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1 Introduction

The Baxter Q-operators were introduced by Baxter when he solved
the 8-vertex model. His method of the Q-operators is recognized
as one of the most powerful tools in quantum integrable systems.

Our goals are

1. to construct Baxter Q-operators systematically

2. to write the T-operators (transfer matrices) in terms of the
Q-operators: Wronskian-like determinant formulas

3. to establish functional relations among them: T-system, TQ-
relations, QQ-relations

For these purposes, we consider an embedding of the quantum
integrable system into the soliton theory. The key object is the
master T-operator (τ -function in the soliton theory) (3.1), which
is a sort of a generating function of the transfer matrices.
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2 Cherednik-Bazhanov-Reshetikhin formula

Consider T-operators (transfer matrices) of a quantum integrable
spin chain labeled by the Young diagram λ = (λ1, λ2, . . . ) for
gl(N).

T λ(u) = TrπλRL0(u− ξL) · · ·R10(u− ξ1)(1⊗L ⊗ πλ(g)), (2.1)

where Rj0(u) is the R-matrix whose auxiliary space (denoted by
‘0’) is an evaluation representation of Y (gl(N)) based on the tensor
representation πλ of gl(N) labeled by λ and the quantum space
(denoted by the lattice site ‘j’) is not specified; g ∈ GL(N) is the
boundary twist matrix (for the trigonometric case, it is a group-
like element made from the Cartan subalgebra); u ∈ C is the
spectral parameter; ξj ∈ C are imhomogenuities. The Cherednik-
Bazhanov-Reshetikhin formula states that the T-operator for the
general Young diagram can be written as a determinant over T-
operators for Young diagrams with one row:

T λ(u) =

λ′1−1∏
k=1

T ∅(u− k)

−1

det
i,j=1,...,λ′1

T (λi−i+j)(u−j+1). (2.2)

3 The master T-operator

Schur functions in the KP-time variables t = {t1, t2, t3, . . . } are
defined by

exp

( ∞∑
k=1

tkz
−k

)
=

∞∑
n=0

s(n)(t)z
−n,

sλ(t) = det
1≤i,j≤λ′1

(s(λi−i+j)).

The master T-operator (τ -function) is defined by

T (u, t) =
∑
λ

sλ(t)T λ(u). (3.1)
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This is a generating function of the T-operators in the following
sense:

T λ(u) = sλ(∂̃)T (u, t)

∣∣∣∣
t=0

, ∂̃ = {∂t1,
1

2
∂t2,

1

3
∂t3, . . . }.

The master T-operator (3.1) commutes for any u, t, and contains
Baxter Q-operators and T-operators for all levels of the nested
Bethe ansatz.
The master T-operator is a τ -function of

1. KP-hierarchy with respect to times t1, t2, · · · ,

2. MKP-hierarchy with respect to times t0, t1, t2, · · · .

Here t0 = u plays a role of the spectral parameter in the quantum
integrable system. The statement (2) is equivalent to that the
coefficients T λ(u) of the Schur function expansion (3.1) obey
the Cherednik-Bazhanov-Reshetikhin formula (2.2).

4 Bilinear identity for the master T-operator

The master T-operator (3.1) obeys the bilinear identity∮
C

eξ(t−t′,z)zu−u
′
T (u, t− [z−1])T (u′, t′ + [z−1]) dz = 0 (4.1)

where t + [z−1] = {t1 + z−1, t2 + 1
2z
−2, t3 + 1

3z
−3, . . . },

ξ(t, z) =
∑∞

n=1 tnz
n.

We can derive various bilinear equations by choosing u, u′, t, t′.

Example 1 Let us consider the case u′ = u, t′k =
tk − 1

k(z−k1 + z−k2 + z−k3 ),

eξ(t−t′,z) =
1

(1− z
z1

)(1− z
z2

)(1− z
z3

)
,
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Then (4.1) reduces to the discrete KP equation:

(z2 − z3)T
(
u, t + [z−1

1 ]
)
T
(
u, t + [z−1

2 ] + [z−1
3 ]
)

+ (z3 − z1)T
(
u, t + [z−1

2 ]
)
T
(
u, t + [z−1

1 ] + [z−1
3 ]
)

+ (z1 − z2)T
(
u, t + [z−1

3 ]
)
T
(
u, t + [z−1

1 ] + [z−1
2 ]
)

= 0.
(4.2)

The equations in the hierarchy are obtained by expanding in
negative powers of z1, z2, z3.

