = 1) and
current multiplet [0; 0; 0, 2, 0; 0; 0] (top component O at d = 2). Each dot corre-
sponds to a field of su(2, 2) ⊕ su(4): The two su(2) spins are indicated by hori-
zontal/vertical bars, while the su(4) representation is indicated through Dynkin
labels. SW/SE arrows correspond to the action of the Poincaré supercharges
Q/Q̄.

Note that the above construction remains applicable to the interacting theory for
the sake of enumerating local composite operators: The r.h.s. of the equation of motion
∂·∂Φ = . . . is not zero, but it is a product of fields which is already accounted for in the
basis of local operators. Furthermore, to maintain proper gauge transformation proper-
ties, partial derivatives should be replaced by their covariant counterparts. Consequently,
antisymmetries of derivatives are no longer excluded. They lead to commutators with
the field strength, which are again accounted for in the basis of local operators. The
only change in the quantum theory is that the representation on composite operators is
deformed in a specific way, see the chapters [11]. For example, the scaling dimensions of
composite operators generically receive continuous quantum corrections.

Composite Operator Multiplets. Composite operators are local products of the
fundamental fields and hence they transform in tensor products of the above representa-
tion. Tensor products of lowest-weight representations typically decompose into sums of
lowest-weight representations. Thus composite operators form multiplets each of which
has a primary field.

The simplest non-trivial local operator is a traceless combination of two scalars6

Omn = ΦmΦn − 1
6
δmnΦpΦp transforming as (1,1; 20; d = 2) under sl(2,C), su(4) and

dilatations. It is annihilated by K, S, S̄ and hence it is the primary field for a multiplet
of local operators, cf. Fig. 3. This multiplet is very important because it contains all
the conserved currents for N = 4 SYM: the su(4) Noether current Jm

µn transforming as
(2,2; 15; d = 3), the supersymmetry currents Saµγ, S̄µbγ̇ transforming as (3,2; 4; d = 3.5)
and (2,3; 4̄; d = 3.5) and the energy-momentum tensor Tµν transforming as (3,3; 1; d =
4). The currents define all Noether charges for psu(2, 2|4), e.g.

Ra
b ∼

∫
d3xJm

0n, Qa
γ ∼

∫
d3xSa0γ, Pµ ∼

∫
d3x T0µ. (3.12)

6In a gauge theory one should pick a gauge-invariant combination.
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Moreover, the multiplet contains two scalars Lkin,Ltop of dimension d = 4. These are
exactly the parity-even kinetic and parity-odd topological parts of the Lagrangian density

Lkin = −1
4
Γ µνΓµν + 1

2
∂µΦm∂µΦm + . . . , Ltop = 1

8
εµνρσΓµνΓρσ. (3.13)

Next let us consider the labelling of representations for local operators. A lowest-
weight representation is characterised by its primary field. The latter is characterised
by the sl(2,C) spin, the su(4) representation and the conformal dimension d. For
instance the primary field Φm of the fundamental field representation transforms as
(1,1; 6; d = 1) while the primary field Omn of the energy-momentum representation
transforms as (1,1; 20; d = 2). This characterisation is analogous to the discussion of
unitary representations of su(4) in Sec. 2. The only difference is that the representation
on the Taylor expansion of local operators is not unitary :7 Surely sl(2,C) has no finite-
dimensional unitary representations and also the dilatation generator D has imaginary
eigenvalues, cf. (3.5). The point is that the Taylor components are not normalisable in
the scalar product defining unitarity. Nevertheless, there is a one-to-one map between
representations for local operators and unitary representations. It uses the following
complex conformal transformation of Minkowski space

(t, x, y, z) 7→ 2r−1(iw, x, y, z) with w = 1− 1
4
x·x and r = 1− it+ 1

4
x·x. (3.14)

It maps the dilatation generator to D 7→ iH where H is the generator of the decompact-
ified u(1) discussed in Sec. 2, so the scaling dimension d maps to the energy eigenvalue
E. Also the Lorentz algebra sl(2,C) is mapped to su(2)⊕ su(2) which is commonly used
to classify the spin of fields in four dimensions. For all practical purposes the complex
nature of the above conformal transformation is harmless in a perturbative quantum
field theory where one commonly continues into complex time directions anyway. There-
fore one often works with a dilatation generator D′ = −iD whose spectrum is real and
with su(2) ⊕ su(2) Lorentz generators L′ and L̄′. Hence one can classify multiplets of
local operators through unitary representation of psu(2, 2|4). For instance the funda-
mental field and energy-momentum multiplets have Dynkin labels [0; 0; 0, 1, 0; 0; 0] and
[0; 0; 0, 2, 0; 0; 0], respectively. Note that, the representations [0; 0; 0, p, 0; 0; 0] are excep-
tionally short; the lowest state is annihilated by (at least) half of the supertranslations
and hence the multiplet is called half-BPS.

Multiplet Splitting. Scaling dimensions d for unitary representations can take ar-
bitrary real values above a certain unitarity bound, cf. (2.10). Therefore, the scaling
dimension typically varies smoothly with the coupling constant of the quantum theory.
However, representations at the lower bounds (2.10) have fewer components in general.
For example, the scaling dimension for half-BPS representations [0; 0; 0, p, 0; 0; 0] is fixed
to d = p and cannot depend on the coupling.

Nevertheless, there is an option to combine two or more short representations at the
lower bound into a long representation whose scaling dimension can then be increased

7Thanks to Gleb Arutyunov and Stefan Fredenhagen for helpful discussions regarding this issue. See
also [12] for implications on local operators, correlation functions, string states and their duality.
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|1〉 |2〉

c12 ∼
√
d− d0

c21 ∼
√
d− d0 c© 2010 Niklas Beisert~

Figure 4: Multiplet splitting at the unitarity bound.

smoothly. This process called multiplet joining (or multiplet splitting in reverse) is an
analog of the Higgs effect where a massless vector particle combines with a massless
scalar particle to form a massive vector. The set of local operators in N = 4 SYM has
the exceptional feature that almost all short multiplets of the classical theory can be
combined into long multiplets in the quantum theory. Only few short multiplets have no
partner (such as all half-BPS multiplets [0; 0; 0, p, 0; 0; 0]) and their scaling dimensions
are therefore protected from quantum corrections.

