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ABSTRACT

A calculation of the bulk viscosity for the massive 
Gross-Neveu model at zero fermion chemical potential 
is presented in the large-N limit. This model resembles 
QCD in many important aspects: it is asymptotically 
free, has a dynamically generated mass gap, and for 
zero bare fermion mass it is scale invariant at the classi-
cal level (broken through the trace anomaly at the quan-
tum level). For our purposes, the introduction of a bare 
fermion mass is necessary to break the integrability of 
the model, and thus to be able to study momentum 
transport. The main motivation is, by decreasing the 
bare mass, to analyze whether there is a correlation be-
tween the maximum in the trace anomaly and a possible 
maximum in the bulk viscosity, as recently conjectured 
[1]. We also analyze whether there is a contribution 
from bulk viscosity to the sum rule in our model. 

1VISCOSITIES

The energy-momentum tensor of a fluid is modified by viscosities.
To linear order in gradients,

shear viscosity
bulk viscosity

〈T̂ij〉 = Peqδij + η

(
∂iUj + ∂jUi −

2
3
δij∂kUk

)
− ζ ∂kUk .δij

Linear-Response Theory: Consider a small time-dependent pertur-
bation in the Hamiltonian:

Ĥ(t) = Ĥ0 + V̂ (t)

Applied to the shear and bulk viscosities (Kubo formulas),

2CALCULATION IN QUANTUM FIELD
THEORY

Transport coefficients are intrinsically non-perturbative quanti-
ties          Even to leading order in the coupling, a resummation 
of diagrams is necessary.

For instance, in         theory:

∂

∂ω
Im

Particle width:

Ladder diagrams:

Chain diagrams:
(naively) (actually)

The resummation is equivalent to an effective Kinetic 
Theory formulation in terms of thermal excitations [2,3].

Result for        : T � m : ζ ∼ λT 3 ln2 λ ; T � m :

3THE GROSS-NEVEU MODEL

Lagrangian in 1+1 dimensions [4]:

Similar properties to massless QCD in the large N limit 
(              kept constant):

Renormalizable and asymptotically free.

Classically scale invariant, but it has a  dynamically gen-
erated mass gap reflected as a peak in the trace anomaly.

Spontaneus breaking in vacuum of the discrete chiral 
symmetry                  .

In addition:

No confinement

A Kinetic Theory treatment is possible in terms of the 
fundamental fields in the large-N limit                   .

In the large-N limit, it is convenient to introduce an auxiliary 
field:

= −gψ̄ψ

Mass gap:

Asymptotic freedom:
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4INTEGRABILITY AND TRANSPORT

The Gross-Neveu model is integrable both at the classical and 
quamtum levels. 

It has an infinite number of conserved charges [5,6]:

inelastic amplitudes vanish

no momentum transport, because binary collisions in 1+1 dimensions 
don’t change the distribution of momenta:

and an arbitrary elastic scattering is factorized in terms of binary collisions [5]

,

In order to study the bulk viscosity, we consider the massive 
Gross-Neveu model:

The bare mass suppresses kink-anti-kink configurations in 
the thermodynamic limit, and makes the 1/N expansion 
well defined [7,8]. 

Non-integrable in the large-N limit (cf. #6).

5LEADING-ORDER SCATTERING
AMPLITUDES

The diagrams which contribute at leading order, i.e.             , to 
momentum transport are: 

Elastic: 
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Inelastic: 

6BREAKING OF INTEGRABILITY

Factorization of fermion loops in 1+1 dimensions [9]:

(an analogous result can also be obtained at �nite temperature [10])

with

The bare fermion mass      breaks integrability: E.g., consider

Hence by increasing or decreasing      , the bulk viscosity would in principle become 
arbitrarily small or large respectively. But this is not a problem to test the relationship 
with the trace anomaly.

but the     propagator has the form

(it resummates a chain of bubbles)

7THERMAL MASS GAP
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Integrability is never restored for             .

8THERMODYNAMICS

If we take first the large-N limit, and then the thermodynamic 
limit, we find a second-order phase transition at zero chemical 
potential [11]:

Equation of state:
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9CALCULATION IN KINETIC THEORY

In the large-N limit, the interaction between fermions is sup-
pressed by powers of N:

a kinetic theory approach should be applicable [12].

Energy-momentum tensor:

(
∂

∂t
+

k

Ek

∂

∂x

)
fa =

∂fa

∂t

∣∣∣∣
gain

− ∂fa

∂t

∣∣∣∣
loss

≡ 1
Ek

Ca
k [f ]

,

The space-time evolution of      is determined by the Boltzmann 
equation:

To obtain the bulk viscosity we consider a small departure from 
equilibrium:

Linearizing the LHS and RHS of the Boltzmann equation with 
respect to spatial gradients:

Collision matrix in the large-N limit:

with

Bulk viscosity:

10RESULTS

Variational solution:

For smaller subspaces, what we obtain is a lower bound even-
tually converging as we increase the basis:

Results (          ) [10]:= 3

T

the breaking of integrability
decreases in this direction

For ,

For ,

no correlation with the trace anomaly.

A convenient basis turns out to be

11NON-LINEAR SIGMA MODEL

From the analysis for the Gross-Neveu model, we can now ex-
tract similar conclusions for the Non-linear Sigma model [10]:

, with the condition

T

TT

m(T )

(ε − P )∗

m0 ≡ 1
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expected behavior
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12SUM RULE

Following the method of [13], it is not difficult to derive:

CONCLUSIONS
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:

:

:

Different regimes of frequencies:

But then the bulk viscosity does not contribute to the sum 
rule below the critical temperature.

There is not direct correlation between the trace anomaly 
and the bulk viscosity.

It is not always possible to extract information about the 
bulk viscosity from sum rules.

There is no universal lower bound for the bulk viscosity, 
even away from conformality.

The introduction of a bare fermion mass in the Gross-
Neveu model causes the breaking of integrability and there-
fore allows the system to relax back to equilibrium after a 
perturbation in the distribution of momenta.

Integrability is not restored above the critical temperature  
when we take the limit of the bare fermion mass going to 
zero.

The same conclusions as for the Gross-Neveu model below 
the critical temperature apply to the Non-Linear Sigma 
Model at any temperature.