Example 2 Let us consider the case u′ = u − 1,
t′k = tk − 1

k(z−k1 + z−k2 ),

zeξ(t−t′,z) =
z

(1− z
z1

)(1− z
z2

)
.

Then (4.1) reduces to the discrete MKP equation:

z2T
(
u + 1, t + [z−1

1 ]
)
T
(
u, t + [z−1

2 ]
)

− z1T
(
u + 1, t + [z−1

2 ]
)
T
(
u, t + [z−1

1 ]
)

+ (z1 − z2)T
(
u + 1, t + [z−1

1 ] + [z−1
2 ]
)
T
(
u, t
)

= 0. (4.3)

The equations in the hierarchy are obtained by expanding in neg-
ative powers of z1, z2. This can be interpreted as the limit z3 → 0
of KP (4.2).

5 Bäcklund transformations for the master T-

operator

Let us take any subset {i1, i2, . . . , in} of the set {1, 2, . . . , N}.
There are 2N such sets. We define the nested master T-operators
T (i1...in)(u, t) recursively by taking the residue of the master T-
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operator (3.1).

T (i1...in)(u, t) = ±reszin=pin

(
z−u−1
in

e−ξ(t,zin)T (i1...in−1)(u + 1, t + [z−1
in

])
)
,

(5.1)

where {p1, p2, . . . , pN} are the eigenvalues of the boundary twist
matrix in (2.1) and T ∅(u, t) = T (u, t). These define the undressing
chain that terminates at the level N :

T (u, t)→ T (i1)(u, t)→ T (i1i2)(u, t)→ . . .→ T (12...N)(u, t)→ 0

and satisfy the bilinear relations (Bäcklund transformations) in the
same way as the master T-operator ((4.2),(4.3)):

εijp
−1
k T (i1...inij)(u, t)T (i1...ink)(u + 1, t)

+ εjkp
−1
i T (i1...injk)(u, t)T (i1...ini)(u + 1, t)

+ εkip
−1
j T (i1...inki)(u, t)T (i1...inj)(u + 1, t) = 0, (5.2)

p−1
j T (i1...ini)(u, t)T (i1...inj)(u+1, t)−p−1

i T (i1...inj)(u, t)T (i1...ini)(u+1, t)

= εijT
(i1...inij)(u, t)T (i1...in)(u + 1, t), (5.3)

where i, j, k ∈ {1, 2, . . . , N} \ {i1, i2, . . . , in}, i 6= j, i 6= k, j 6= k,
εij = ±1.

6 A general definition of the Baxter Q-operators

We define the Baxter Q-operators Q(i1...in)(u) (up to the normal-
ization) by the nested master T-operators as their restrictions to
zero values of t:

Q(i1...in)(u) = T (i1...in)(u, t = 0). (6.1)

Then the functional relations among Q-operators (QQ-relations)
follow from (5.3). The Bethe ansatz equations can be derived from
the QQ-relations. This realizes an idea [4] that there are 2N Q-
operators. The Bäcklund transformations in [5] are realized on the
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level of operators systematically. If the quantum space in (2.1) is
the fundamental representation, one can use [2, 1] the co-derivative
on the group elements [6] to write the Q-operators. As further
development,
• The generalization to the superalgebra case gl(M |N) or the
trigonometric case are also possible.
• The master T-operator will be realized as a sort of a column
determinant over a function of L-operator for the Yangian or the
quantum affine algebra (a generalization of a generating function
of the characters).

Appendix: L-operators for the Baxter Q-operators

The Q-operators can also be defined as the trace of some mon-
odromy matrices, which are defined as product of L-operators. In
general, such L-operators are image of the universal R-matrix for
q-oscillator representations of the Borel subalgebra of the quan-
tum affine algebra (cf. [7] for Uq(ŝl(2)) case). In [8, 10], we gave

L-operators for the Q-operators for Uq(ŝl(2|1)). Here we mention

construction of the L-operators for Uq(ĝl(M |N)) [3].