Multiplet splitting takes place at the unitarity bound, cf. Fig. 4: Consider a long
multiplet which decomposes into two short multiplets at d = d0. The representation of
some generator J acts on states |1〉, |2〉 of the submultiplets qualitatively as follows

J|1〉 = c12|2〉+ . . . , J|2〉 = c21|1〉+ . . . . (3.15)

The algebra relations imply that c12c21 ∼ (d − d0) because splitting at d = d0 requires
c12 = 0 or c21 = 0. Unitarity furthermore implies c12 ∼ c∗21 hence c12 ∼ c21 ∼

√
d− d0.

Therefore at d = d0 the reality properties of the representation necessarily change, i.e.
d ≥ d0 is a unitarity bound.

4 Isometries of the AdS5 × S5 Superspace

Supersymmetric strings require a ten-dimensional supergravity background as the space
on which they can consistently propagate. Next to a flat spacetime there exist two
more maximal supersymmetric backgrounds. One of them is the AdS5 × S5 superspace.
According to the AdS/CFT correspondence this string theory is exactly dual to conformal
N = 4 SYM on Minkowski space being the boundary of AdS5 × S5, see [13] for an
extended review. In the following we shall discuss this superspace, its boundary and its
isometries which are generated by the algebra psu(2, 2|4).

AdS Spacetime. We start by defining the anti de Sitter spacetime AdSn+1 leaving n
generic for the time being. This (n + 1)-dimensional spacetime has homogeneous neg-
ative curvature in close analogy to hyperbolic space Hn+1. Similar space(time)s with
homogeneous positive curvature are the de Sitter spacetime dSn+1 and the sphere Sn+1

(to which we shall frequently contrast AdSn+1). There are several equivalent construc-
tions which we shall now review. One can embed it into Rn,2 as single-shell hyperboloid
specified by

AdSn+1 =
{
X ∈ Rn,2

∣∣X·X = −1
}
, Sn+1 =

{
Y ∈ Rn+2

∣∣Y ·Y = +1
}
. (4.1)
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The metric is induced from the flat metric on Rn,2 losing one time-like direction due to
the condition X·X = −1. An obvious alternative description uses time-like rays [X] in
Rn,2

AdSn+1 =
{

[X]
∣∣X ∈ Rn,2, X·X < 0

}
, where [X] = [Y ] iff X = zY with z ∈ R+.

(4.2)
The points X or rays [X] transform canonically under SO(n, 2) and they are stabilised
by a SO(n, 1) subgroup. Consequently, AdSn+1 can be viewed as the coset space

AdSn+1 = SO(n, 2)/SO(n, 1), Sn+1 = SO(n+ 2)/SO(n+ 1). (4.3)

Thus the group of isometries of AdS5 is SO(4, 2). Due to the presence of fermions,
one should promote the orthogonal to spin groups. For n = 4 the group identities
Spin(4, 2) = SU(2, 2) and Spin(4, 1) = Sp(1, 1) furthermore allow to write

AdS5 = SU(2, 2)/Sp(1, 1), S5 = SU(4)/Sp(2). (4.4)

Coordinates. There exist several choices of coordinates on AdSn+1 which are useful
in different situations. One is an analog of angle coordinates on the sphere: Using
trigonometric functions it is straight-forward to construct a vector X ∈ Rn,2 with X·X =
−1 (we shall use the signature −−+ . . .+)

X = (secσ cos τ, secσ sin τ, tanσ Ω), (4.5)

where Ω ∈ Sn−1 ⊂ Rn is a unit vector and ρ ∈ [0, 1
2
π), τ ∈ [0, 2π). The induced metric

reads
ds2 = sec2 σ (dσ2 − dτ 2) + tan2 σ dΩ2. (4.6)

On the coordinates Ω and τ the maximal compact subgroup SO(n)× SO(2) acts canon-
ically. The remaining 2n directions of SO(n, 2) act non-trivially.

A useful alternative is Poincaré-type coordinates x ∈ Rn−1,1, y ∈ R+ with the Rn,2
embedding

X = y−1
(

1
2
(x·x+ y2 + 1), x, 1

2
(x·x+ y2 − 1)

)
. (4.7)

These coordinates reveal the conformally flat nature of the AdSn+1 metric

ds2 = y−2(dx·dx+ dy2). (4.8)

A Poincaré subgroup of SO(n, 2) acts on the x while the corresponding dilatations act as
simultaneous scaling of x and y by the same factor. Special conformal transformations
mix up x and y non-trivially

δx ∼ x(ε·x)− 1
2
ε(x·x+ y2), δy ∼ y(ε·x). (4.9)

Finally we note that isometries of AdSn+1 also include reflections in Rn,2. For exam-
ple, a reflection in the first component of the above X corresponds to an inversion of
time τ or a conformal inversion of the coordinates (x, y) ∈ Rn,1

τ 7→ π − τ, (x, y) 7→ − (x, y)

x·x+ y2
. (4.10)
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AdSn+1/Z2
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Figure 5: Anti de Sitter space. The infinitely extended solid cylinder represents
the universal cover ÃdSn+1 (light grey). AdSn+1 is obtained by identifying seg-
ments of time ∆τ = 2π (medium grey). The Poincaré patch AdSn+1/Z2 covers

half of AdSn+1 (dark grey). The boundary ∂ÃdSn+1 = R × Sn−1 is the outer
shell of the cylinder.

Universal Cover. In (4.5) it is clear that the time coordinate τ is periodic: τ ≡ τ+2π.
Closed time-like curves are inconvenient for physical applications, but luckily they can
be removed by lifting to the universal cover ÃdSn+1 on which a physical model can be
defined. Hence the coordinates (τ, σ,Ω) with non-periodic τ ∈ R define a global chart for

ÃdSn+1 which has the topology of an infinitely extended solid cylinder, see Fig. 5. The
natural embedding into Rn,2 identifies τ with τ + 2πZ and leads to AdSn+1. Moreover,
the Poincaré-type coordinates in (4.7) cover only half of AdSn+1. More precisely, if θ is
the angle between Ω and Ω0 = (0, . . . , 0, 1), then the Poincaré patch is a wedge of the
cylinder around τ = 0 defined by the inequality cos τ > sinσ cos θ, cf. Fig. 5.

The universal cover ÃdSn+1 also has a direct formulation as a coset: The groups
SO(n, 2) and SU(2, 2) have non-trivial coverings because their maximal compact sub-
groups contain the non-simply connected factors SO(2) and U(1), respectively. The
covering of AdSn+1 is thus defined as

ÃdSn+1 = S̃O(n, 2)/Spin(n, 1), ÃdS5 = S̃U(2, 2)/Sp(1, 1). (4.11)

The universal covers S̃O(n, 2) and S̃U(2, 2) are physically relevant because they allow
representations with arbitrary real energies as compared to integer values for SO(n, 2)
and SU(2, 2).

