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1 Introduction

The Baxter Q-operators were introduced by Baxter when he solved
the 8-vertex model. His method of the Q-operators is recognized
as one of the most powerful tools in quantum integrable systems.

Our goals are

1. to construct Baxter Q-operators systematically

2. to write the T-operators (transfer matrices) in terms of the
Q-operators: Wronskian-like determinant formulas

3. to establish functional relations among them: T-system, T'Q-
relations, QQ-relations

For these purposes, we consider an embedding of the quantum
integrable system into the soliton theory. The key object is the
master T-operator (7-function in the soliton theory) (3.1), which
is a sort of a generating function of the transfer matrices.



2 Cherednik-Bazhanov-Reshetikhin formula

Consider T-operators (transfer matrices) of a quantum integrable
spin chain labeled by the Young diagram A = (A, Ag,...) for
gl(N).

T*(u) = Trr,Reo(u — &) - Ruo(u = &) (17" @ ma(g),  (2.1)

where Rjp(u) is the R-matrix whose auxiliary space (denoted by
‘07) is an evaluation representation of Y (gl(IV)) based on the tensor
representation 7y of gl(IV) labeled by A and the quantum space
(denoted by the lattice site ‘j’) is not specified; g € GL(N) is the
boundary twist matrix (for the trigonometric case, it is a group-
like element made from the Cartan subalgebra); u € C is the
spectral parameter; §; € C are imhomogenuities. The Cherednik-
Bazhanov-Reshetikhin formula states that the T-operator for the
general Young diagram can be written as a determinant over T-
operators for Young diagrams with one row:

-1
M -1

Tu)= | [[Tw—k)|  det TW ) (u—j+1). (2.2)
k=1 ’

3 The master T-operator

Schur functions in the KP-time variables ¢t = {tq,ts,t3,...} are
defined by

exp (i tkzk> = i smy(t)z7",
k=1 n=>0

()= det (sp,mie):

1<, j<N]
The master T-operator (T-function) is defined by

T(u,t) =) sy(t)T(u). (3.1)
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This is a generating function of the T-operators in the following
sense:

- N 1, 1
T)\(U) = S)\(a)T(’LL, t) 5 0= {&1, 5@2, gatg, . }

t=0

The master T-operator (3.1) commutes for any u,t, and contains
Baxter Q-operators and T-operators for all levels of the nested
Bethe ansatz.

The master T-operator is a 7-function of

1. KP-hierarchy with respect to times 1, ¢, - - -,
2. MKP-hierarchy with respect to times ¢, t1, %o, - - -.

Here ty = u plays a role of the spectral parameter in the quantum
integrable system. The statement (2) is equivalent to that the
coefficients T*(u) of the Schur function expansion (3.1) obey
the Cherednik-Bazhanov-Reshetikhin formula (2.2).

4 Bilinear identity for the master T-operator

The master T-operator (3.1) obeys the bilinear identity
7{ Aty b — [T,V + [z ) dz =0 (4.1)
C

where t + [z 71 = {t; + 27 ta + 5272 5+ 5277, ... ],
f(t, Z) - Z?:l tn2".

We can derive various bilinear equations by choosing w, u', ¢, t'.

Example 1 Let us consider the case v = wu, t, =
te — 1z + 2"+ 237,

eg(t—t/,Z) —_

1-2)0-5)0-2)



Then (4.1) reduces to the discrete KP equation:

(20 — 23)T (u, t + [zl_l]) T (u, t+ [z 1]+ [zg_l])
+ (23 — 21)T (u, t + [22_1]) T (u, t+ [z + [23_1])

+ (21 — 29)T (u,t + [23_1]) T (u,t + [+ [22_1]) = 0.
(4.2)
The equations in the hierarchy are obtained by expanding in
negative powers of z1, 29, 23.

Example 2 Let us consider the case v/ = u — 1
—k o~k
t;c:tk_%(% +257),

(1-)0=3)
Then (4.1) reduces to the discrete MKP equation:
2T (u+ 1,6+ 20 T (u, t+ [257])
— T (u+ L+ 5 ") T (ut+[2])
+ (21— 2)T (u+ 1,6+ [z7 ]+ [21]) T(u,t) =0. (4.3)

The equations in the hierarchy are obtained by expanding in neg-

ative powers of 21, zo. This can be interpreted as the limit z3 — 0
of KP (4.2).

5 Backlund transformations for the master T-
operator

Let us take any subset {iy,ds,...,4,} of the set {1,2,... N}
There are 2V such sets. We define the nested master T-operators
T(1in) (y, t) recursively by taking the residue of the master T-



operator (3.1).

(5.1)

where {py,po,...,pn} are the eigenvalues of the boundary twist
matrix in (2.1) and T?(u, t) = T'(u, t). These define the undressing
chain that terminates at the level V:

T(u,t) — T (u,t) — TH2 (4, t) — ... — TNy t) =0
and satisfy the bilinear relations (Backlund transformations) in the
same way as the master T-operator ((4.2),(4.3)):
gijplng(il...inij)(u7t)T(il...ink)(u_|_ 1,t)
X Ejkpi—lT(il...injk:)(u’t)T(il...z’ni)(u +1,t)
+ epap; T ()T (0 4 1,8) = 0, (5.2)

pj—lT(z’l...z'nz')(% t)T(il...inj)(u+17 t)—p{lT(il“‘i"j)(u, t)T(il---ini>(u_|_17 t)
= g T\ mid) (y t) T (y +1,8), (5.3)

where i, 7,k € {1,2,..., N} \ {i1,do,...,in}, i £ j i £k, j#k,
5ij::|:1-

6 A general definition of the Baxter Q-operators

We define the Bazter Q-operators Q. _;,)(u) (up to the normal-
ization) by the nested master T-operators as their restrictions to
zero values of t:

