Baxter Q-operators and tau-function for quantum integrable spin chains

Zengo Tsuboi Institut für Mathematik und Institut für Physik, Humboldt-Universität zu Berlin

This is based on the following papers. Main text: [1] (also [2]) (with Alexandrov, Kazakov, Leurent, Zabrodin), Appendix: [3].

1 Introduction

The Baxter Q-operators were introduced by Baxter when he solved the 8-vertex model. His method of the Q-operators is recognized as one of the most powerful tools in quantum integrable systems.

Our goals are

- 1. to construct Baxter Q-operators systematically
- 2. to write the T-operators (transfer matrices) in terms of the Q-operators: Wronskian-like determinant formulas
- 3. to establish functional relations among them: T-system, TQ-relations, QQ-relations

For these purposes, we consider an embedding of the quantum integrable system into the soliton theory. The key object is the master T-operator (τ -function in the soliton theory) (3.1), which is a sort of a generating function of the transfer matrices.

2 Cherednik-Bazhanov-Reshetikhin formula

Consider T-operators (transfer matrices) of a quantum integrable spin chain labeled by the Young diagram $\lambda = (\lambda_1, \lambda_2, ...)$ for gl(N).

$$T^{\lambda}(u) = \operatorname{Tr}_{\pi_{\lambda}} R_{L0}(u - \xi_L) \cdots R_{10}(u - \xi_1) (1^{\otimes L} \otimes \pi_{\lambda}(g)), \quad (2.1)$$

where $R_{j0}(u)$ is the *R*-matrix whose auxiliary space (denoted by '0') is an evaluation representation of Y(gl(N)) based on the tensor representation π_{λ} of gl(N) labeled by λ and the quantum space (denoted by the lattice site 'j') is not specified; $g \in GL(N)$ is the boundary twist matrix (for the trigonometric case, it is a grouplike element made from the Cartan subalgebra); $u \in \mathbb{C}$ is the spectral parameter; $\xi_j \in \mathbb{C}$ are imhomogenuities. The Cherednik-Bazhanov-Reshetikhin formula states that the T-operator for the general Young diagram can be written as a determinant over Toperators for Young diagrams with one row:

$$T^{\lambda}(u) = \left(\prod_{k=1}^{\lambda'_1 - 1} T^{\emptyset}(u-k)\right)^{-1} \det_{i,j=1,\dots,\lambda'_1} T^{(\lambda_i - i+j)}(u-j+1).$$
(2.2)

3 The master T-operator

Schur functions in the KP-time variables $t = \{t_1, t_2, t_3, ...\}$ are defined by

$$\exp\left(\sum_{k=1}^{\infty} t_k z^{-k}\right) = \sum_{n=0}^{\infty} s_{(n)}(t) z^{-n},$$
$$s_{\lambda}(t) = \det_{1 \le i, j \le \lambda_1'} (s_{(\lambda_i - i + j)}).$$

The master *T*-operator (τ -function) is defined by

$$T(u, \mathbf{t}) = \sum_{\lambda} s_{\lambda}(\mathbf{t}) T^{\lambda}(u).$$
(3.1)

This is a generating function of the T-operators in the following sense:

$$T^{\lambda}(u) = s_{\lambda}(\tilde{\partial})T(u, \mathbf{t})\Big|_{\mathbf{t}=0}, \quad \tilde{\partial} = \{\partial_{t_1}, \frac{1}{2}\partial_{t_2}, \frac{1}{3}\partial_{t_3}, \dots\}.$$

The master T-operator (3.1) commutes for any u, t, and contains Baxter Q-operators and T-operators for all levels of the nested Bethe ansatz.

The master T-operator is a τ -function of

- 1. KP-hierarchy with respect to times t_1, t_2, \cdots ,
- 2. MKP-hierarchy with respect to times t_0, t_1, t_2, \cdots .

Here $t_0 = u$ plays a role of the spectral parameter in the quantum integrable system. The statement (2) is equivalent to that the coefficients $T^{\lambda}(u)$ of the Schur function expansion (3.1) obey the Cherednik-Bazhanov-Reshetikhin formula (2.2).