Boundary of AdS. The boundary ∂AdSn+1 of AdSn+1 is a n-dimensional spacetime.
It can be viewed as the space of light-like rays [X] in Rn,2, cf. (4.2)

∂AdSn+1 =
{

[X]
∣∣X ∈ Rn,2, X·X = 0

}
, where [X] = [Y ] iff X = zY with z ∈ R+.

(4.12)
In the above coordinates of AdSn+1 it is located at σ = 1

2
π or at y = 0. From (4.12) the

topology of the AdSn+1 boundary follows

∂AdSn+1 = S1 × Sn−1, ∂ÃdSn+1 = R× Sn−1. (4.13)

519



Chapter VI.1: Superconformal Symmetry

While the topology S1 of time in ∂AdSn+1 is periodic, the boundary of the universal cover

ÃdSn+1 has no closed time-like curves. Consequently it is the outer shell of the solid

cylinder ÃdSn+1. The metric of Rn,2 can be used to measure angles, but not distances
on the boundary, hence it merely induces a conformal metric on ∂AdSn+1

ds2 ' −dτ 2 + dΩ2 ' dx·dx. (4.14)

In other words the boundary is conformally flat. This is manifest in the Poincaré coordi-
nates (4.7) x ∈ Rn−1,1 (with y = 0) on which S̃O(n, 2) acts by conformal transformations
(3.1).

Note that the boundary is at infinite distance to all points of AdSn+1 (similarly to
hyperbolic space Hn+1 and its boundary ∂Hn+1 = Sn). Nevertheless the boundary can
interact with the bulk at finite times: A light ray originating from σ = τ = 0 reaches
the boundary σ = 1

2
π at τ = 1

2
π, cf. (4.6). From there it travels back to the point σ = 0

at time τ = π.

AdS5 × S5 Superspace. The AdS5 × S5 superspace is an extension of ÃdS5 and S5

by 32 fermionic directions. It is very conveniently expressed as a coset space: The groups
SU(2, 2) and SU(4) for the definition AdS5 and S5 in (4.4) combine into the supergroup
PSU(2, 2|4) which has 32 fermionic directions. Dividing by the bosonic denominator
groups in (4.4) one obtains the full superspace

ÃdS5 × S5 × C0|16 =
P̃SU(2, 2|4)

Sp(1, 1)× Sp(2)
. (4.15)

The curvature radii of the ÃdS5 and S5 subspaces are equal but opposite, such that the
overall scalar curvature vanishes.

In view of the AdS/CFT correspondence, we shall consider the boundary of this su-
perspace. The sphere S5 is closed and the fermionic space C0|16 has trivial topology such
that the overall boundary originates from the ÃdS5 factor alone. In the spherical coordi-
nates (4.5), it resides at σ = 1

2
π. Let us approach the boundary with a codimension-one

surface at a fixed σ near σ = 1
2
π. This surface has the topology R × S3 × S5 × C0|16.

According to (4.6) the radius of the S3 is tanσ while the radius of the S5 factor is con-
stantly 1. Hence at the boundary the S5 shrinks to a point in comparison to the S3.
This means that, for some physical purposes, the boundary of the AdS5 × S5 spacetime
is effectively the boundary of ÃdS5 alone, i.e. R×S3. (A patch of) this spacetime is con-
formally equivalent to Minkowski space R3,1. The boundary of the AdS5×S5 superspace
has additional fermionic coordinates to make up a conformally flat N = 4 superspace.

Coset Space Sigma Model. In string theory isometries of the background spacetime
become conserved Noether charges. This becomes obvious in the construction of a coset
space sigma model, see the chapter [14]. Thus the group of global symmetries of super-

strings on AdS5×S5 is P̃SU(2, 2|4). It should be noted that the coset space sigma model
construction not only provides the correct target space metric, but also a non-trivial
superspace torsion and five-form supergravity flux coupling to the string worldsheet.
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The AdS5 × S5 coset has a couple of exceptional features which make it a suitable
background for a consistent quantum string theory: First of all, it has 10 bosonic and
32 fermionic coordinates. Furthermore the worldsheet theory on this coset has 16 kappa
symmetries to reduce the effective number of fermionic coordinates to 16. Finally, the
Killing form for PSU(2, 2|4) vanishes identically as required for conformal symmetry on
the worldsheet. Only few cosets share these features, cf. [15].
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Chapter VI.2: Yangian Algebra

1 Introduction

Despite the success obtained so far by the integrability program, many questions are
left unanswered. Most notably, the problem remains of understanding what is the non-
perturbative definition of the model that seems to reproduce so well all the available
data [1]. Answering this question may also be important for a deeper understanding
of the finite-size problem and its solution. An essential role in this respect is played
by the symmetries of the factorized S-matrix. A clear sign is the presence of a Hopf
algebra [2, 3], then promoted to a Yangian [4]. In relativistic integrable quantum field
theories, symmetries like the Yangian or quantum affine algebras completely determine
the tensorial part of the S-matrix, up to an overall scalar factor. They also entail impor-
tant consequences for the transfer matrices and for the Bethe equations [5]. This happens
also in the AdS/CFT case [6, 7]. However, the AdS/CFT Yangian has very distinctive
features still preventing a full mathematical understanding. For instance, there exists
an additional Yangian symmetry of the S-matrix [8, 9] with properties not yet entirely
understood, pointing to a new type of quantum group1. In order to give an ultimate
solution of the AdS/CFT integrable system, one needs to understand the features of this
novel quantum group, and of the associated quantum integrable model. The scope of
this review is illustrating such group-theory aspects.

2 Hopf Algebras

Let us begin by recalling a few concepts in the theory of Hopf algebras, as these are very
important algebraic structures appearing in the context of integrable models. We will
attempt to motivate these concepts mostly from the physical viewpoint, and refer the
reader to standard textbooks, such as [11], for a thorough treatment.

The starting point is the algebra of symmetries of a system. Let us consider the
case when this algebra is a Lie (super)algebra g, and let us also consider its universal
enveloping algebra A ≡ U(g). This step allows us to ‘multiply’ generators, besides taking
the Lie bracket. In such universal enveloping algebra there is a unit element 1 with
respect to the multiplication map µ. We think about multiplication as µ : A ⊗ A → A,
and we introduce a unit map η : C→ A. A few compatibility conditions on these maps
guarantee that we are dealing with the physical symmetries of, say, a single-particle
system.

