Introduction and Conclusion

We consider the world-sheet scattering of B-deformed SYM at leading orders of perturbation. In the dual string side, we start from single TsT-transformed AdSs x S° about natural

tori and consider the near BMN limit of the background. We compute tree-level amplitudes from effective quartic potential obtained by light-cone gauge fixing. The results are exactly
matched with the exact results. In the gauge theory side, we apply “Coordinate Bethe Ansatz” on three spin state Hamiltonian. Here, the S-matrix and TBCs are not the same but we

show that their BAEs are equivalent each other. We conclude that (a) perturbative S-matrix and appropriate TBCs at both sides are consistent with the exact S-matrix with the twisted

boundary conditions and (b) in fact, the twisting of boundary conditions seems to be prerequisite essential to see integrability in B-deformed SY M.

2) Another approach to dual string theory of B-deformed SYM

TsT-transformation, AdSz x S° and TBC

If we only consider single TsT transformation for any two angles among three angles,
the resulting background is quite simple.

1) Frolov’s derivation [Frolov ‘05]
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Near BMN limit, Gauge fixing and WS Scattering

As In [KMRZ °06], one can compute string WS S-matrix from gauge fixed Lagrangian in near BMN limit. The most efficient way for gauge fixing is the 15t order formalism.
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As the full kinematic constant from relativistic and Jacobian factors is cancelled with the Feynman diagramatic contribution, the full T-matrices are constant shifts of results in

AdS: x S°. This is exactly matched with the exact results. Also, twisted BCs which is related with our simple TsT background are those of [Ahn ¢11]. (See the Appendix.)
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Deformed Spin-chains, S-matrix and BAE

Consider the SU(3)g chain which is valid at 1-loop order. The Hamiltonian can be obtained by direct computation as in [Berenstein, Cherkis ‘04] or by using Drinfeld-Reshetikhen

twisted R-matrix as in [Beisert, Roiban ‘05]. When we apply the coordinate BAE to the mixed part of Hamiltonian, the correct Bethe-type Ansatz is not usual but phase shifted one.
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us twisted boundary conditions. Although this S-matrix and TBC look different with exact results, we can show that their BAEs are equivalent. S = 0 r e30f Q
To derive BAESs, we have to use “nested coordinate Bethe Ansatz” because of non-diagonal S-matrix. 0 0 0 d
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Beisert-Roiban BAE [Frolov, Roiban, Tseytlin <05]. In [ABBN ¢10], BR BAEs are derived from exact S-matrix with TBCs.
Therefore, we conclude that even though perturbative and exact S-matrix look different, they are spectrally the same each other.

Appendix : the exact S-matrix with TBCs M., =1 ® /AR
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