4 Bilinear identity for the master T-operator

The master T-operator (3.1) obeys the bilinear identity

$$\oint_C e^{\xi(\mathbf{t}-\mathbf{t}',z)} z^{u-u'} T(u,\mathbf{t}-[z^{-1}]) T(u',\mathbf{t}'+[z^{-1}]) dz = 0 \quad (4.1)$$

where $t + [z^{-1}] = \{t_1 + z^{-1}, t_2 + \frac{1}{2}z^{-2}, t_3 + \frac{1}{3}z^{-3}, \dots\},\$ $\xi(\mathbf{t}, z) = \sum_{n=1}^{\infty} t_n z^n.$

We can derive various bilinear equations by choosing u, u', t, t'.

Example 1 Let us consider the case u' = u, $t'_k = t_k - \frac{1}{k}(z_1^{-k} + z_2^{-k} + z_3^{-k})$,

$$e^{\xi(\mathbf{t}-\mathbf{t}',z)} = \frac{1}{(1-\frac{z}{z_1})(1-\frac{z}{z_2})(1-\frac{z}{z_3})},$$

Then (4.1) reduces to the discrete KP equation:

$$(z_{2} - z_{3})T(u, \mathbf{t} + [z_{1}^{-1}])T(u, \mathbf{t} + [z_{2}^{-1}] + [z_{3}^{-1}]) + (z_{3} - z_{1})T(u, \mathbf{t} + [z_{2}^{-1}])T(u, \mathbf{t} + [z_{1}^{-1}] + [z_{3}^{-1}]) + (z_{1} - z_{2})T(u, \mathbf{t} + [z_{3}^{-1}])T(u, \mathbf{t} + [z_{1}^{-1}] + [z_{2}^{-1}]) = 0.$$
(4.2)

The equations in the hierarchy are obtained by expanding in negative powers of z_1, z_2, z_3 .

Example 2 Let us consider the case u' = u - 1, $t'_k = t_k - \frac{1}{k}(z_1^{-k} + z_2^{-k})$,

$$ze^{\xi(\mathbf{t}-\mathbf{t}',z)} = rac{z}{(1-rac{z}{z_1})(1-rac{z}{z_2})}.$$

Then (4.1) reduces to the discrete MKP equation:

$$z_{2}T\left(u+1,\mathbf{t}+[z_{1}^{-1}]\right)T\left(u,\mathbf{t}+[z_{2}^{-1}]\right) - z_{1}T\left(u+1,\mathbf{t}+[z_{2}^{-1}]\right)T\left(u,\mathbf{t}+[z_{1}^{-1}]\right) + (z_{1}-z_{2})T\left(u+1,\mathbf{t}+[z_{1}^{-1}]+[z_{2}^{-1}]\right)T\left(u,\mathbf{t}\right) = 0.$$
(4.3)

The equations in the hierarchy are obtained by expanding in negative powers of z_1, z_2 . This can be interpreted as the limit $z_3 \rightarrow 0$ of KP (4.2).

5 Bäcklund transformations for the master Toperator

Let us take any subset $\{i_1, i_2, \ldots, i_n\}$ of the set $\{1, 2, \ldots, N\}$. There are 2^N such sets. We define the *nested master T-operators* $T^{(i_1...i_n)}(u, \mathbf{t})$ recursively by taking the residue of the master T- operator (3.1).

$$T^{(i_1\dots i_n)}(u, \mathbf{t}) = \pm \operatorname{res}_{z_{i_n} = p_{i_n}} \left(z_{i_n}^{-u-1} e^{-\xi(\mathbf{t}, z_{i_n})} T^{(i_1\dots i_{n-1})}(u+1, \mathbf{t} + [z_{i_n}^{-1}]) \right),$$
(5.1)

where $\{p_1, p_2, \ldots, p_N\}$ are the eigenvalues of the boundary twist matrix in (2.1) and $T^{\emptyset}(u, \mathbf{t}) = T(u, \mathbf{t})$. These define the undressing chain that terminates at the level N:

$$T(u, \mathbf{t}) \to T^{(i_1)}(u, \mathbf{t}) \to T^{(i_1 i_2)}(u, \mathbf{t}) \to \ldots \to T^{(12\dots N)}(u, \mathbf{t}) \to 0$$

and satisfy the bilinear relations (Bäcklund transformations) in the same way as the master T-operator ((4.2), (4.3)):

$$\varepsilon_{ij} p_k^{-1} T^{(i_1 \dots i_n i_j)}(u, \mathbf{t}) T^{(i_1 \dots i_n k)}(u+1, \mathbf{t}) + \varepsilon_{jk} p_i^{-1} T^{(i_1 \dots i_n j_k)}(u, \mathbf{t}) T^{(i_1 \dots i_n i_j)}(u+1, \mathbf{t}) + \varepsilon_{ki} p_j^{-1} T^{(i_1 \dots i_n ki)}(u, \mathbf{t}) T^{(i_1 \dots i_n j)}(u+1, \mathbf{t}) = 0, \quad (5.2)$$