In order to treat multiparticle states, we equip our algebra with two more maps, and
obtain a bialgebra structure. One map is the coproduct ∆ : A → A ⊗ A, which tells
us how symmetry generators act on two-particle states. The other map is the counit
ε : A → C. A list of compatibility axioms ensures that these maps are consistent with
the (Lie) (super)algebra structure, so we can safely think of them as the symmetries we
started with, just acting on a Fock space. In fact, for a generic n-particle state, we can
generalize the action of the coproduct as the composition ∆n = ...(∆⊗ 1⊗ 1)(∆⊗ 1)∆.
The coassociativity axiom

(∆⊗ 1)∆ = (1⊗∆)∆ (2.1)

1The relation with Yangian symmetry in n-p.t amplitudes [10] is also a fascinating problem.
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guarantees that a change in the positions of the ∆’s in the sequence ∆n is immaterial.
One more map turns our structure into a Hopf algebra. This map is the antipode

Σ : A → A, which is needed to define antiparticles (conjugated representations of the
symmetry algebra). Therefore, the antipode should also be consistent with the (Lie)
(super)algebra structure2, and be compatible with the coproduct action. If a bialgebra
admits an antipode, it is unique.

In the scattering theory of integrable models, the fundamental object encoding the
dynamics is the two-particle S-matrix, which exchanges the momenta of the two particles,
and reshuffles their colors. One has therefore the possibility of defining the coproduct
action as acting on, say, in states. Likewise, the composed map P∆ ≡ ∆op, with P
the permutation map, will act on out states. The discovery of quantum groups revealed
that these two actions need not be the same. They are the same only for cocommutative
Hopf algebras, one example being the Leibniz rule ∆(a) = a ⊗ 1 + 1 ⊗ a one normally
associates with local actions. In general, coproducts can be more complicated, as we will
amply see in what follows3.

However, as ∆ and ∆op produce tensor product representations of the same dimen-
sions, they may be related by conjugation via an invertible element (the S-matrix itself).
The Hopf-algebra is then said to be quasi-cocommutative, and, if the S-matrix satisfies an
additional condition (‘bootstrap’ [12]), it is called quasi-triangular. The S-matrix must
also be compatible with the antipode map, a condition that in physical terms goes under
the name of crossing symmetry. One can prove that bootstrap implies that the S-matrix
satisfies the Yang-Baxter equation and the crossing condition.

As one can easily realize, the framework of Hopf algebras is particularly suitable
for dealing with integrable scattering. Integrability reduces the scattering problem to
an algebraic procedure, and the axioms we have been discussing just formalize that
procedure. However, instead of being a mere translation, the mathematical framework of
Hopf algebras provides a set of powerful theorems that unify the treatment of arbitrary
representations. To this purpose, the notion of universal R-matrix is very important.
This is an abstract solution to the quasi-cocommutativity condition, purely expressed in
terms of algebra generators. This solution gives an expression for the S-matrix which is
therefore free from a particular representation, at the same time being valid in any of
them upon plug-in. As we will explicitly see in what follows, the study of the properties
of the universal R-matrix reveals a big deal about the structure of the (hidden) symmetry
algebra of the integrable system.

3 Yangians

Let g be a finite dimensional simple Lie algebra with generators JA, structure constants
fABC defined by [JA, JB] = fABC JC and a non-degenerate invariant bilinear form κAB. The
Yangian Y(g) of g is a deformation of the universal enveloping algebra of half of the loop

2Being the antipode connected to conjugation, one imposes Σ(ab) = (−)abΣ(b)Σ(a), where multipli-
cation is via the map µ.

3This is another reason why the Coleman-Mandula theorem does not apply to the S-matrices we will
be discussing (besides being in 1 + 1 dimensions).
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algebra of g. The loop algebra is defined by (4.5), ”half” meaning non-negative indices
m,n. Drinfeld gave two isomorphic realizations of the Yangian4. The first realization [18]
is as follows. Y(g) is defined by relations between level zero generators JA and level one

generators ĴA:

[JA, JB] = fABC JC , [JA, ĴB] = fABC ĴC . (3.1)

The generators of higher levels are derived recursively by computing the commutant,
subject to the following Serre relations (for g 6= su(2)):

[ĴA, [ĴB, JC ]] + [ĴB, [ĴC , JA]] + [ĴC , [ĴA, JB]] =
1

4
fAGD fBHE fCKF fGHKJ{DJEJF}. (3.2)

Indices are raised (lowered) with κAB (its inverse). The Yangian is equipped with a Hopf
algebra structure. The coproduct is uniquely determined for all generators by specifying
it on the level zero and one generators as follows:

∆(JA) = JA ⊗ 1+ 1⊗ JA, ∆( ĴA) = ĴA ⊗ 1+ 1⊗ ĴA +
1

2
fABCJB ⊗ JC . (3.3)

Antipode and counit are easily obtained from the Hopf algebra definitions5. We will
not present here Drinfeld’s second realization of the Yangian [19], which is suitable for
constructing the universal R-matrix [20]. It suffices to say that it explicitly solves the
recursion implicit in the first realization.

3.1 The psu(2, 2|4) Yangian

Generically, the level zero local generators are realized on spin-chains as

JA =
∑
k

JA(k), k ∈ {spin− chain sites}. (3.4)

For infinite length, the level one Yangian generators are bilocal combinations

ĴA =
∑
k<n

fABC JB(k) JC(n). (3.5)

The relationship with the coproduct (3.3) will be clear later when discussing the Principal
Chiral Model. Level n generators are n+ 1-local expressions. At finite length, boundary
effects usually prevent from having conserved charges such as (3.5), while Casimirs of
the Yangian may still be well-defined. We refer to [21] for a review.

The N = 4 SYM spin-chain is based on the superconformal symmetry algebra
psu(2, 2|4). The Yangian charges for infinite length have been constructed, at leading

4The reader is referred to e.g. [11, 13–15] for a thorough treatment. We will not discuss the ‘RTT’
realization, see e.g [16, 15]. For generalizations to Lie superalgebras, see e.g. [17].

