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Introduction

The algebraic curve shows up in the context of AdS/CFT correspon-
dence in one of the steps of the spectral problem investigation —
namely, the classification of the classical string solutions [KMMZ04].
Due to this notable role in the bigger picture, one of the questions that
one could ask was whether and how a classification like this could be
applied to a wider class of configurations. These include:

• Wilson loops, observables defined by contours in (boundary)
space, corresponding via the AdS/CFT dictionary to minimal sur-
faces in the AdS bulk spanning these contours,

• correlation functions of local operators with other objects, be it an-
other operators, Wilson loops or the like.

The surprises we have discovered are as follows:

• The algebraic curves arise in the case of Wilson loops, even
though due to the lack of non-contractible loops the monodromy
matrix and pseudomomenta are necessarily trivial, what renders
the traditional algebraic curve analysis futile. An (almost) unam-
biguous construction of a Lax matrix that shares all the necessary
properties of monodromy allows to circumvent this issue.

• Different solutions (and different algebraic curves) may arise for
the correlators even if pseudomomenta are the same. This is also
surprising from the point of view of the monodromy construction,
and somewhat challenges the usual point of view that the space of
solutions with given pseudomomentum is finite dimensional.

• The general properties of functions defined on the algebraic
curves [BBT03] can be constraining enough to allow a complete
reconstruction of a corresponding world-sheet configuration with
minimal additional input. This procedure is shown to succeed in a
handful of examples.

We note that our reasoning is local (starting from a PDE solution),
while traditionally a knowledge of the whole world-sheet is required.

AdS3 σ-model integrability

The world-sheet coordinates are encoded in a group element
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given here for Euclidean AdS3 in Poincaré patch. It is used to define
currents

j = g−1∂g j̄ = g−1∂̄g

that enter into the σ-model action (with world-sheet variables w, w̄)

S =

√
λ

4π

∫
tr jj̄d2w

which yields the following equations of motion:

0 = ∂̄j+ ∂j̄ 0 = ∂̄j− ∂j̄+ [j, j̄]

Integrability of the model implies the existence of the following flat cur-
rents, or flat connection, depending on an arbitrary complex spectral
parameter x:

J = j/(1 − x) J̄ = j̄/(1 + x)

It encodes the equations of motion in the flatness condition

∂J̄− ∂̄J+ [J, J̄] = 0 ∀x

For any loop C on the world-sheet a monodromy matrix is defined as

Ω(w0, w̄0; x) = P exp
∫
C

Jdw+ J̄dw̄

The notation already takes into account that the monodromy for a
given reference point w0, w̄0 is in fact path-independent, as a con-
sequence of the flatness of J.

A change in the reference point induces the following transformation:

Ω(w1, w̄1; x) = UΩ(w0, w̄0; x)U−1

for some matrix U. The eigenvalues of Ω (in our 2 × 2 case usually
expressed as e±ip(x)) thus do not depend on w, w̄. As they are func-
tions of x, an infinite set of conserved charges can be seen here, ie.
in the Taylor coefficients of pseudomomentum p(x).

The algebraic curve traditionally is defined by the characteristic poly-
nomial of the following matrix

L(w, w̄; x) = −i
∂

∂x
logΩ(w, w̄; x)

However, in the case of Wilson loops, where the minimal surfaces
have no features and all contours C are contractible, Ω = UU−1 = I,
pseudomomenta are trivial and L = 0. The algebraic curve needs to
be introduced in a completely different way.

It is important to note that both Ω and L solve the following system

∂L+ [J,L] = ∂̄L+ [J̄,L] = 0

called Lax equation. Next we will learn how to construct different ma-
trices that solve it as well, also in the case of trivial Ω.

Auxiliary linear problem

To this end, we introduce the auxiliary linear problem, a system of
PDEs

∂Ψ+ JΨ = 0 ∂̄Ψ+ J̄Ψ = 0

for which the flatness of J is the compatibility condition. If its two inde-
pendent solutions are arranged as columns of Ψ̂, we can define

L = Ψ̂(w, w̄; x) ·A(x) · Ψ̂(w, w̄; x)−1

with A arbitrary and constant in w, w̄. L solves the Lax equation.

It can be considered as a source for algebraic curve for this type of
solutions. However, we need to resolve ambiguity still present in A. If
we set A(x) = f(x) ·diag(1,−1), then the polynomial is just y2 = f(x)2.
Lax matrices are usually taken to be rational in x; we will refine this
condition and choose f(x) so that L is polynomial in x.

Example: the null cusp

This contour is related to the real-world gluon scattering process. The
minimal world-sheet coordinates are as follows [ROTS07]:

t = e−
√

2σ cosh
√

2τ x = −e−
√

2σ sinh
√

2τ z =
√

2e−
√

2σ

and the emerging auxiliary problem leads to the following solutions:
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with α = exp 1+i

2
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(−iw + w̄). Now, if we set Ψ̂ = (Ψ+;Ψ−), a choice of
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As advertised above, the algebraic curve emerging here is defined by

y2 = 1 − x2

Reconstruction

It turns out that the properties of analytic functions on algebraic curves
are so rigid, that a program can be sketched to reconstruct the solu-
tions Ψ without really solving the problem. Ordinarily it starts from p(x)

and Ω; the Lax equation for the latter implies that it has an eigenbasis
common with ∂+ J, ∂̄+ J̄. The solutions can be then chosen from it:

ΩΨn(w, w̄; x) = eip(x)Ψn(w, w̄; x) = eip(x)
( 1
ψ(w,w̄;x)

)
with Ψn called the normalised eigenvector. ψ usually has genus + 1
poles (in terms of x-dependence), one of which lies at x = ∞ and the
others (dynamical) move when w, w̄ are altered. The full solution also
has a scalar pre-factor

Ψ(w, w̄; x) = fBA(w, w̄; x)Ψn(w, w̄; x)

It is a Baker-Akhiezer function, which means that it needs to satisfy a
number of conditions: it should vanish at dynamical poles, behave in
a prescribed singular manner at the special points x = ±1 and cancel
the w, w̄-dependence of Ψn at x→∞.