$$p_{j}^{-1}T^{(i_{1}\dots i_{n}i)}(u,\mathbf{t})T^{(i_{1}\dots i_{n}j)}(u+1,\mathbf{t}) - p_{i}^{-1}T^{(i_{1}\dots i_{n}j)}(u,\mathbf{t})T^{(i_{1}\dots i_{n}i)}(u+1,\mathbf{t})$$
$$= \varepsilon_{ij}T^{(i_{1}\dots i_{n}ij)}(u,\mathbf{t})T^{(i_{1}\dots i_{n})}(u+1,\mathbf{t}), \quad (5.3)$$

where $i, j, k \in \{1, 2, \dots, N\} \setminus \{i_1, i_2, \dots, i_n\}, i \neq j, i \neq k, j \neq k, \\ \varepsilon_{ij} = \pm 1.$

6 A general definition of the Baxter Q-operators

We define the *Baxter Q-operators* $Q_{(i_1...i_n)}(u)$ (up to the normalization) by the nested master T-operators as their restrictions to zero values of **t**:

$$Q_{(i_1\dots i_n)}(u) = T^{(i_1\dots i_n)}(u, \mathbf{t} = 0).$$
(6.1)

Then the functional relations among Q-operators (QQ-relations) follow from (5.3). The Bethe ansatz equations can be derived from the QQ-relations. This realizes an idea [4] that there are 2^N Q-operators. The Bäcklund transformations in [5] are realized on the

level of operators systematically. If the quantum space in (2.1) is the fundamental representation, one can use [2, 1] the co-derivative on the group elements [6] to write the Q-operators. As further development,

• The generalization to the superalgebra case gl(M|N) or the trigonometric case are also possible.

• The master T-operator will be realized as a sort of a column determinant over a function of *L*-operator for the Yangian or the quantum affine algebra (a generalization of a generating function of the characters).

Appendix: L-operators for the Baxter Q-operators

The Q-operators can also be defined as the trace of some monodromy matrices, which are defined as product of L-operators. In general, such L-operators are image of the universal R-matrix for q-oscillator representations of the Borel subalgebra of the quantum affine algebra (cf. [7] for $U_q(\hat{sl}(2))$ case). In [8, 10], we gave L-operators for the Q-operators for $U_q(\hat{sl}(2|1))$. Here we mention construction of the L-operators for $U_q(\hat{gl}(M|N))$ [3].

The (centerless) quantum affine superalgebra $U_q(\widehat{gl}(M|N))$ is defined by

$$\begin{split} L_{ij}^{(0)} &= \overline{L}_{ji}^{(0)} = 0, \quad \text{for} \quad 1 \leq i < j \leq M + N \\ L_{ii}^{(0)} \overline{L}_{ii}^{(0)} &= \overline{L}_{ii}^{(0)} L_{ii}^{(0)} = 1 \quad \text{for} \quad 1 \leq i \leq M + N, \\ \mathbf{R}^{23}(x, y) \mathbf{L}^{13}(y) \mathbf{L}^{12}(x) &= \mathbf{L}^{12}(x) \mathbf{L}^{13}(y) \mathbf{R}^{23}(x, y), \\ \mathbf{R}^{23}(x, y) \overline{\mathbf{L}}^{13}(y) \overline{\mathbf{L}}^{12}(x) &= \overline{\mathbf{L}}^{12}(x) \overline{\mathbf{L}}^{13}(y) \mathbf{R}^{23}(x, y), \\ \mathbf{R}^{23}(x, y) \mathbf{L}^{13}(y) \overline{\mathbf{L}}^{12}(x) &= \overline{\mathbf{L}}^{12}(x) \mathbf{L}^{13}(y) \mathbf{R}^{23}(x, y), \\ \mathbf{R}^{23}(x, y) \mathbf{L}^{13}(y) \overline{\mathbf{L}}^{12}(x) &= \overline{\mathbf{L}}^{12}(x) \mathbf{L}^{13}(y) \mathbf{R}^{23}(x, y), \quad x, y \in \mathbb{C}, \end{split}$$