5Via a rescaling of the algebra generators, one can make a parameter (say, ~) appear in front of the
mixed term 1

2f
A
BCJB ⊗JC in the Yangian coproduct (3.3). This parameter is sometimes useful as it can

be made small, as in the classical limit, cf. section 3.
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order in the ’t Hooft coupling, in [22]. The Serre relations for the relevant representations
have been proved in [23]. In [24] the first two Casimirs of the Yangian are computed and
identified with the first two local abelian Hamiltonians of the spin-chain with periodic
boundary conditions.

Perturbative corrections to the Yangian charges in subsectors have been studied in
[25–27]. The integrable structure of spin-chains with long-range (LR) interactions, like
the one emerging from gauge perturbation theory, lies outside the established picture [28],
but a large class of LR spin-chains has been shown to display Yangian symmetries, see
also [29]. In absence of other standard tools, Yangian symmetry provides a formal proof
of integrability order by order in perturbation theory. The two-loop expression of the
Yangian (3.5) for the su(2|1) sector has been derived in [26]. In [27], a large degeneracy
of states in the psu(1, 1|2) sector is explained via nonlocal charges related to the loop-
algebra of the su(2) automorphism of psu(1, 1|2). Further references include [30]. For a
recent review we recommend [31].

Higher non-local charges analogous to (3.5) emerge in 2D classically integrable field
theories [32]. If not anomalous, their quantum versions [33] form a Yangian. E.g., for
the Principal Chiral Model

d

dt
ĴA =

d

dt

∫ ∞
−∞

dx
[
εµν J

ν,A +
1

2
fABC J

B
µ

∫ x

−∞
dx′ JC0 (x′)

]
= 0, (3.6)

where JA are Noether currents for the global (left or right) group multiplication.
The classical integrability of the Green-Schwarz superstring sigma model in the

AdS5 × S5 background has been established in [34]. The corresponding infinite set of
nonlocal classically-conserved charges is found according to a logic very close to the
one described above (similar observations for the bosonic part of the action were made
in [35]). Further work can be found in [36].

We conclude with a remark on the Hopf algebra structure of the nonlocal charges. How charges (3.6) can give rise to
the coproduct (3.3) is shown in [37]. A semiclassical treatment [38] is as follows. One imagines two well-separated solitonic
excitations as the classical version of a scattering state. Soliton 1 is localized in the region (−∞, 0), soliton 2 in (0,∞).
Defining the semiclassical action of a charge on such solution as evaluation on the profile, one splits the current-integration
in individual domains relevant for each of the two solitons, respectively:

JA|profile =

∫ ∞
−∞

dx JA0 |profile =

∫ 0

−∞
dx JA0 +

∫ ∞
0

dx JA0 −→ ∆(JA) = JA ⊗ 1 + 1⊗ JA,

ĴA|profile =
[ ∫ 0

−∞
dx JA1 +

1

2
fABC

∫ 0

−∞
dx JB0 (x)

∫ x

−∞
dy JC0 (y)

]
+
[ ∫ ∞

0
dx JA1 +

1

2
fABC

∫ ∞
0

dx JB0 (x)

∫ x

0
dy JC0 (y)

]
+

1

2
fABC

∫ ∞
0

dx JB0 (x)

∫ 0

−∞
dy JC0 (y). (3.7)

Upon quantization in absence of anomalies this gives (3.3) on the Hilbert space.

3.2 The centrally-extended psu(2|2) Yangian

In the previous section, we have described how algebraic structures related to integrabil-
ity arise at the two perturbative ends of the AdS/CFT correspondence. To fully exploit
these powerful symmetries one needs to take a further step, which allows to go beyond
the perturbative regimes. One introduces the choice of a vacuum state, and considers
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excitations upon this vacuum. This choice breaks the full psu(2, 2|4) symmetry down to
a subalgebra. The excitations carry the quantum numbers of the unbroken symmetry,
and they scatter via an integrable S-matrix.

The choice that is normally made is, for instance, to consider a string (composite
operator) of Z fields (one of the three complex combinations of the six scalar fields
of N = 4 SYM) as the vacuum state. The unbroken symmetry consists then of two
copies of the psu(2|2) Lie superalgebra, which receive central extensions through quantum
corrections. The same algebra appears on the string theory side. The excitations carrying
the unbroken quantum numbers are called magnons, in analogy to the theory of spin-
chains and magnetism.

3.2.1 The Hopf algebra of the S-matrix

Upon choosing a vacuum, the residual symmetry carried by the magnon excitations is
(two copies of) the centrally extended psu(2|2) Lie superalgebra (or psu(2|2)c):

[L b
a , Jc] = δbcJa − 1

2
δbaJc, [R β

α , Jγ] = δβγJα − 1
2
δβαJγ,

[L b
a , Jc] = −δcaJb + 1

2
δbaJc, [R β

α , Jγ] = −δγαJβ + 1
2
δβαJγ,

{Q a
α ,Q b

β } = εαβε
abC, {S α

a , S
β
b } = εαβεabC†,

{Qa
α,S

β
b } = δabR β

α + δβαL a
b + 1

2
δab δ

β
αH.

(3.8)

The generators R β
α and L b

a form the two su(2) subalgebras which, together with the
central elements {H,C,C†}, form the bosonic part of psu(2|2)c. The names are remi-
niscent of the unbroken R- and Lorentz symmetry of the model. The fermionic part is
generated by the supercharges Qa

α and Sβb . The ‘dagger’ symbol is to remember that,
in unitary representations, the two charges are indeed conjugate of each other, and a
similar conjugation condition holds for the supercharges.

The representation of [39] gives a dynamical spin-chain, i.e. sites can be created/de-
stroyed by the action of the generators. The central charges act as

H |p〉 = ε(p) |p〉, C |p〉 = c(p) |pZ−〉, C† |p〉 = c̄(p) |pZ+〉, (3.9)

where Z+(−) adds (removes) one ‘site’ (i.e., one of the scalar fields Z in the infinite
string that constitutes the vacuum state) to (from) the chain. We denote as |p〉 the one-
magnon state of momentum p. This state is given by |p〉 =

∑
n e

ipn | · · ·Z Z φ(n) Z · · · 〉,
φ being one of the 4 possible orientations of the ‘spin’ in the fundamental representation
of psu(2|2)c. The eigenvalue ε(p) is the energy (dispersion relation) of the magnon
excitation. As we will shortly see, c(p) contains the exponential of the momentum p
itself. So does c̄(p), which in unitary (alias, real-momentum) representations is just the
conjugate of c(p).