The (centerless) quantum affine superalgebra Uq(ĝl(M |N)) is
defined by

L
(0)
ij = L

(0)
ji = 0, for 1 ≤ i < j ≤M + N

L
(0)
ii L

(0)
ii = L

(0)
ii L

(0)
ii = 1 for 1 ≤ i ≤M + N,

R23(x, y)L13(y)L12(x) = L12(x)L13(y)R23(x, y),

R23(x, y)L
13

(y)L
12

(x) = L
12

(x)L
13

(y)R23(x, y),

R23(x, y)L13(y)L
12

(x) = L
12

(x)L13(y)R23(x, y), x, y ∈ C,

L(x) =
∑
i,j

Lij(x)⊗ Eij, L(x) =
∑
i,j

Lij(x)⊗ Eij,

6



Lij(x) =

∞∑
n=0

L
(n)
ij x

−n, Lij(x) =

∞∑
n=0

L
(n)
ij x

n,

where R(x, y) = R − x
yR is the R-matrix of the Perk-Schultz

model; R and R do not depend on the spectral parameter; Eij is
(M + N)× (M + N) matrix unit.

The quantum affine superalgebra Uq(ĝl(M |N)) has a finite sub-
algebra Uq(gl(M |N)) defined by

Lij = Lji = 0 for 1 ≤ i < j ≤M + N

LiiLii = LiiLii = 1 for 1 ≤ i ≤M + N, (6.2)

R23L13L12 = L12L13R23,

R23L
13

L
12

= L
12

L
13

R23,

R23L13L
12

= L
12

L13R23,

L =
∑
i,j

Lij ⊗ Eij, L =
∑
i,j

Lij ⊗ Eij.

There is an evaluation map from Uq(ĝl(M |N)) to Uq(gl(M |N))
such that

L(x) 7→ L− Lx−1,

L(x) 7→ L− Lx.

The difference between L(x) and L(x) is not very important under
the evaluation map. We will consider only L(x) which generate the

q-superYangian (a sort of a Borel subalgebra of Uq(ĝl(M |N))).
Let us take any subset I of the set {1, 2, . . . ,M + N} and

its complement set I := {1, 2, . . . ,M + N} \ I . There are
2M+N choices of the subsets in this case. Corresponding to
the set I , we consider 2M+N kind of representations of the q-
superYangian. For this purpose, we consider 2M+N kind of contrac-
tions of Uq(gl(M |N)). Namely, let us consider an algebra whose
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condition (6.2) is replaced by

LiiLii = LiiLii = 1 for i ∈ I,
Lii = 0 for i ∈ I.

Then one can obtain 2M+N kind of algebraic solutions of the graded
Yang-Baxter equation via the map LI(x) = L−Lx−1. In addition,
we consider subsidiary contractions for the non-diagonal elements.
For example, suppose the set I has the form I = {1, 2, . . . , n} for
n > 0, then we assume

Lij = 0 for n < i < j ≤M + N.

Remark: A preliminary form of these contractions was
discussed for Uq(gl(3)): [9]; Uq(gl(2|1)): [10].

We can construct some q-oscillator realizations of these con-
tracted algebras. Then we obtain q-oscillator solutions of the
graded Yang Baxter equation via LI(x) = L − Lx−1. These L-
operators are L-operators for the Q-operators. They also give q-
oscillator representations of the q-superYangian. We remark that
similar L-operators for Uq(gl(3)) were derived in [11]. We also re-
mark that these L-operators reduce to L-operators similar to the
ones in [12] in the rational limit q → 1. Up to overall factors,
these are image of the universal R-matrix (π1 ⊗ π2)R, where π1
are q-oscillator representations and π2 is the fundamental repre-
sentation. Further development will be made for these L-operators
for the case:
(1) π1 are q-oscillator representations and π2 are generic infinite
dimensional representations.
(2) Both π1 and π2 are q-oscillator representations, where the fac-
torization of the R-matrix for generic infinite dimensional repre-
sentations with respect to these will occur for both auxiliary and
quantum spaces.
(2) is a limit of (1) for the Kirillov-Reshetikhin modules (or their
infinite dimensional analogues) of π2. Similarly, (1) is also a limit of
R-matrix whose π1 are such modules. All these will be explained by
the asymptotic representation theory of the quantum affine algebra
[13]. Nevertheless, it is important to construct all these matrices
explicitly.
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There is also a different approach for related problems ([14] and
references therein).
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