$$\mathbf{L}(x) = \sum_{i,j} L_{ij}(x) \otimes E_{ij}, \quad \overline{\mathbf{L}}(x) = \sum_{i,j} \overline{L}_{ij}(x) \otimes E_{ij},$$

$$L_{ij}(x) = \sum_{n=0}^{\infty} L_{ij}^{(n)} x^{-n}, \quad \overline{L}_{ij}(x) = \sum_{n=0}^{\infty} \overline{L}_{ij}^{(n)} x^{n},$$

where $\mathbf{R}(x, y) = \mathbf{R} - \frac{x}{y} \overline{\mathbf{R}}$ is the R-matrix of the Perk-Schultz model; \mathbf{R} and $\overline{\mathbf{R}}$ do not depend on the spectral parameter; E_{ij} is $(M+N) \times (M+N)$ matrix unit.

The quantum affine superalgebra $U_q(\hat{gl}(M|N))$ has a finite subalgebra $U_q(gl(M|N))$ defined by

$$L_{ij} = \overline{L}_{ji} = 0 \quad \text{for} \quad 1 \leq i < j \leq M + N$$

$$L_{ii}\overline{L}_{ii} = \overline{L}_{ii}L_{ii} = 1 \quad \text{for} \quad 1 \leq i \leq M + N, \quad (6.2)$$

$$\mathbf{R}^{23}\mathbf{L}^{13}\mathbf{L}^{12} = \mathbf{L}^{12}\mathbf{L}^{13}\mathbf{R}^{23},$$

$$\mathbf{R}^{23}\overline{\mathbf{L}}^{13}\overline{\mathbf{L}}^{12} = \overline{\mathbf{L}}^{12}\overline{\mathbf{L}}^{13}\mathbf{R}^{23},$$

$$\mathbf{R}^{23}\mathbf{L}^{13}\overline{\mathbf{L}}^{12} = \overline{\mathbf{L}}^{12}\mathbf{L}^{13}\mathbf{R}^{23},$$

$$\mathbf{L} = \sum_{i,j} L_{ij} \otimes E_{ij}, \quad \overline{\mathbf{L}} = \sum_{i,j} \overline{L}_{ij} \otimes E_{ij}.$$

There is an evaluation map from $U_q(\hat{gl}(M|N))$ to $U_q(gl(M|N))$ such that

$$\mathbf{L}(x) \mapsto \mathbf{L} - \overline{\mathbf{L}}x^{-1}, \\ \overline{\mathbf{L}}(x) \mapsto \overline{\mathbf{L}} - \mathbf{L}x.$$

The difference between $\mathbf{L}(x)$ and $\overline{\mathbf{L}}(x)$ is not very important under the evaluation map. We will consider only $\mathbf{L}(x)$ which generate the *q*-superYangian (a sort of a Borel subalgebra of $U_q(\hat{gl}(M|N))$).

Let us take any subset I of the set $\{1, 2, \ldots, M + N\}$ and its complement set $\overline{I} := \{1, 2, \ldots, M + N\} \setminus I$. There are 2^{M+N} choices of the subsets in this case. Corresponding to the set I, we consider 2^{M+N} kind of representations of the qsuperYangian. For this purpose, we consider 2^{M+N} kind of contractions of $U_q(gl(M|N))$. Namely, let us consider an algebra whose condition (6.2) is replaced by

$$L_{ii}\overline{L}_{ii} = \overline{L}_{ii}L_{ii} = 1 \quad \text{for} \quad i \in I,$$

$$\overline{L}_{ii} = 0 \quad \text{for} \quad i \in \overline{I}.$$

Then one can obtain 2^{M+N} kind of algebraic solutions of the graded Yang-Baxter equation via the map $\mathbf{L}_I(x) = \mathbf{L} - \overline{\mathbf{L}}x^{-1}$. In addition, we consider subsidiary contractions for the non-diagonal elements. For example, suppose the set I has the form $I = \{1, 2, ..., n\}$ for n > 0, then we assume

$$\overline{L}_{ij} = 0$$
 for $n < i < j \le M + N$.

Remark: A preliminary form of these contractions was discussed for $U_q(gl(3))$: [9]; $U_q(gl(2|1))$: [10].