The length-changing property can be interpreted, at the Hopf algebra level, as a
nonlocal modification of the (otherwise trivial) coproduct [3]. Let us spell out the case
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of the central charges. When acting on a two-particle state, one computes

C⊗ 1 |p1〉 ⊗ |p2〉 =

C⊗ 1
∑

n1<<n2

ei p1 n1 + i p2 n2 | · · ·Z Z φ1 Z · · ·Z︸ ︷︷ ︸
n2−n1−1

φ2 Z · · · 〉 =

(rescaling n2) = c(p1) eip2 |p1〉 ⊗ |p2〉. (3.10)

This action is non-local, since acting on the first magnon (with momentum p1) produces
a result which also depends on the momentum p2 of the second magnon.

We must now impose compatibility of the S-matrix with the symmetry algebra carried
by the excitations. Imposing such S-matrix invariance condition ∆(C)S = S∆(C) implies
computing

S ∆(C) = S [C⊗ 1+ 1⊗ C] = S [eip2Clocal ⊗ 1+ 1⊗ Clocal], (3.11)

where Clocal is the local part of C, acting as Clocal|p〉 = c(p)|p〉. An analogous argument
works for ∆(C)S. One can rewrite (3.11) as

∆(Clocal) = Clocal ⊗ eip + 1⊗ Clocal. (3.12)

Formula (3.12) is the manifestation of a non-trivial Hopf-algebra coproduct6. Similarly,
to all (super)charges of psu(2|2)c, one assigns an additive quantum number [[A]] s.t.

∆(JA) = JA ⊗ ei[[A]]p + 1⊗ JA, (3.13)

which gives a (Lie) superalgebra homomorphism. Counit and antipode are derived from
the Hopf algebra axioms, and the whole structure defines a consistent Hopf algebra. The
S-matrix invariance should be written as

∆opR = R∆ (3.14)

(quasi-cocommutativity), where the invertible R-matrix is defined as R = PS, P being
the graded permutation. There is a consistency requirement: since ∆(C) is central,

∆op(C)R = R∆(C) = ∆(C)R =⇒ ∆op(C) = ∆(C). (3.15)

This is guaranteed by interpreting as algebraic condition the physical requirement

U ≡ eip 1 = κC + 1 (3.16)

for a constant κ related to the coupling g [39].
A version of the coproduct (3.13) was shown to emerge from the dual worldsheet

string-theory. In [40], the result was reproduced by applying the standard Bernard-
LeClair procedure [37] to the light-cone worldsheet Noether charges obtained in [41].

6We remark that a (nonlocal) basis change for spin-chain states can produce eip factors in different
places in the coproduct (possibly with a different power), with no deep consequences.
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A semi-classical argument, based on the same reasoning presented at the end of section 3, is as follows. The light-cone
worldsheet Noether supercharges have nonlocal contributions in the physical fields:

JA =

∫ ∞
−∞

dσ JA0 (σ) e
i [[A]]

∫ σ
−∞ dσ′ ∂x−(σ′)

. (3.17)

If we consider, as before, two well-separated soliton excitations, the semiclassical action of these charges on such a
scattering state is again obtained by splitting the integrals:

JA|profile =

∫ ∞
−∞

dσ JA0 (σ)|profile e
i [[A]]

∫ σ
−∞ dσ′ ∂x−(σ′)|profile

=

∫ 0

−∞
dσ JA0 (σ)e

i [[A]]
∫ σ
−∞ dσ′ ∂x−(σ′)

+

∫ ∞
0

dσ JA0 (σ) e
i [[A]]

∫ 0
−∞ dσ′ ∂x−(σ′)

ei [[A]]
∫ σ
0 dσ′ ∂x−(σ′)

∼ JA1 + ei[[A]] p1JA2 −→ ∆(JA) = JA ⊗ 1 + ei[[A]] p ⊗ JA, (3.18)

where one has used the definition of the worldsheet momentum for the first excitation.

From the Hopf-algebra antipode Σ one derives derive the so-called ‘antiparticle’ rep-
resentation J̃A and the corresponding charge-conjugation matrix C:

Σ(JA) = C−1 [ J̃A]stC, (3.19)

where M st is the supertranspose of M . These are the ingredients entering the crossing-
symmetry relations originally written down in [2], where the existence of an underlying
Hopf-algebra of the S-matrix was conjectured. The antiparticle representation and the
constraints on the overall scalar factor of the S-matrix as found in [2], naturally follow
from (3.19) combined with the general formulas

(Σ⊗ 1)R = (1⊗ Σ−1)R = R−1, (3.20)

where the antipode is derived from the coproduct (3.13).
A reformulation in terms of a Zamolodchikov-Faddeev (ZF) algebra has been given in

[42]. There, the basic objects are creation and annihilation operators, with commutation
relations given in terms of the S-matrix. Also, a q-deformation of this structure and of
the one-dimensional Hubbard model is studied in [43].

3.2.2 The Yangian of the S-matrix

The S-matrix in the fundamental representation has been shown to possess psu(2|2)c
Yangian symmetry [4]. In order to be a Lie superalgebra homomorphism, the coproduct
should respect (3.1). Therefore, the structure of the Yangian coproduct has to take into
account the deformation in (3.13):

∆(ĴA) = ĴA ⊗ 1+ U [[A]] ⊗ ĴA +
1

2
fABC JB U [[C]] ⊗ JC . (3.21)

The representation for ĴA is the so-called evaluation representation, typically obtained
by multiplying level-zero generators by a ‘spectral’ parameter. Here

ĴA = u JA = ig (x+ +
1

x+
− i

2g
) JA. (3.22)

The variables x± parameterize the fundamental representation (conventions as in [7]).
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A special remark concerns the dual structure constants fABC . They should reproduce
the general form (3.3), and analogous ones with all indices lowered should be used to
prove the Serre relations (3.2). However, since the Killing form of psu(2|2)c is zero,
one has a problem in defining these structure constants. In [4], the quantities fABC are
explicitly given as a list of numbers, without necessarily referring to an index-lowering
procedure7. The table of coproducts is in this way fully determined.

Another remark concerns the dependence of the spectral parameter u on the rep-
resentation variables x±, or, equivalently, on the eigenvalues of the central charges of
psu(2|2)c. For simple Lie algebras, the spectral parameter is typically an additional
variable attached to the evaluation representation. Together with the existence of a
shift-automorphism u → u + const of the Yangian in evaluation representations, this
implies that the Yangian-invariant S-matrix is of difference-form S = S(u1 − u2). The
dependence of u on the central charges alters this property, and one does not have a
difference form in the fundamental S-matrix (see [48] and section 3.1.1).