Qiy..in) (1) = T(il"'i")(ua t=0). (6.1)

Then the functional relations among Q-operators (QQ-relations)
follow from (5.3). The Bethe ansatz equations can be derived from
the QQ-relations. This realizes an idea [4] that there are 2V Q-
operators. The Bécklund transformations in [5] are realized on the

>



level of operators systematically. If the quantum space in (2.1) is
the fundamental representation, one can use [2, 1] the co-derivative
on the group elements [6] to write the Q-operators. As further
development,

e The generalization to the superalgebra case gl(M|N) or the
trigonometric case are also possible.

e The master T-operator will be realized as a sort of a column
determinant over a function of L-operator for the Yangian or the
quantum affine algebra (a generalization of a generating function
of the characters).

Appendix: L-operators for the Baxter Q-operators

The Q-operators can also be defined as the trace of some mon-
odromy matrices, which are defined as product of L-operators. In
general, such L-operators are image of the universal R-matrix for

q-oscillator representations of the Borel subalgebra of the quan-

tum affine algebra (cf. [7] for U,(sl(2)) case). In [8, 10], we gave
L-operators for the Q-operators for U,(sl(2|1)). Here we mention

construction of the L-operators for U,(gl(M|N)) [3].

The (centerless) quantum affine superalgebra Uq(gAl(M |IN)) is
defined by

=T =0, for 1<i<j<M+N
LOTY VLW =1 for 1<i< M+ N,

R*(z,y)L"(y)L"(z) = L"(z)L"(y)R*(z, ),

R?(z,y)L (y)L (z) = L (x)L" (y)R®(z, ),

R?(z,y)LP(y)L" (z) =L (2)L(y)R¥(w,y), z,y € C,
L(z) = Z Lij() ® Eij, L(z) = Lij(z) ® Ej,



]

- n) —n T - (n) n
Lij(x) =Y L)z, Lylw)=> L ",

n=0 n=0

where R(z,y) = R — gf_{ is the R-matrix of the Perk-Schultz
model; R and R do not depend on the spectral parameter:; Ei; is
(M 4+ N) x (M + N) matrix unit.

The quantum affine superalgebra U, (gl(M|N)) has a finite sub-
algebra U, (gl(M|N)) defined by

LijIZJZ'IO for 1§Z<3§M+N
R23L13L12 _ L12L13R23

REESBT2 _ E12E13R237

RBLBLY = T, BR23
L= Zsz ® E;j, L= Zz@j ® Eij.
.7j

0,J

There is an evaluation map from U,(gl(M|N)) to U,(gl(M|N))
such that

L(z) — L —Laz !,
L(z) — L — L.

The difference between L(z) and L(z) is not very important under
the evaluation map. We will consider only L(x) which generate the
g-superYangian (a sort of a Borel subalgebra of U,(gl(M|N))).
Let us take any subset I of the set {1,2,...,M + N} and
its complement set I = {1,2,...,M + N} \ I. There are
2M+N" choices of the subsets in this case. Corresponding to
the set I, we consider 2+ kind of representations of the q-
superYangian. For this purpose, we consider 2+ kind of contrac-
tions of U,(gl(M|N)). Namely, let us consider an algebra whose



condition (6.2) is replaced by

L”z” = ZML“ =1 for 7€ I,

LMZO for ZET

Then one can obtain 2% kind of algebraic solutions of the graded
Yang-Baxter equation via the map L;(z) = L—Lx~!. In addition,
we consider subsidiary contractions for the non-diagonal elements.
For example, suppose the set [ has the form I = {1,2,...,n} for
n > 0, then we assume

Lij:O for n<’l,<j§M—|—N

Remark: A preliminary form of these contractions was
discussed for U,(gl(3)): [9]; U,(gl(2[1)): [10].

We can construct some q-oscillator realizations of these con-
tracted algebras. Then we obtain g-oscillator solutions of the

graded Yang Baxter equation via Lj(x) = L — Lz~!. These L-
operators are L-operators for the Q-operators. They also give -
oscillator representations of the g-superYangian. We remark that
similar L-operators for U,(gl(3)) were derived in [11]. We also re-
mark that these L-operators reduce to L-operators similar to the
ones in [12] in the rational limit ¢ — 1. Up to overall factors,
these are image of the universal R-matrix (7 ® m9)R, where m
are g-oscillator representations and 9 is the fundamental repre-
sentation. Further development will be made for these L-operators

for the case: ' o
(1) 71 are g-oscillator representations and o are generic infinite

dimensional representations.
(2) Both 7 and my are g-oscillator representations; where the fac-
torization of the R-matrix for generic infinite dimensional repre-

sentations with respect to these will occur for both auxiliary and
quantum spaces.

(2) is a limit of (1) for the Kirillov-Reshetikhin modules (or their
infinite dimensional analogues) of my. Similarly, (1) is also a limit of
R-matrix whose 7 are such modules. All these will be explained by
the asymptotic representation theory of the quantum affine algebra
[13]. Nevertheless, it is important to construct all these matrices
explicitly.



There is also a different approach for related problems ([14] and
references therein).
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