We can construct some q-oscillator realizations of these contracted algebras. Then we obtain q-oscillator solutions of the graded Yang Baxter equation via $\mathbf{L}_I(x) = \mathbf{L} - \mathbf{\bar{L}}x^{-1}$. These Loperators are L-operators for the Q-operators. They also give qoscillator representations of the q-superYangian. We remark that similar L-operators for $U_q(gl(3))$ were derived in [11]. We also remark that these L-operators reduce to L-operators similar to the ones in [12] in the rational limit $q \to 1$. Up to overall factors, these are image of the universal R-matrix $(\pi_1 \otimes \pi_2)\mathcal{R}$, where π_1 are q-oscillator representations and π_2 is the fundamental representation. Further development will be made for these L-operators for the case:

(1) π_1 are q-oscillator representations and π_2 are generic infinite dimensional representations.

(2) Both π_1 and π_2 are *q*-oscillator representations, where the factorization of the R-matrix for generic infinite dimensional representations with respect to these will occur for both auxiliary and quantum spaces.

(2) is a limit of (1) for the Kirillov-Reshetikhin modules (or their infinite dimensional analogues) of π_2 . Similarly, (1) is also a limit of R-matrix whose π_1 are such modules. All these will be explained by the asymptotic representation theory of the quantum affine algebra [13]. Nevertheless, it is important to construct all these matrices explicitly.

There is also a different approach for related problems ([14] and references therein).

References

- [1] A. Alexandrov, V. Kazakov, S. Leurent, Z. Tsuboi, A. Zabrodin, Classical taufunction for quantum spin chains, arXiv:1112.3310[math-ph].
- [2] V. Kazakov, S. Leurent and Z. Tsuboi, "Baxter's Q-operators and operatorial Backlund flow for quantum (super)-spin chains," Commun. Math. Phys. 311(2012) 787-814 [arXiv:1010.4022 [math-ph]].
- [3] Z. Tsuboi, Asymptotic representations and q-oscillator solutions of the graded Yang-Baxter equation related to Baxter Q-operators, arXiv:1205.1471 [math-ph].
- [4] Z. Tsuboi, Solutions of the T-system and Baxter equations for supersymmetric spin chains, Nucl. Phys. B 826 [PM] (2010) 399-455; arXiv:0906.2039 [math-ph].
- [5] I. Krichever, O. Lipan, P. Wiegmann, A. Zabrodin, Quantum Integrable Models and Discrete Classical Hirota Equations, Commun. Math.Phys. 188 (1997) 267-304 [arXiv:hep-th/9604080].
- [6] V. Kazakov and P. Vieira, "From Characters to Quantum (Super)Spin Chains via Fusion," JHEP 0810 (2008) 050 [arXiv:0711.2470 [hep-th]].
- [7] V.V. Bazhanov, S.L. Lukyanov, A.B. Zamolodchikov, Integrable Structure of Conformal Field Theory III. The Yang-Baxter Relation, Commun.Math.Phys. 200 (1999) 297-324 [arXiv:hep-th/9805008].
- [8] V.V. Bazhanov, Z. Tsuboi: Baxter's Q-operators for supersymmetric spin chains, Nucl. Phys. B 805 [FS] (2008) 451-516 [arXiv:0805.4274 [hep-th]].
- [9] V.V. Bazhanov, private communication (2005): V.V. Bazhanov, S.M. Khoroshkin, (2001) unpulished.
- [10] V.V. Bazhanov, Z. Tsuboi: talks at conferences at IRMA Strasbourg and the university of Melbourne in 2007.
- H. Boos, F. Göhmann, A. Klümper, K.S. Nirov, A.V. Razumov, Exercises with the universal R-matrix J. Phys. A: Math. Theor. 43 (2010) 415208 [arXiv:1004.5342 [math-ph]];
 V.V. Bazhanov, Z. Tsuboi: unpublished (2005).
- [12] V. Bazhanov, R. Frassek, T. Lukowski, C. Meneghelli, M. Staudacher, Baxter Q-Operators and Representations of Yangians, Nucl.Phys. B850 (2011) 148-174 [arXiv:1010.3699 [math-ph]]; R. Frassek, T. Lukowski, C. Meneghelli, M. Staudacher, Oscillator Construction of su(n|m) Q-Operators, Nucl. Phys. B850 (2011) 175-198 [arXiv:1012.6021 [math-ph]].

- [13] D. Hernandez, M. Jimbo, Asymptotic representations and Drinfeld rational fractions, to appear in Compositio Mathematica [arXiv:1104.1891 [math.QA]].
- [14] D. Chicherin, S. Derkachov, A. P. Isaev, Conformal group: R-matrix and star-triangle relation, arXiv:1206.4150 [math-ph].