The full quantum S-matrix is also invariant under the following exact symmetry,
found in [8] and shortly afterwards confirmed in [9]:

∆(B̂′) = B̂′ ⊗ 1 + 1⊗ B̂′ + i

2g
(Sαa ⊗Qa

α + Qa
α ⊗ Sαa ),

Σ(B̂′) = −B̂′ +
2i

g
H,

B̂′ =
1

4
(x+ + x− − 1/x+ − 1/x−) diag(1, 1,−1,−1). (3.23)

This coproduct is reminiscent of a level one Yangian symmetry (cf. (3.3)). We will
see in the next section the relevance of this generator for the classical r-matrix. Com-
muting this symmetry with the (level zero) generators, one obtains novel exact Yangian
(super)symmetries of S [8]. The latter act on bosons and fermions with two different
spectral parameters, reducing in the classical limit to the supercharges of [49].

4 The classical r-matrix

The form of the Yangian we discussed resembles the standard one while simultaneously
showing some unexpected features. In order to gain a deeper understanding it is com-
monly advantageous to study certain limits. One important instance is the classical
limit, i.e. one studies perturbations of the R-matrix around the identity:

R = 1⊗ 1 + ~ r + O(~2), (4.1)

~ being a small parameter. The first-order term r is called the classical r-matrix8. One
can easily prove that, if R satisfies the Yang-Baxter equation (YBE), r satisfies the

7An argument in [4] suggests interpreting these quantities as dual structure constants in an enlarged
algebra with invertible Killing form, see also [44]. This algebra is obtained by adjoining the sl(2)
automorphism of psu(2|2)c [45,46]. Apart from allowing inversion of the Killing form and determination
of fABC , these extra generators would drop out of the final form of the Yangian coproduct (3.21). We also
refer to [47] for a derivation of the Yangian coproducts using the exceptional Lie superalgebra D(2, 1;α).

8r lives in g⊗ g, for g an algebra, R in U(g)⊗ U(g), U(g) the universal enveloping algebra of g.
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classical YBE (CYBE):

[r12, r13] + [r12, r23] + [r13, r23] = 0. (4.2)

In known cases, studying (4.2) one can classify the solutions of the YBE itself, and the
possible quantum group structures underlying such solutions (Belavin-Drinfeld theorem
[50]). We will not reproduce here the details. Knowing the r-matrix, there is a standard
procedure for constructing an associate Lie bialgebra, and quantizing it9 in terms of so-
called ‘Manin triples’ (see e.g. [13]). The quantum structures for simple Lie algebras
are elliptic quantum groups, (trigonometric) quantum groups and Yangians. Analogous
theorems for superalgebras are investigated in [51]. An illuminating example is Yang’s
r-matrix (C2 is the quadratic Casimir)

r =
C2

u2 − u1

. (4.3)

This is the prototypical rational solution of the CYBE10. The geometric series gives

r =
C2

u2 − u1

=
JA ⊗ JA
u2 − u1

=
∑
n≥0

JAun1 ⊗ JAu
−n−1
2 =

∑
n≥0

JAn ⊗ JA,−n−1, (4.4)

for |u1/u2| < 1). Such rewriting attributes dependence on the u1 (u2) to operators in the
first (second) space (factorization). This gives r the form of tensor product of algebra
representations. Assigning JAn = un JA in (4.4) gives loop-algebra relations

[JAm, J
B
n ] = fABC JCm+n. (4.5)

The loop algebra is precisely the ‘classical’ limit of the Yangian Y(g) (see section 3). With
this example one realizes how rational solutions of the CYBE, such as (4.3), starting as
not-better specified elements of g ⊗ g for a Lie algebra g, give rise to Yangians upon
quantization (namely, their quantized version takes values in Y(g)⊗ Y(g)). For related
aspects concerning the classical r-matrix, see [32].

4.1 psu(2|2)c

In the case of the S-matrix found in [39], the parameter controlling the classical expansion
is naturally the inverse of the coupling constant g (near-BMN limit [52]):

R = 1⊗ 1 +
1

g
r +O(

1

g2
). (4.6)

The classical r-matrix r is identified with the tree-level string scattering matrix computed
in [40]. In the parameterization of [53] one has

x±(x) = x

√
1− 1

g2(x− 1
x
)2
± ix

g(x− 1
x
)
→ x. (4.7)

9Meaning completing the Lie bialgebra to a quantum group (classical r- to quantum R-matrix).
10Since by definition [C2, J

A ⊗ 1 + 1⊗ JA] = 0 ∀A, the CYBE is easily proven for (4.3).
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One sends g to ∞ with x fixed. x is interpreted as an unconstrained ‘classical’ variable.
This classical limit was studied in [54]. The target is finding the complete algebra the
r-matrix takes values in, whose quantization can reveal the full quantum symmetry of
the S-matrix. The fundamental representation tends to a limiting centrally-extended
psu(2|2), with generators parameterized by x. The classical r-matrix r = r(x1, x2) is
not of difference form. The Lie superalgebra is not simple and has zero dual Coxeter
number. This prevents applying Belavin-Drinfeld type of theorems. Nevertheless, r has
a simple pole at x1 − x2 = 0 with residue11 the Casimir C2 of gl(2|2):

C2 =
4∑

i,j=1

(−)[j] Eij ⊗ Eji, (4.8)

with Eij matrices with all zeros but 1 in position (i, j), and [j] the fermionic grading of
the index j. In the absence of a quadratic Casimir for psu(2|2)c, the classical r-matrix
displays on the pole (it ‘borrows’) the Casimir of a bigger algebra12 for which a non-
degenerate form exists and the quadratic Casimir can be constructed. This ‘borrowing’
reminds a mathematical prescription due to Khoroshkin and Tolstoy [55,20]. One expects
that, if a universal R-matrix exists and if it has to be of Khoroshkin-Tolstoy type, an
additional Cartan element of type B has to appear.

Type-B generators play an important role in factorizing r. The present r is more
complicated than Yang’s one, and it is harder to find a suitable geometric-like series
expansion. A first proposal for the fundamental representation was given [49], with a
Yangian tower of B’s coupled to a tower of H’s to achieve factorization. This proposal
fails to reproduce the bound-state classical r-matrix [56].