In the case of AdS3 σ-model, the pre-factor can be inferred withoutΩ,
namely from the following relations between J, J̄ and L:

J = [P+(L, x)]−x=1 J̄ = [P−(L, x)]−x=−1

([·]− denotes singular part at the given point) for some polynomials P±.
Their form can be restricted here to P±(y, x) = c±y

1∓x and finally

fBA = e−
c+yw

1−x −
c−yw̄

1+x · regular

Constants c± can be redefined at will by a suitable diffeomorphism.

The ‘physical’ quantities can finally be recovered from the solutions:

j = −∂Ψ̂ · Ψ̂−1|x=0 j̄ = −∂̄Ψ̂ · Ψ̂−1|x=0 g =
√

det Ψ̂ · Ψ̂−1|x=0

Example: the null cusp again

The relevant algebraic curve is of genus 0, so no dynamical poles are
expected. It admits the following uniformisation:

y =
2t

1 + t2
x =

1 − t2

1 + t2

Two points lie above x = ∞ (t = ±i) and L is diagonal there, so the
asymptotic behaviours are distinct:

Ψn|x=∞+ =
(1

0

)
Ψn|x=∞− =

( 1∞)
At this point we can write (mixing variables x,y and t to emphasise
the origin of respective parts; c± chosen deliberately)
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Functions a,b are subsequently fixed so that Ψ is constant at x = ∞:

b(w, w̄)−1 = a(w, w̄)b(w, w̄) = exp
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The reconstruction is now complete and the result is exactly the same
as the straightforward solution of the auxiliary problem.

A trickier example: the qq̄ potential

The contour is now an infinitely elongated rectangle. The minimal
surface is now more complicated [MALD98]:

z = z0 cnσ x1 ≡ t = z0τ/
√

2 x2 ≡ x = z0F(σ)/
√

2

with F(σ) = 2E(amσ|12)−σ, the special functions being elliptic integrals
and Jacobi functions. The auxiliary problem leads to a (bad-looking)
solution that produces a polynomial Lax matrix in the familiar way for

A(x) =
√
x
√

1 − x2 diag(1,−1)

A curiosity that will reappear in the reconstruction is that in the x→∞
limit, L is non-diagonalisable (proportional to

(
0 0
x2 0

)
).

The curve is now of genus 1, so a dynamical pole is to be expected:

y2 = x(1 − x2)

It is conveniently uniformised using periodic products of theta func-
tions on a lattice with quasi-periods 2(i)K(1

2). fBA written straightfor-
wardly contains disallowed poles at x = ∞; removing these by hand
destroys periodicity. It is then restored by a regular factor

θ(z− γ(σ, τ))
θ(z− γ(0, 0))

with γ(σ, τ) = −iσ

where γ is the position of the dynamical pole.

A branch point at infinity allows only one asymptotic relation, therefore
it is taken at the next-to-leading order as well. This allows to fix ev-
erything except a constant factor in the lower component; aside from
this, the result matches the solution, albeit numerically (to hundreds of
decimal places) — an analytical identity between expressions in terms
of Jacobi and theta functions has not been investigated.

The trickiest example: correlation functions

In the cases of 〈tr Z̄J trZJ〉, 〈W(C) trZJ〉 correlators (C being a circular
contour), both being described by the pseudomomentum

p(x) =
2πjx
x2 − 1

with j =
J√
λ

it is noticeable that they correspond to different respective curves:

y2 = 1 and y2 = (1 + 2jx− x2)2

The former consists of two distinct sheets; the latter has degeneracies
instead of branch cuts, seen as the double zeroes of the r.h.s.:

x = j±
√

1 + j2

The reconstruction now involves a number of tricks and is possibly not
unique. To avoid essential singularities in the usual form of fBA, y is
replaced by y(1) and y(−1) in the first and second term, respectively.
Also, an additional relation comes from the requirement that the two
solutions coincide at the points of degeneracy. Aside from that, the
process follows the usual route and again the result is as expected.

Summary and outlook

We have managed to associate algebraic curves to AdS/CFT config-
urations for which this has not been done before, and to infer physical
solutions from purely mathematical data. Some ideas that stem from
here are as follows:

• The reconstruction procedure is now a barely trodden path, with a
few caveats present; these could be investigated by applying the
program to further cases of more complicated (ie. higher-genus)
algebraic curves.

• The correlators are not only the trickiest, but also the most in-
triguing. Aside from resolving the concerns hinted at above, it is
presently a mystery how do the three-point functions relate to the
pseudomomenta and algebraic curves, three of which should be
probably considered at once.

• One could try to extend the notion of Wilson loop monodromy (re-
taining its relation to algebraic curves) to contain some new quan-
tity (eg. reflection matrices) for paths touching the boundary.
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