A universal formula was advanced in [9]. It has been shown to reproduce also the
classical limit of the bound-state S-matrix [57,7], and it reads

r =
T − B̃⊗H−H⊗ B̃

i(u1 − u2)
− B̃⊗H

iu2

+
H⊗ B̃
iu1

− H⊗H2iu1u2

u1−u2

, (4.9)

T = 2
(
R α
β ⊗ R β

α − L a
b ⊗ L b

a + S α
a ⊗Q a

α −Q a
α ⊗ S α

a

)
,

B̃ =
1

4 ε(p)
diag(1, 1,−1,−1). (4.10)

In this formula, the generators are in their classical limit, the variable u is the classical
limit of (3.22), and ε(p) is the classical energy (cf. section 4.1). All classical Yangian
generators are obtained as Jn = unJ after factorizing via the geometric series expansion.
Quantization of this formula is an open problem. The classical analysis seems to suggest
that the triple central extension may have to merge into some sort of deformation of
the loop algebra of gl(2|2), where the additional generator B is sitting. Another open
question is how to relate the results described here to the r, s non-ultralocal structure of
the psu(2, 2|4) sigma-model [32,58].

11As a consequence of the CYBE, such residue must be a Casimir.
12gl(2|2) is obtained by adjoining to su(2|2) the non-supertraceless element B = diag(1, 1,−1,−1).
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4.1.1 Difference Form

Formula (4.9) displays an interesting structure where the dependence on the spectral
parameter u is (almost purely) of difference form. The non-difference form is encoded in
the representation labels x±(u) appearing in the symmetry generators, and in the last
three terms of formula (4.9). Moreover, Drinfeld’s second realization for the psu(2|2)c
Yangian has been obtained in [59], together with the suitable evaluation representation.
The Yangian Serre relations, which were left as an open question in [4], are proven to
be satisfied in the second realization (see also [60].) The representation of [59] possesses
a shift-automorphism u → u + const, which normally guarantees the difference form of
the S-matrix. All this suggests the following, provided an algebraic interpretation of the
last three terms in formula (4.9) can be found that generalizes to the full quantum case
(possibly along the case of the ideas reported in [9] in terms of twists). Modulo this
interpretation, one might hope to achieve a rewriting of the quantum S-matrix such that
the dependence on u1 and u2 is (almost purely) of difference form, the rest being taken
care of by suitable combinations of algebra generators13. One would expect this as the
result of evaluating a hypothetical Yangian universal R-matrix in this particular repre-
sentation. This expectation seems to be consistent with recent studies of the exceptional
Lie superalgebra D(2, 1;α) [39, 47, 60]14, and with the explicit form of the bound state
S-matrix (see next section).

5 The bound state S-matrix

The previous discussion highlights the importance of investigating the structure of the S-
matrix for generic representations of psu(2|2)c. One motivation is obtaining the universal

R-matrix and understanding the role of the B̂′ symmetry. There is also a more stringent
need related to finite-size corrections to the energies according to the TBA approach [63].
According to this philosophy, it becomes crucial to have a concrete realization of the
(mirror) bound state S-matrices. Usually, these can be bootstrapped once the S-matrix of
fundamental constituents is known [12]. However, the present case is more complicated.
The fundamental S-matrix does not reduce to a projector on the bound state pole, related
to the fact that the tensor product of two short representations (generically irreducible)
becomes reducible but indecomposable on the pole. The only way to construct the
S-matrix for bound states seems to be a direct derivation from the Lie superalgebra
invariance in each bound state representation. This becomes rapidly cumbersome [64].
Moreover, this does not uniquely fix the S-matrix when the bound state number increases,
and one needs to resort to YBE, or, as shown in [57], to Yangian invariance. The
Yangian eventually provides an efficient solution to this problem and it allows to uniquely
determine the S-matrix for arbitrary bound state numbers [7].

The bound state representations are atypical (short) completely symmetric repre-

13In the fundamental representation, such a rewriting has been shown to be possible in [61]. The
resulting form is reminiscent of what a Khoroshkin-Tolstoy type of formula (or some natural quantization
of the classical r-matrix (4.9)) would look like in this representation.

14psu(2|2)c can be obtained by suitable contraction of D(2, 1;α). See also [62].
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sentations of dimension 4`, ` = 1, 2, .... They all extend to evaluation representations
of the Yangian, with appropriate evaluation parameter u [57]. A convenient realization
is given in terms of differential operators acting on the space of degree M polynomials
(superfields) in two bosonic (wa, a = 1, 2) and two fermionic (θα, α = 1, 2) variables.
All details can be found in [7]. The essence of the construction consists in finding a
closed subset of states |xi〉 for which the S-matrix can be computed exactly in terms of
a definite matrix M . One then generates all other states |yA〉 by acting with (Yangian)
coproducts on this closed subsector, and using quasi-cocommutativity:

R|yA〉 = R∆(J)iA |xi〉 = ∆op(J)iAR |xi〉 = ∆op(J)iAM
j
i |xj〉. (5.1)

On the other hand, R|yA〉 = RB
A |yA〉 = RB

A ∆(J)iB |xi〉. The task is to find as many states
as needed to invert the above relation, namely RB

A = ∆op(J)iAM
j
i [∆(J)−1]Bj .

The construction automatically provides a factorizing twist [65] for the R-matrix in
the bound state representations (hence also for the fundamental representation):

R = F21 × F12
−1. (5.2)

However, we remark that the coproduct twisted with F12 is by construction cocommu-
tative, but, as expected, not at all trivial. Furthermore, apart perhaps from the overall
factor, the bound state S-matrix depends only on u1 − u2, on combinatorial factors
involving the integer bound-state components, and on specific combination of algebra
labels ai, bi, ci, di. These combinations are the same noticed in [61]. It remains hard
to figure out a universal formula reproducing this S-matrix. Nevertheless, it looks like
such a universal object would treat the evaluation parameters of the Yangian as truly
independent variables, the latter appearing only in difference-form due to the Yangian
shift-automorphism. The rest of the labels would appear because of the presence in the
universal R-matrix of the (super)charges in the typical ‘positive ⊗ negative’-roots com-
binations, breaking the difference-form due to the constraint that links the evaluation
parameter to the central charges. This is consistent with the findings of [66], where one
of the blocks of the S-matrix has been related to the universal R-matrix of the Yangian
of sl(2) in arbitrary bound state representations.

The bound state S-matrix have been utilized in [67] to verify certain conjectures
appeared in the literature, concerning the eigenvalues of the transfer matrix in specific
short representations [46]. Long representations have been studied in [68].
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